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Transportation logistics for fuel delivery face persistent challenges in routing under 

uncertain demand and complex operational constraints. This study addresses the gap 

between theoretical models and practical fuel distribution by introducing a hybrid 

framework that integrates Deep Reinforcement Learning (DRL), graph-based spatial 

reasoning, and deterministic constraint validation. The method combines Proximal Policy 

Optimization (PPO) with a graph neural architecture to capture spatial dependencies in 

vehicle routing while ensuring operational feasibility via constraint-checking mechanisms. 

The approach was evaluated on 300 synthetic problem instances across three network 

scales (10, 50, and 100 stations) and a real-world case study involving 38 gas stations and 

6 vehicles in a regional fuel distribution system. Compared to a standard deep learning 

baseline and a Clarke-Wright heuristic, our method reduced operational costs by 7.2% and 

9.9%, respectively. Constraint violations dropped from 6% with classical reinforcement 

learning to 1%, demonstrating improved feasibility. While we report averaged results over 

large instance sets, formal statistical significance testing remains a direction for future 

work. The proposed approach maintained robust performance under varying levels of 

demand uncertainty and produced feasible daily routing plans within 45 seconds, 

confirming their practical applicability. By integrating learning, spatial reasoning, and 

operational compliance, this research advances scalable and adaptive optimization for fuel 

delivery in uncertain and dynamic environments. 
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1. INTRODUCTION

Transportation logistics for fuel delivery represent a critical 

component of modern energy distribution systems, with 

significant implications for operational efficiency and 

environmental sustainability. The optimization of fuel 

delivery routes involves complex decision-making under 

uncertainty, as transportation planners must contend with 

variable demand patterns, fluctuating travel conditions, and 

strict operational constraints [1, 2]. 

Traditional approaches to transportation optimization have 

predominantly employed mathematical programming 

formulations with deterministic parameters. While these 

methods provide structured frameworks with provable 

optimality guarantees, they encounter significant limitations in 

real-world fuel delivery scenarios. As transportation network 

complexity increases, exact solvers become computationally 

prohibitive for time-sensitive operational decisions, often 

requiring hours to generate solutions that rapidly become 

obsolete in dynamic environments [3]. Furthermore, these 

approaches typically fail to account for the stochastic nature of 

fuel consumption patterns and travel times, leading to 

suboptimal or infeasible routes when implemented in practice. 

Stochastic programming approaches have attempted to 

address uncertainty in transportation logistics through chance-

constrained formulations and recourse strategies [4, 5]. 

However, these techniques face significant scalability 

limitations that restrict their practical implementation in large-

scale transportation systems. This gap highlights the 

disconnect between theoretical transportation models and 

operational implementation requirements. 

Recent advancements in computational approaches offer 

promising alternatives for transportation optimization. Deep 

Reinforcement Learning (DRL) scales effectively with 

problem size through learned policies mapping states to 

actions without exhaustive enumeration. Proximal Policy 

Optimization (PPO) has demonstrated effectiveness for 

transportation routing problems due to its sample efficiency 

and training stability [6]. Concurrently, Graph Neural 

Networks (GNNs) have emerged as powerful tools for 

capturing spatial relationships in transportation networks, 

enabling rich representations of connectivity patterns essential 

for efficient routing decisions [7]. 

Despite these advances, significant challenges remain in 

integrating these computational techniques into practical 

transportation logistics systems. Standard DRL approaches 
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struggle to capture the complex spatial dependencies inherent 

in transportation networks, while ensuring compliance with 

operational constraints remains problematic. Furthermore, 

existing research has typically addressed either the 

computational efficiency of solution generation or the quality 

of solutions under uncertainty, but rarely simultaneously 

within transportation contexts. 

While DRL methods such as PPO offer scalable and 

adaptive policies, they often lack awareness of the spatial 

structure of the network, resulting in inefficient routing 

decisions in geographically complex environments. GNNs, on 

the other hand, capture spatial relationships effectively but are 

not inherently decision-making tools and require integration 

with control frameworks. Classical optimization approaches, 

although mathematically rigorous, are computationally 

intractable in large-scale stochastic settings and struggle to 

adapt to real-time operational variability. Therefore, none of 

these methods individually can simultaneously address the 

need for scalability, spatial reasoning, and constraint 

satisfaction in fuel delivery logistics. 

This research addresses these challenges by developing an 

integrated framework that combines reinforcement learning, 

GNNs, and constraint validation mechanisms to optimize fuel 

delivery operations under uncertainty. The framework bridges 

the divide between theoretical models and practical logistics 

operations by leveraging the complementary strengths of 

learning-based and optimization-based techniques. To address 

these intertwined limitations, we propose a unified approach 

with the following key contributions: 

● A comprehensive stochastic mathematical model of fuel

delivery operations with deterministic equivalent

transformations that enable practical computation while

maintaining solution robustness.

● A novel hybrid framework combining PPO with GNNs to

capture spatial dependencies within transportation

networks, enhancing the representational power of the

learning agent.

● A constraint validation mechanism that ensures generated

solutions adhere to operational requirements, addressing a

critical limitation of existing machine learning approaches

to transportation optimization.

Through computational experiments and a case study of

regional fuel distribution, this research demonstrates the 

practical benefits of the integrated approach for transportation 

logistics providers. The methodology achieves significant 

improvements in operational efficiency, constraint 

satisfaction, and robustness to uncertainty, offering a practical 

tool for daily logistics planning within fuel distribution 

networks. 

The remainder of this paper is organized as follows: Section 

2 reviews relevant transportation logistics literature; Section 3 

presents the mathematical formulation of the stochastic fuel 

delivery problem; Section 4 details the integrated 

methodology; Section 5 evaluates the approach through 

computational experiments and a case study; and Section 6 

concludes with findings and directions for future 

transportation research. 

2. LITERATURE REVIEW

The optimization of vehicle routing in fuel delivery logistics 

represents a complex interdisciplinary challenge that intersects 

traditional operations research, emerging digital technologies, 

and industry-specific operational constraints. This literature 

review systematically examines the evolution of vehicle 

routing optimization from classical formulations to 

contemporary machine learning approaches, with particular 

emphasis on uncertainty management and the unique 

challenges inherent to fuel distribution networks. The analysis 

reveals critical gaps in current methodologies and establishes 

the theoretical foundation for developing integrated 

optimization frameworks that address the multifaceted nature 

of modern fuel delivery logistics. 

2.1 Vehicle routing optimization in transportation logistics 

The foundation of transportation logistics optimization rests 

upon decades of research in vehicle routing problems, 

beginning with classical formulations that established the 

mathematical framework for delivery optimization. However, 

the evolution from theoretical models to practical applications 

has revealed significant limitations in traditional approaches, 

particularly when applied to specialized domains such as fuel 

delivery. This section examines the progression from classical 

VRP formulations to contemporary challenges, highlighting 

the growing complexity of real-world constraints that 

traditional models struggle to address. 

2.1.1 Classical VRP formulations 

The optimization of vehicle routing forms a cornerstone of 

transportation logistics research, with significant implications 

for operational efficiency and resource utilization. The 

Capacitated Vehicle Routing Problem (CVRP), extensively 

reviewed in recent comprehensive surveys [8, 9], establishes 

the foundational framework for delivery optimization across 

transportation networks. This classical formulation models a 

fleet of vehicles servicing a set of customers with known 

demands while minimizing total travel cost, subject to vehicle 

capacity constraints. Contemporary research by Archetti and 

Speranza [10] demonstrates that even modest improvements 

in routing efficiency translate to substantial economic and 

environmental benefits across transportation systems. 

However, classical CVRP formulations present significant 

limitations when applied to complex real-world scenarios. The 

deterministic assumptions underlying traditional models fail to 

capture the dynamic nature of modern logistics operations, 

where demand variability, traffic fluctuations, and operational 

disruptions are commonplace. Furthermore, the computational 

complexity of exact solution methods renders them 

impractical for large-scale networks, creating a fundamental 

trade-off between solution optimality and practical 

applicability. 

2.1.2 Fuel-specific constraints and challenges 

While classical VRP formulations provide a solid 

theoretical foundation, their application to fuel delivery 

operations reveals substantial gaps in addressing industry-

specific requirements. The transition from general freight 

transportation to fuel distribution introduces unique 

operational complexities that fundamentally alter the 

optimization landscape, necessitating specialized modeling 

approaches that account for product compatibility, 

contamination prevention, and regulatory compliance. 

Fuel delivery operations present unique challenges within 

the transportation optimization domain that distinguish them 

significantly from general freight transportation. Studies 

conducted by Li et al. [11] and Kumar et al. [12] identified 
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several industry-specific constraints, including 

compartmentalized vehicles, product contamination concerns, 

and evolving regulatory requirements. These operational 

realities significantly constrain the solution space and 

complicate optimization efforts. Critical analysis reveals that 

traditional VRP models inadequately represent fuel delivery-

specific constraints, including multi-compartment vehicles, 

product compatibility matrices, contamination prevention 

protocols, and regulatory compliance requirements. 

Recent studies by Baykasoğlu et al. [13] further 

characterized the fuel distribution problem as a specialized 

variant combining elements of multi-compartment vehicle 

routing with site-dependent constraints and dynamic time 

windows, creating particularly challenging optimization 

landscapes for transportation planners. The literature treats 

fuel delivery as a variant of general VRP rather than 

recognizing its distinct optimization landscape, leading to 

suboptimal solutions that fail to address industry-specific 

challenges effectively. 

To address these operational complexities more effectively, 

recent research has explored the role of digital transformation 

in advancing vehicle routing solutions. Integrating emerging 

technologies such as IoT, real-time analytics, and machine 

learning has opened new avenues for overcoming traditional 

limitations in fuel distribution planning. The next section 

explores these advancements and their associated limitations. 

2.1.3 Digital transformation in vehicle routing and its 

limitations 

The recognition of traditional model limitations has driven 

researchers toward incorporating digital transformation 

elements into vehicle routing optimization. This technological 

integration represents an attempt to bridge the gap between 

theoretical models and practical operational requirements, yet 

it has also revealed new challenges in balancing technological 

capabilities with optimization efficiency. 

Contemporary research extends traditional formulations to 

incorporate emerging operational constraints relevant to 

modern fuel distribution networks. Hu et al. [14] developed 

models accounting for driver working hours, vehicle 

compatibility with delivery locations, and carbon footprint 

considerations increasingly important in sustainable 

transportation. Their findings indicated that integrated 

approaches addressing multiple operational dimensions 

simultaneously yield superior results compared to sequential 

optimization techniques. Similarly, Lin et al. [15] 

demonstrated that accounting for heterogeneous fleet 

characteristics and real-time traffic data becomes increasingly 

crucial as transportation networks expand and integrate with 

smart city infrastructure. 

Modern optimization approaches incorporate digital 

transformation elements affecting contemporary 

transportation logistics. Research by Bandara et al. [16] 

highlighted the integration of Internet of Things (IoT) sensors 

and real-time demand prediction systems into routing 

optimization frameworks. These technological advances 

enable dynamic route adjustments based on actual 

consumption patterns and traffic conditions, addressing 

limitations of traditional static optimization approaches. Chen 

et al. [17] further demonstrated how machine learning 

techniques can complement classical optimization methods, 

particularly in handling the increasing complexity and 

uncertainty in modern fuel distribution networks. 

Despite these technological advances, a critical gap persists 

in the integration of digital tools with traditional optimization 

frameworks. Current approaches often treat digital 

components as peripheral additions rather than fully integrated 

parts of optimization processes, thus failing to exploit their 

potential for real-time adaptation and responsiveness to 

dynamic operational changes. 

2.2 Approaches to uncertainty in transportation systems 

The limitations of deterministic optimization models in 

capturing real-world variability have necessitated the 

development of sophisticated uncertainty management 

approaches. Transportation logistics, particularly fuel delivery 

operations, operate in inherently uncertain environments 

where demand fluctuations, traffic variability, and operational 

disruptions are the norm rather than the exception. This section 

examines the evolution of uncertainty management techniques 

from foundational stochastic programming approaches to 

contemporary robust optimization methods, analyzing their 

strengths, limitations, and applicability to fuel distribution 

networks. 

2.2.1 Stochastic programming foundations 

Uncertainty represents a fundamental challenge in 

transportation logistics, particularly in fuel distribution where 

demand volatility and travel time variability significantly 

impact operational efficiency. Stochastic optimization 

approaches have emerged as primary methodologies for 

addressing this uncertainty, with two predominant 

frameworks: chance-constrained programming and recourse 

models. 

Chance-constrained methods, pioneered for transportation 

applications by Dror and Trudeau [18] and further developed 

by Belenguer et al. [4], ensure constraint satisfaction with 

specified probabilities, particularly useful for managing fuel 

availability while limiting route failures. These approaches 

transform probabilistic constraints into deterministic 

equivalents using quantile functions, providing theoretical 

guarantees at the cost of increased computational complexity. 

Sluijk et al. [2] specifically applied chance-constrained 

programming to vehicle routing with stochastic demands, 

optimizing cost efficiency while maintaining specified service 

levels in transportation networks. 

2.2.2 Recourse strategies and dynamic adaptation 

Building upon the foundational concepts of chance-

constrained programming, recourse strategies introduce a 

dynamic element to uncertainty management by enabling 

corrective actions as uncertain parameters are realized. This 

progression toward dynamic adaptation represents a 

significant advancement in handling real-time operational 

challenges, though it introduces additional layers of 

computational complexity that must be carefully managed. 

Recourse strategies, exemplified by Desaulniers et al. [5] 

and Martin et al. [19] introduce corrective actions when 

uncertainties materialize, allowing for dynamic route 

adjustments as conditions change during operations. Gendreau 

et al. [3] developed recourse models that optimize initial 

routing while accounting for adjustment costs based on 

observed demand, creating more robust transportation 

solutions. These approaches offer greater operational 

flexibility but introduce additional computational challenges 

through multi-stage decision processes. 
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2.2.3 Robust optimization approaches 

The computational challenges inherent in stochastic 

programming have motivated the development of robust 

optimization approaches that seek to balance uncertainty 

management with computational tractability. These methods 

represent a paradigm shift toward worst-case scenario 

planning while maintaining practical applicability in large-

scale transportation networks. 

Recent advances in robust optimization have demonstrated 

significant practical benefits for transportation networks under 

uncertainty. Yang and Liu [20] showed that robust 

configuration optimization frameworks for integrated energy 

systems considering multiple uncertainties can significantly 

improve reliable energy supply and equipment investment 

efficiency, with total operating costs decreasing from 

$384,098 to $378,430 while maintaining service reliability. 

Transportation companies integrating route optimization 

software report operational expense reductions of 15-20% 

through optimized routes and decreased idle time, while 

studies demonstrate that optimizing vehicle capacity through 

robust planning resulted in a 15% reduction in delivery costs. 

Contemporary research has further validated the 

effectiveness of distributionally robust optimization 

approaches in energy and transportation systems. Zhang et al. 

[21] demonstrated that distributionally robust optimization

models utilizing Wasserstein distance-based ambiguity sets

prove effective in navigating demand uncertainties while

improving post-disaster recovery strategies, with applications

showing enhanced system resilience under uncertain

operational conditions. These findings collectively underscore

the effectiveness of uncertainty sets constructed from

historical data in managing practical uncertainty scenarios

across diverse transportation and fuel distribution networks.

2.2.4 Stochastic demand modeling 

While robust optimization provides effective worst-case 

guarantees, the quality of uncertainty management 

fundamentally depends on accurate demand forecasting 

capabilities. The integration of machine learning techniques 

into demand modeling has opened new possibilities for 

capturing complex demand patterns, yet significant challenges 

remain in handling sudden operational disruptions and 

emergency scenarios. 

Recent advances by Jain and Gupta [22] in electrical load 

demand forecasting using machine learning algorithms 

demonstrate that Long Short-Term Memory (LSTM) models 

achieve superior performance compared to other approaches, 

with prediction errors 13.51% lower than Support Vector 

Machines. Industry research [23] shows that businesses 

implementing AI-driven demand forecasting can achieve up to 

50% improvement in forecast accuracy through advanced 

machine learning techniques that integrate historical 

consumption patterns with external factors. However, these 

models struggle with sudden demand spikes during 

emergencies or supply disruptions, highlighting the need for 

more adaptive forecasting mechanisms. 

The integration of robust and stochastic approaches, as 

demonstrated by Chen et al. [24], offers promising results for 

energy distribution systems operating under multiple 

uncertainty sources through two-stage distributed robust 

optimization frameworks that effectively manage intermittent 

renewable energy while minimizing both investment and 

operational costs. Complementary research by Javanmard and 

Ghaderi [25] on energy demand forecasting across seven 

sectors using machine learning optimization models further 

validates the effectiveness of integrated approaches. However, 

critical analysis reveals that current uncertainty management 

approaches suffer from a fundamental limitation: they 

optimize specific uncertainty scenarios rather than developing 

adaptive systems capable of responding to unforeseen 

conditions in real-time. 

2.2.5 Computational limitations 

Despite the theoretical sophistication of modern uncertainty 

management techniques, their practical implementation faces 

significant computational barriers that limit their applicability 

in real-time transportation operations. These limitations have 

profound implications for the development of scalable 

optimization frameworks capable of handling the complexity 

and uncertainty inherent in fuel delivery logistics. 

Despite their theoretical appeal, these stochastic 

optimization techniques face significant scalability limitations 

in practical transportation applications. Recent research by 

Abirami et al. [26] in their systematic survey on big data and 

artificial intelligence algorithms for intelligent transportation 

systems demonstrates that computational complexity and 

algorithmic scalability remain critical challenges, particularly 

as datasets grow exponentially in size. The study highlights 

that while AI algorithms enhance traffic management and 

route optimization, they face significant computational 

barriers when processing large-scale transportation networks 

in real-time. This computational barrier has motivated 

research into alternative approaches that balance solution 

quality with practical computational requirements for 

transportation logistics, including the development of 

approximation algorithms and parallel processing techniques 

to maintain responsiveness in dynamic transportation 

environments. 

2.3 Machine learning applications in transportation 

routing 

The computational limitations of traditional optimization 

approaches, combined with the increasing availability of 

large-scale transportation data, have catalyzed significant 

interest in machine learning methodologies for routing 

optimization. Machine learning techniques offer the potential 

to overcome scalability challenges while maintaining solution 

quality, yet their application to transportation routing 

introduces new challenges related to constraint satisfaction 

and solution feasibility. This section examines the evolution of 

machine learning applications in routing, from DRL to GNNs, 

analyzing their capabilities and limitations in the context of 

fuel delivery optimization. 

2.3.1 DRL approaches 

Recent advances in machine learning have created new 

opportunities for addressing complex routing problems in 

transportation logistics. DRL methods have demonstrated 

promise for sequential decision-making under uncertainty, 

offering enhanced scalability compared to traditional 

optimization approaches. 

Among DRL algorithms, PPO has emerged as particularly 

effective for transportation routing problems. Zhao et al. [6] 

demonstrated PPO's effectiveness in dynamic routing 

scenarios with changing demands, while Kool et al. [27] 

showed that reinforcement learning approaches can generalize 

effectively across different transportation network structures. 
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These characteristics make PPO especially suitable for fuel 

delivery optimization, where operational conditions vary 

substantially across service regions and time periods. 

Recent applications have further extended these approaches 

to practical transportation contexts. Ma et al. [28] integrated 

PPO with pointer networks for improved computational 

efficiency in logistics applications, while Nazari et al. [29] 

demonstrated that attention mechanisms can enhance 

performance in dynamic delivery environments. These 

adaptations address specific challenges in transportation 

optimization, offering improved solution quality within 

practical computational constraints. 
 

2.3.2 GNNs in spatial optimization 

While DRL provides robust sequential decision-making 

capabilities, the explicit representation of spatial relationships 

within transportation networks remains a critical challenge. 

GNNs have emerged as a complementary technology that 

directly addresses spatial modeling limitations, offering 

enhanced representation capabilities for network-based 

optimization problems. 

While DRL provides robust sequential decision-making 

capabilities, explicitly capturing spatial relationships within 

the routing problem remains challenging. GNNs directly 

address this issue by efficiently modeling spatial dependencies 

in transportation networks. Kovács and Jlidi [7] demonstrated 

GNNs' effectiveness in learning heuristics for combinatorial 

optimization in transportation contexts, while Chen and Tian 

[30] showed that graph-based representations significantly 

outperform standard neural network architectures on routing 

problems. These advances suggest substantial potential for 

GNN applications in fuel delivery optimization, where spatial 

relationships significantly impact solution quality. 
 

2.3.3 Limitations of GNNs in transportation logistics 

Despite their promising spatial modeling capabilities, 

GNNs face several critical limitations when applied to 

practical transportation logistics scenarios. These limitations 

highlight the need for careful consideration of GNN 

applicability and the potential requirement for hybrid 

approaches that combine GNNs with complementary 

methodologies. 

Despite their representational strengths, GNNs present 

several critical limitations when applied to transportation 

logistics. First, their performance tends to degrade with very 

large or sparse graphs, common in regional or national 

transportation networks. Second, most GNN architectures 

assume static graph topologies, limiting their applicability in 

dynamic environments where traffic conditions, route 

availability, or demand fluctuate in real-time. Third, GNN-

based models often lack direct mechanisms for handling hard 

operational constraints (e.g., time windows, vehicle 

capacities), requiring complex post-processing or integration 

with additional frameworks [31, 32]. 

These limitations highlight the need for hybrid approaches 

that combine GNNs with decision-making frameworks 

capable of enforcing feasibility and adaptability under 

uncertainty. Current reinforcement learning approaches, 

although scalable, similarly struggle with explicit constraint 

satisfaction—a critical requirement in heavily regulated 

domains such as fuel delivery, where safety and compliance 

cannot be compromised. 
 

2.3.4 Integration challenges 

The individual limitations of both DRL and GNNs have 

motivated researchers to explore integrated approaches that 

leverage the complementary strengths of these methodologies. 

However, the effective integration of spatial representation 

capabilities with sequential decision-making frameworks 

remains a significant challenge, particularly in constrained 

domains such as fuel delivery logistics. 

Despite their respective strengths, the combined integration 

of GNNs with reinforcement learning—particularly under 

stochastic fuel delivery scenarios—remains significantly 

underexplored. Existing studies predominantly focus on 

deterministic settings or inadequately incorporate unique 

constraints inherent to fuel distribution networks. 

Consequently, there is a notable research gap in effectively 

integrating spatial representation capabilities of GNNs with 

the decision-making flexibility of DRL, particularly in highly 

regulated and uncertainty-rich transportation domains such as 

fuel delivery logistics. 

 

2.4 Integrated approaches and research gaps 

 

The examination of individual methodologies reveals that 

each approach addresses specific aspects of the fuel delivery 

optimization challenge while exhibiting fundamental 

limitations in others. This recognition has motivated 

researchers to develop integrated frameworks that combine 

multiple methodologies to achieve comprehensive 

optimization capabilities. However, current integration 

attempts remain incomplete, addressing only partial 

combinations of required capabilities while failing to fully 

leverage the synergistic potential of unified approaches. 

 

2.4.1 Current hybrid methodologies 

Literature clearly highlights the limitations of individual 

methodologies, motivating researchers to develop integrated 

approaches combining the complementary strengths of 

traditional optimization and machine learning methods. 

Several recent studies have attempted such integrations. Chen 

et al. [17] combined reinforcement learning with local search 

heuristics, demonstrating improved solution quality while 

maintaining computational efficiency. However, critical 

analysis reveals that their framework does not adequately 

address fuel-specific operational constraints such as multi-

compartment vehicle management, contamination prevention, 

and regulatory compliance. Fuel delivery logistics involves 

stringent operational requirements, including compartment-

specific routing to prevent contamination and adherence to 

strict safety regulations, complexities that generic routing 

methods often overlook. 

Similarly, Ma et al. [28] developed a dual-aspect 

collaborative transformer approach for stochastic routing 

under uncertainty, achieving superior performance in handling 

demand variability. Despite these advancements, their method 

lacks real-time adaptation capabilities essential for handling 

unforeseen operational disruptions and similarly neglects the 

integration of regulatory constraints critical in fuel distribution 

scenarios. 

 

2.4.2 Methodological gaps 

The analysis of current hybrid methodologies reveals 

systematic gaps that prevent existing approaches from 

achieving comprehensive optimization in fuel delivery 

logistics. These gaps represent fundamental challenges that 

must be addressed to develop truly effective integrated 

frameworks capable of handling the full complexity of modern 
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fuel distribution operations. 

Current integrated approaches still exhibit several 

fundamental limitations. Firstly, they typically address only 

partial combinations of required capabilities (e.g., spatial 

representation, uncertainty handling, scalability, constraint 

satisfaction), leaving considerable optimization potential 

unexplored. Secondly, existing methodologies continue to 

inadequately represent fuel-specific operational constraints, 

treating fuel delivery as merely a special case of general 

routing problems rather than as a distinct optimization domain. 

Lastly, these methods consistently lack effective real-time 

adaptability mechanisms. Real-time adaptability is crucial to 

maintaining operational feasibility and optimality under 

dynamic conditions, particularly in fuel distribution networks 

where sudden demand fluctuations, unexpected traffic 

conditions, and stringent compliance requirements frequently 

occur. 

2.5 Research gap synthesis and future directions 

The comprehensive analysis of existing literature reveals a 

critical convergence point where individual methodologies 

reach their operational limits, necessitating a fundamental 

paradigm shift toward unified integration architectures. This 

convergence represents both a challenge and an opportunity 

for developing next-generation optimization frameworks that 

transcend the limitations of current approaches while 

addressing the unique requirements of fuel delivery logistics. 

2.5.1 Methodological convergence analysis 

The comprehensive literature analysis reveals a critical 

convergence point, where established optimization paradigms 

individually reach their operational limits in fuel delivery 

logistics. Traditional mathematical programming offers 

structural rigor but lacks dynamic adaptability; stochastic 

approaches effectively handle uncertainty but face scalability 

issues; machine learning methods provide scalability but 

struggle with operational constraint enforcement; and graph-

based representations excel in spatial modeling but must 

integrate effectively with decision-making frameworks. 

The identified methodological fragmentation across 

existing approaches—partial integration, generic treatment of 

fuel-specific constraints, and insufficient real-time 

adaptability—highlights the need for a unified framework that 

comprehensively addresses these interconnected limitations. 

2.5.2 Integrated framework contribution 

The recognition of methodological convergence challenges 

necessitates the development of comprehensive integration 

architectures that address the fundamental limitations 

identified across existing approaches. This research gap 

provides the foundation for developing innovative frameworks 

that orchestrate multiple computational paradigms within 

unified, coherent systems capable of handling the full 

complexity of fuel delivery logistics. 

Addressing this convergence challenge necessitates a 

paradigm shift toward comprehensive integration 

architectures that transcend individual methodology 

limitations. This research contributes precisely to such a novel 

framework by orchestrating multiple computational 

paradigms within a unified, coherent system. The proposed 

approach leverages reinforcement learning's scalability for 

sequential decision-making, integrates GNNs' powerful spatial 

modeling capabilities, and incorporates traditional 

optimization methods for rigorous operational constraint 

enforcement. 

Critically, this framework treats fuel-specific operational 

constraints—multi-compartment vehicle management, 

contamination prevention, and regulatory compliance—as 

fundamental components of the optimization process rather 

than secondary considerations. Additionally, the proposed 

methodology enables real-time adaptation to changing 

operational conditions, maintaining near-optimal solution 

quality and strict feasibility under uncertainty, directly 

addressing the crucial need for adaptive decision-making in 

fuel delivery logistics. 

2.5.3 Research positioning and expected impact 

The development of comprehensive integrated frameworks 

represents a significant opportunity to advance both theoretical 

understanding and practical capabilities in transportation 

logistics optimization. The positioning of this research within 

the broader landscape of optimization methodologies 

establishes the foundation for transformative advances that 

extend beyond fuel delivery logistics to influence the 

evolution of transportation optimization more broadly. 

The proposed integrated framework represents a 

methodological advancement beyond existing literature, 

simultaneously addressing computational efficiency, solution 

optimality, and operational feasibility. Whereas current 

methodologies typically optimize isolated objectives 

sequentially, leading to overall suboptimal system 

performance, the proposed integration systematically exploits 

the complementary strengths of each methodology, thereby 

achieving near-optimal, scalable solutions. 

Operationally, the proposed framework is expected to 

significantly reduce fuel delivery costs, enhance fleet 

utilization efficiency, rapidly adapt to unforeseen events such 

as demand spikes or disruptions, and ensure strict regulatory 

compliance, thus directly improving daily logistics 

performance. Domain-specific modeling ensures solutions 

inherently incorporate fuel-industry constraints, avoiding the 

need for extensive post-processing corrections. 

Moreover, this integrated methodology offers a 

generalizable framework that extends beyond fuel delivery 

logistics, laying the groundwork for future research in other 

complex transportation and logistics domains characterized by 

simultaneous challenges of constraint satisfaction, uncertainty 

management, and real-time adaptability. By establishing 

foundations for adaptive, constraint-aware, and scalable 

optimization, the research contributes to the broader evolution 

and future directions of transportation logistics optimization 

methodologies. 

3. PROBLEM DEFINITION AND MATHEMATICAL

MODEL

3.1 Stochastic fuel delivery problem: Modeling and 

formulation 

The stochastic fuel delivery problem involves dispatching a 

fleet of vehicles from a central depot to service a set of gas 

stations with uncertain demand quantities. This section 

develops a comprehensive mathematical model that captures 

the operational complexities and stochastic elements inherent 

in fuel distribution networks. 

The problem encompasses several interrelated components 
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that define the transportation logistics framework. A 

heterogeneous fleet 𝑉  of vehicles operates from a central 

depot, with each vehicle k ∈ V characterized by capacity Qk, 

operational cost per unit time Fk, and time availability Ak. 

These vehicles must service a set C of gas stations (customers), 

where each station ci ∈ C exhibits stochastic demand patterns. 

The set I of orders corresponds to specific gas stations, with 

each order i ∈ I associated with a station c. 

Transportation operations are further characterized by travel 

times 𝑇𝑘
𝐿  and 𝑇𝑘

𝑈  for loaded and unloaded vehicles,

respectively, reflecting the influence of cargo weight on 

vehicle performance. Additionally, operations include loading 

time 𝐿𝑖𝑘 at the depot and uncertain unloading time 𝑈𝑖𝑘  at

destination stations. The distance 𝑑𝑐𝑖
 from each gas station

𝑐𝑖 to the depot completes the spatial configuration of the

transportation network. 

The objective of the optimization problem is to design 

efficient delivery routes that minimize operational costs while 

satisfying demand constraints under uncertainty. This 

formulation explicitly accounts for the stochastic nature of fuel 

demand and unloading times, reflecting real-world variability 

in consumption patterns and service operations within 

transportation systems. 

3.1.1 Decision variables 

The optimization model employs the following decision 

variables to characterize delivery operations: 

• 𝑛𝑖𝑘 ∈ ℕ: Number of deliveries by vehicle 𝑘 for order 𝑖.
• 𝑥𝑖𝑘 ∈ 0,1 : Binary variable equal to 1 if vehicle k is

assigned to order i.

• 𝑣𝑐,𝑘 ∈ 0,1: Binary variable equal to 1 if vehicle k serves

gas station c.

• 𝑤𝑘 ∈ 0,1 : Binary variable equal to 1 if vehicle k is

deployed.

• 𝑠𝑘,𝑖𝑗 ∈ 0,1 : Binary variable equal to 1 if order j

immediately follows order i on vehicle k's route.

• 𝑡𝑘,𝑖 ∈ ℕ: Position of order i in vehicle k's route.

These variables collectively define the assignment of

vehicles to orders, service sequence, and delivery quantities 

within the transportation network. 

3.1.2 Objective functions 

The model addresses two complementary objectives that 

balance operational efficiency with service consistency in 

transportation logistics: 

Total Delivery Cost (𝑓1):

𝑓1 = ∑ ∑ 𝐹𝑘

𝑘∈𝑉𝑖𝑖∈𝐼

(𝐿𝑖𝑘 + 𝑈𝑖𝑘 + 𝑑𝑐𝑖
(𝑇𝑘

𝐿 + 𝑇𝑘
𝑈))𝑛𝑖𝑘 (1) 

This objective captures the operational efficiency of 

delivery operations, including loading, unloading, and 

transportation costs. By minimizing 𝑓1 , the model reduces

overall expenditure associated with fuel consumption, vehicle 

utilization, and time resources, ensuring economic viability 

while meeting service requirements.  

Vehicle Dispersion (𝑓2):

𝑓2 = ∑ ∑ 𝑣𝑐,𝑘

𝑘∈𝑉𝑐∈𝐶

+ 𝛽 ∑ 𝑤𝑘

𝑘∈𝑉

(2) 

This secondary objective promotes operational consistency 

by minimizing the number of different vehicles serving each 

station and reducing the total vehicles deployed. The 

parameter β weights the importance of fleet size reduction 

versus service concentration, allowing transportation 

managers to balance fixed fleet costs against service 

complexity. 

3.1.3 Key constraints 

The model incorporates several constraint categories to 

ensure operational feasibility while accommodating stochastic 

variations in transportation parameters: 

Vehicle Time Constraints: For every vehicle 𝑘 ∈ 𝑉: 

∑ 𝑅𝑖𝑘

𝑖∈𝐼

𝑛𝑖𝑘 ≤ 𝐴𝑘, where 𝑅𝑖𝑘 = 𝐿𝑖𝑘 + 𝑈𝑖𝑘 + 𝑑𝑐𝑖
(𝑇𝑘

𝐿 + 𝑇𝑘
𝑈)

Stochastic Demand Satisfaction: For every order 𝑖 ∈ 𝐼: 

∑ 𝑄𝑘

𝑘∈𝑉𝑖

𝑛𝑖𝑘 ≥ 𝑑𝑖

where, 𝑑𝑖  is a random variable with mean 𝜇𝑖  and standard

deviation 𝜎𝑖.

Vehicle Assignment Constraints: For each order 𝑖 ∈ 𝐼 and 

vehicle 𝑘 ∈ 𝑉: 

i
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Station-Vehicle Linking Constraints: For each order 𝑖 ∈
𝐼with station 𝑐𝑖 = 𝑐 and vehicle 𝑘 ∈ 𝑉:

𝑣𝑐,𝑘 ≥ 𝑥𝑖𝑘

Vehicle Utilization Constraints: For every vehicle 𝑘 ∈ 𝑉 

and station 𝑐 ∈ 𝐶: 

𝑤𝑘 ≥ 𝑣𝑐,𝑘 

∑ 𝑤𝑘

𝑘∈𝑉

≤ 𝑁𝑘

Route Construction Constraints: For every vehicle 𝑘 ∈ 𝑉 

and orders 𝑖, 𝑗 ∈ 𝐼 ∪ {0}: 

∑ 𝑠𝑘,𝑖𝑗

𝑗∈(𝐼∪{0})∖{𝑖}

= 𝑥𝑖𝑘 , ∀𝑖 ∈ 𝐼 

∑ 𝑠𝑘,𝑗𝑖

𝑗∈(𝐼∪{0})∖{𝑖}

= 𝑥𝑖𝑘 , ∀𝑖 ∈ 𝐼 

∑ 𝑠𝑘,0𝑖

𝑖∈𝐼

= 𝑤𝑘  

∑ 𝑠𝑘,𝑖0

𝑖∈𝐼

= 𝑤𝑘  

0 ≤ 𝑡𝑘,𝑖 ≤ |𝐼|, ∀𝑖 ∈ 𝐼 

𝑡𝑘,0 = 0 

𝑡𝑘,𝑖 + |𝐼|𝑠𝑘,𝑖𝑗 + (|𝐼| − 2)𝑠𝑘,𝑗𝑖 ≤ 𝑡𝑘,𝑗 − 1, ∀𝑖, 𝑗 ∈ 𝐼 ∪ {0}, 𝑖 ≠ 𝑗

These constraints collectively ensure proper route 
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construction within the transportation network, including 

depot departure and return, sequencing of deliveries, and 

subtour elimination. 

3.2 Deterministic equivalent model 

To enable practical computation in transportation logistics 

applications, the stochastic model requires transformation into 

a deterministic equivalent using three key techniques that 

preserve the essential structure while enabling standard 

optimization approaches. 

3.2.1 Chance-constrained transformation 

The stochastic demand constraint is replaced with its 

chance-constrained equivalent: 

∑ 𝑄𝑘

𝑘∈𝑉𝑖

𝑛𝑖𝑘 ≥ 𝐷𝑖
∗, ∀𝑖 ∈ 𝐼

where, 𝐷𝑖
∗ = 𝜇𝑖 + 𝑧1−𝛼𝜎𝑖  represents the certainty-equivalent

demand for order 𝑖, incorporating both the expected demand 

𝜇𝑖  and a risk-adjusted margin 𝑧1−𝛼𝜎𝑖 . The parameter 𝑧1−𝛼  is

the quantile of the standard normal distribution corresponding 

to confidence level 1 − 𝛼. 

3.2.2 Expected value transformation 

The uncertain unloading time 𝑈𝑖𝑘  is approximated using its

expected value:  

𝑈𝑖𝑘
𝑒 = 𝛼𝑘(𝜇𝑖 + 𝑧1−𝛼𝜎𝑖)

where, 𝛼𝑘 is the average unloading time per unit of fuel for

vehicle k . This transforms the unit delivery time to:  

𝑅𝑖𝑘 = 𝐿𝑖𝑘 + 𝑈𝑖𝑘
𝑒 + 𝑑𝑐𝑖

(𝑇𝑘
𝐿 + 𝑇𝑘

𝑈)

3.2.3 Recourse transformation 

To handle deviations from planned deliveries, we introduce 

recourse variables 𝛿+𝑖(𝑠)  and 𝛿−𝑖(𝑠) for each order i and

scenario s . These variables quantify the shortfall or excess

relative to the certainty-equivalent demand, with constraints:  

∑ 𝑝𝑠𝛿𝑖
+(𝑠)

𝑠∈𝑆

≥ 𝐷𝑖
∗ − ∑ 𝑄𝑘𝑛𝑖𝑘 , ∀𝑖 ∈ 𝐼

𝑘∈𝑉𝑖

∑ 𝑝𝑠𝛿−𝑖(𝑠)

𝑠∈𝑆

≥ ∑ 𝑄𝑘𝑛𝑖𝑘 − 𝐷𝑖
∗, ∀𝑖 ∈ 𝐼

𝑘∈𝑉𝑖

The corresponding penalty term in the objective function 

becomes:  

𝑓𝑟𝑒𝑐𝑜𝑢𝑟𝑠𝑒 = ∑ ∑ 𝑞

𝑖∈𝐼𝑠∈𝑆

𝛿𝑖
+(𝑠)

where, q  represents the penalty cost per unit of unmet 

demand. 

3.3 Integrated deterministic model 

The complete deterministic equivalent model integrates all 

previously described transformations into a coherent 

optimization framework: 

𝑚𝑖𝑛 𝑓1 + 𝑓𝑟𝑒𝑐𝑜𝑢𝑟𝑠𝑒 + 𝑓2

where, 

𝑓1 + 𝑓𝑟𝑒𝑐𝑜𝑢𝑟𝑠𝑒 = ∑ ∑ 𝐹𝑘(𝐿𝑖𝑘 + 𝑈𝑖𝑘
𝑒 + 𝑑𝑐𝑖

(𝑇𝑘
𝐿 + 𝑇𝑘

𝑈))

𝑘∈𝑉𝑖𝑖∈𝐼

𝑛𝑖𝑘

+ ∑ ∑ 𝑞𝑑𝑖
+(𝑠)

𝑖∈𝐼𝑠∈𝑆

, 

𝑓2 = ∑ ∑ 𝑣𝑐,𝑘

𝑘∈𝑉𝑐∈𝐶

+ 𝛽 ∑ 𝑤𝑘

𝑘∈𝑉

This model is subject to all vehicle routing constraints with 

stochastic elements replaced by their deterministic 

equivalents. These include vehicle capacity constraints, 

demand satisfaction requirements using certainty-equivalent 

values, routing sequencing constraints, and recourse 

mechanisms to handle demand deviations. 

The transformation preserves the essential structure of the 

original stochastic problem while enabling practical 

computation through standard optimization techniques. The 

model balances computational tractability with solution 

robustness, providing a rigorous foundation for both direct 

solution methods and the hybrid learning approach described 

in the following section. This deterministic equivalent 

formulation serves as a critical bridge between theoretical 

modeling and practical application in transportation logistics 

operations. 

4. PROPOSED HYBRID METHODOLOGY

4.1 Framework overview 

This section presents the integrated methodology developed 

to address the computational challenges of stochastic fuel 

delivery optimization in transportation networks. The 

approach synthesizes advanced computational techniques with 

traditional optimization principles to generate solutions that 

are both practically implementable and mathematically sound. 

The methodology addresses two fundamental limitations in 

transportation logistics optimization. First, traditional 

approaches face scalability challenges, as the decision space 

in large-scale problems expands exponentially, rendering 

classical optimization techniques computationally intractable 

for time-sensitive operational decisions. Second, DRL 

methods often struggle with modeling complex spatial 

dependencies and ensuring constraint satisfaction in dynamic 

delivery networks. To overcome these challenges, the 

proposed framework integrates GNNs-augmented DRL, 

which effectively captures spatial relationships while adapting 

to dynamic environments. By combining reinforcement 

learning with graph-based spatial reasoning and constraint 

validation mechanisms, the framework exploits the 

complementary strengths of multiple computational 

paradigms, enabling scalable and constraint-aware logistics 

optimization. 

Figure 1 illustrates the overall architecture of the integrated 

approach. At the core of this architecture lies a reinforcement 

learning agent that employs PPO to learn efficient delivery 

strategies through interaction with a simulated transportation 

environment. This agent's capabilities are enhanced through a 

GNN module that extracts spatial features from the fuel 

distribution network, capturing complex dependencies 
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between delivery locations. The third essential component is a 

verification mechanism that ensures generated routes adhere 

to operational constraints essential for transportation logistics. 

Together, these interconnected elements form a 

comprehensive system that addresses the multifaceted 

challenges of fuel delivery optimization. 

Figure 1. Overall architecture of the PPO-GNN hybrid methodology 

The PPO-based routing policy serves as the primary 

decision-making component, learning to generate efficient 

delivery routes through repeated interaction with the 

transportation environment. This policy progressively 

improves as it experiences diverse scenarios, developing 

adaptive strategies that respond to demand variability and 

network conditions. The GNN-enhanced state representation 

complements this policy by transforming the raw 

transportation network into structured spatial embeddings that 

capture relationship patterns between different locations. 

These embeddings enable the agent to recognize critical 

spatial dependencies that influence routing efficiency. Finally, 

the deterministic constraint validation component bridges the 

gap between learning-based approaches and practical 

feasibility, ensuring that generated solutions satisfy the 

operational requirements of real-world transportation systems. 

These components operate in concert to enable adaptive 

decision-making that balances cost efficiency with operational 

feasibility in stochastic environments. Their integration 

represents a significant advancement over existing approaches 

in transportation logistics optimization, addressing both 

computational efficiency and solution quality within a unified 

framework. 

4.2 Reinforcement learning framework 

4.2.1 Problem formulation as Markov decision process 

The fuel delivery optimization problem is formulated as a 

Markov Decision Process (MDP) defined by the tuple ⟨S, A, 

P, R, γ⟩, providing a mathematical framework for sequential 

decision-making within transportation systems: 

• State Space (S): Each state 𝑠𝑡  encodes the current

transportation system configuration, including vehicle

locations, remaining capacity, pending deliveries, and

estimated demand at each station.

• Action Space (A): The action space consists of decisions

for vehicle assignment, routing sequence, and delivery

quantity within the transportation network.

• Transition Dynamics (P): The probability distribution

𝑃(𝑠{𝑡+1}|𝑠𝑡 , 𝑎𝑡) models how the environment evolves in

response to actions, capturing stochasticity in demand 

patterns and travel conditions.  

• Reward Function (R): The reward function 𝑅(𝑠𝑡 , 𝑎𝑡)
provides feedback on action quality, balancing

operational costs, demand satisfaction, and constraint

adherence in transportation operations.

• Discount Factor (γ): The parameter γ∈ [0,1] determines

the relative importance of immediate versus future

rewards in route planning.

This MDP formulation creates a structured framework for 

learning adaptive delivery strategies through reinforcement 

learning, enabling optimization of sequential decisions within 

stochastic transportation environments. 

The state space is formally defined as st =

 [vpos, vcap, Dpending, μdemand, σdemand , Twindows] where

vpos ∈  ℝn×2  represents vehicle positions in Cartesian

coordinates, vcap ∈  ℝn denotes remaining vehicle capacities,

Dpending ∈  {0,1}m  is a binary vector indicating pending

deliveries, μdemand ∈  ℝm captures expected demand at each

station, σdemand ∈  ℝm  quantifies demand uncertainty

through standard deviation, and Twindows ∈  ℝm×2  defines

delivery time windows as [start, end] intervals for each station. 

This comprehensive state representation enables the agent to 

make informed decisions that account for both current system 

conditions and future uncertainties. 

4.2.2 PPO 

The methodology employs PPO as its core learning 

algorithm based on established advantages in sample 

efficiency, stability, and performance in high-dimensional 

action spaces [33]. Unlike traditional policy gradient methods, 

PPO utilizes a clipped surrogate objective that prevents 

destructive policy updates: 

𝐿𝐶𝐿𝐼𝑃(𝜃) = 𝔼𝑡[𝑚𝑖𝑛( 𝑟𝑡(𝜃)𝐴̂𝑡 ,clip(𝑟𝑡(𝜃),1 − 𝜖, 1 + 𝜖)𝐴̂𝑡)]

where, 
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• 𝑟𝑡(𝜃) =
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑
(𝑎𝑡|𝑠𝑡)

 is the probability ratio; 

• 𝐴̂𝑡 is the estimated advantage function;

• 𝜖 is the clipping parameter that constrains policy updates.

This objective ensures stable learning by limiting the

magnitude of policy changes, preventing the optimization 

process from collapsing due to excessively large updates in 

complex transportation routing problems. 

4.2.3 Reward function design 

The reward function is carefully designed to guide the 

learning agent toward high-quality solutions that balance 

multiple operational objectives: 

𝑅(𝑠, 𝑎) = −𝜆1𝐶𝑡𝑜𝑡𝑎𝑙(𝑠, 𝑎) − 𝜆2𝐶𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛(𝑠, 𝑎)

− 𝜆3𝐶𝑑𝑒𝑙𝑎𝑦(𝑠, 𝑎) − 𝜆4𝐶𝑢𝑛𝑚𝑒𝑡(𝑠, 𝑎)

− 𝜆5𝐶𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡(𝑠, 𝑎)

where, 

• 𝐶𝑡𝑜𝑡𝑎𝑙  represents operational costs (fuel, time,

resources);

• 𝐶𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 penalizes excessive vehicle deployment and

station dispersion;

• 𝐶𝑑𝑒𝑙𝑎𝑦  discourages late deliveries;

• 𝐶𝑢𝑛𝑚𝑒𝑡  penalizes unfulfilled demand;

• 𝐶𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡  imposes penalties for constraint violations.

The weights λ₁ through λ₅ balance the importance of 

different objectives, with λ₁ prioritizing cost efficiency and λ₅ 

emphasizing constraint satisfaction. This multi-objective 

reward formulation guides the agent toward solutions that are 

both economically efficient and operationally viable within 

transportation systems. 

Each cost component is mathematically defined as follows: 

Ctotal(s,a) =  Σᵢ(dtravel,I × cfuel + ttravel,I ×  cdriver)

represents direct operational expenses including fuel 

consumption and driver wages. 

Cdispersion(s,a) =  Σᵢ||posi −  centroid||
2

 penalizes 

excessive geographical spread of vehicle deployments. 

Cdelay(s,a) =  Σⱼ max(0, arrivalj − deadlinej)
2

 applies 

quadratic penalties for late deliveries. 

Cunmet(s,a) =  Σₖ(demandk − deliveredk)2  penalizes

unfulfilled customer demand. 

Cconstraint(s,a) =  λpenalty ×  Σₗ max(0, violationl) imposes

penalties proportional to constraint violations.  

The weighting parameters are empirically set as λ₁ = 1.0, λ₂ 

= 0.3, λ₃ = 0.8, λ₄ = 1.2, and λ₅ = 2.0, reflecting the relative 

importance of each operational objective. 

4.3 GNN enhancement 

4.3.1 Graph representation of transportation network 

The transportation distribution network is naturally 

represented as a graph: 

G =  (V, E) 

where, 

• Vertices V represent locations (gas stations and depots);

• Edges E represent transportation links with attributes

(distance, travel time);

• Node features encode station-specific information

(demand distribution, time windows);

• Edge features capture road characteristics (congestion

patterns, travel restrictions).

This graph structure inherently models spatial dependencies 

and connectivity patterns critical for efficient routing decisions 

within transportation networks. The representation preserves 

the topological structure of the delivery environment, enabling 

more effective learning of spatial relationships compared to 

standard vector-based approaches. 

4.3.2 GNN architecture 

The methodology employs message-passing neural network 

architecture to process the graph representation: 

ℎ𝑣
(𝑙+1) = UPDATE (ℎ𝑣

(𝑙),AGGREGATE({ℎ𝑢
(𝑙), 𝑒𝑢𝑣: 𝑢

∈ 𝒩(𝑣)})) 

where, 

• ℎ𝑣
(𝑙)

is the feature vector for node v at layer l; 

• 𝑒𝑢𝑣represents edge features between nodes u and v;

• 𝒩(𝑣) denotes the neighborhood of node v;

• AGGREGATE and UPDATE are neural network

functions that process and transform features.

This architecture allows information to propagate across the 

transportation graph, enabling the model to capture complex 

spatial relationships and dependencies. The multi-layer design 

progressively incorporates information from wider network 

neighborhoods, building a comprehensive representation of 

the transportation landscape. 

The specific GNN architecture employs three message-

passing layers with hidden dimensions of 128 for node features 

and 64 for edge features. Each layer utilizes ReLU activation 

functions with dropout regularization (p=0.2) to prevent 

overfitting. The aggregation function combines mean pooling 

with an attention mechanism that weights neighboring node 

contributions based on their relevance to routing decisions. 

The final graph embedding produces a 256-dimensional vector 

that captures the essential spatial characteristics of the 

transportation network. 

4.3.3 Integration with reinforcement learning 

The GNN module enhances the reinforcement learning 

agent's state representation by embedding the graph structure 

into a fixed-dimensional feature space: 

𝑠𝑡
′ = [𝑠𝑡; 𝐺𝑁𝑁(𝐺𝑡)]

where, 

• 𝑠𝑡 is the original state representation;

• 𝐺𝑁𝑁(𝐺𝑡) is the graph embedding produced by the GNN;

• 𝑠𝑡
′  is the augmented state used by the PPO policy.

This integration allows the agent to incorporate spatial 

context into its decision-making, recognizing patterns and 

dependencies within the transportation network that would 

otherwise remain hidden in a flat state representation. The 

enhanced state representation supports more informed routing 

decisions that account for the complex spatial relationships 

inherent in transportation networks.
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4.4 Constraint validation and solution refinement 

4.4.1 Deterministic validation mechanism 

To ensure operational feasibility within transportation 

logistics, the framework implements a constraint validation 

mechanism that evaluates generated solutions against the 

deterministic equivalent model described in Section 3. This 

process: 

1. Checks solutions for violations of vehicle capacity, time

windows, and other operational constraints; 

2. Quantifies the degree of constraint violation for reward

function adjustment; 

3. Guides the learning agent toward the feasible solution

space through targeted feedback. 

This validation component bridges the gap between 

learning-based approaches and mathematical optimization, 

ensuring that generated solutions satisfy the practical 

requirements of transportation operations. 

4.4.2 Solution refinement process 

When constraint violations are detected, the framework 

employs a two-stage refinement process: 

1. Minor Violations: For solutions with limited constraint

violations (≤5%), the system applies local adjustments to 

restore feasibility while preserving the overall route structure. 

2. Major Violations: For solutions with significant

violations (>5%), the framework integrates optimization-

based repair mechanisms that leverage the deterministic model 

to guide correction. 

This refinement process ensures that the integrated 

framework not only learns to generate efficient routes but also 

adheres to the operational constraints essential for practical 

implementation in transportation logistics. 

4.5 Training and deployment strategy 

4.5.1 Training algorithm 

Algorithm 1 presents the complete training procedure for 

the integrated PPO-GNN framework. The training process 

employs the following hyperparameters: batch size of 32 

episodes, learning rate of 3×10⁻⁴ using the Adam optimizer, 10 

PPO epochs per update cycle, clipping parameter ε = 0.2, value 

function coefficient of 0.5, entropy coefficient of 0.01, GAE 

lambda of 0.95, and discount factor γ = 0.99. These parameters 

were selected through systematic hyperparameter tuning to 

balance learning stability with convergence speed. 

The training process continues until convergence, typically 

requiring 5000-8000 episodes, depending on network 

complexity. Convergence is determined when the average 

reward improvement over 100 consecutive episodes falls 

below 1%. 

Algorithm 1: PPO-GNN Training Procedure 

1:  Initialize: πθ (policy), Vφ (value function), GNNψ (graph 

network) 

2:  For episode = 1 to max_episodes do 

3:      Initialize state s₀, graph G₀ 

4:      trajectory ← [] 

5:     

6:  For t = 0 to T-1 do 

7:   h_t ← GNNψ(G_t)   // Extract graph embedding 

8:  s't ← [s_t; h_t]    // Augment state representation 

9:   a_t ~ πθ(·|s't)     // Sample action from policy 

10:  s{t+1}, r_t, G{t+1} ← ENV(s_t, a_t) // Environmentstep 

11:trajectory.append((s'_t, a_t, r_t)) 

12:  End For 

13: 

14:  // Constraint validation and reward adjustment 

15:  violations ← VALIDATE_CONSTRAINTS(trajectory) 

16: adjusted_rewards ← ADJUST_REWARDS(trajectory, 

violations) 

17: 

18:  // Update networks using PPO 

19:  For ppo_epoch = 1 to 10 do 

20:   θ ← UPDATE_POLICY(θ, trajectory, adjusted_rewards) 

21:   φ ← UPDATE_VALUE(φ, trajectory, adjusted_rewards) 

22:  End For 

23: 

24:  // Update GNN parameters 

25:  ψ ← UPDATE_GNN(ψ, trajectory) 

26: End For 

Figure 2. Detailed architecture of the PPO-GNN model 
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4.5.2 Deployment strategy 

Once trained, the integrated model is deployed according to 

the following procedure: 

1. Encode the current network state and demand forecasts

as input to the model;

2. Generate routing decisions using the learned policy;

3. Validate solutions against operating constraints;

4. Apply refinement if necessary to ensure feasibility;

5. Execute the final delivery plan.

This deployment strategy ensures robust decision-making

that adapts to changing conditions while maintaining 

operational feasibility, providing transportation logistics 

providers with a practical tool for daily routing operations. 

Figure 2 illustrates the internal structure of the proposed 

integrated model, including the GNN module, state 

representation, policy and value networks, and constraint 

validation mechanism. 

5. EXPERIMENTAL EVALUATION

5.1 Experimental design 

5.1.1 Transportation network datasets 

To thoroughly evaluate the integrated methodology, this 

study constructed synthetic fuel delivery networks of varying 

scales representing different operational scenarios in 

transportation logistics. Three distinct network categories 

were developed to assess performance across different 

operational contexts.
The small-scale networks are comprised of 10 gas stations 

serviced by 3 vehicles, representing localized urban delivery 

operations with limited geographic spread. These 

configurations modeled compact transportation scenarios 

typically found in dense urban environments where vehicles 

operate within confined service areas. Medium-scale networks 

incorporated 50 gas stations with 8 vehicles, simulating 

regional distribution networks spanning multiple 

municipalities. These networks exhibited greater geographic 

dispersion and operational complexity, with longer travel 

distances and more varied demand patterns. Large-scale 

networks contain 100 gas stations serviced by 15 vehicles, 

emulating nationwide delivery operations with substantial 

logistical challenges. These extensive networks featured 

complex spatial distributions, diverse demand profiles, and 

significant heterogeneity in operational parameters. 

For each network scale, the study generated 100 problem 

instances with carefully calibrated characteristics relevant to 

transportation logistics. The demand profiles at each gas 

station were modeled using truncated normal distributions, 

where the mean and standard deviation parameters were 

empirically calibrated based on historical fuel consumption 

records from operational fuel delivery systems. This 

calibration ensures that the generated demand variability (10% 

to 25% of the mean) reflects realistic consumption 

fluctuations. 

Network topologies were constructed by sampling station 

locations over spatial grids mimicking real-world urban and 

regional layouts. The distance matrices were derived using 

shortest-path computations over road graphs extracted from 

OpenStreetMap data, thereby maintaining realistic geographic 

and transportation features such as travel distances and 

connectivity. 
To further validate the external realism of the synthetic data, 

a real-world case study was included in Section 5.5, based on 

an actual regional fuel delivery network involving 38 gas 

stations and 6 heterogeneous vehicles. The consistency of the 

results between synthetic and real-world settings supports the 

relevance and validity of the synthetic dataset design. 

5.1.2 Comparative methodologies 

The study compared the integrated PPO-GNN approach 

against three established baselines to evaluate relative 

performance and contribution: 

Classical PPO implementation served as the first baseline, 

employing standard PPO without GNN enhancements. This 

method used a flat state representation with the same reward 

structure as the integrated approach, allowing direct 

assessment of the GNN contribution to solution quality. The 

Clarke-Wright Savings Algorithm provided a widely used 

deterministic heuristic baseline for vehicle routing problems. 

This established method represents a common approach in 

transportation logistics, prioritizing computational efficiency 

for rapid solution generation. Deterministic optimization 

through direct solution of the deterministic equivalent model 

using the commercial Gurobi solver (with limited runtime) 

offered a comparison to traditional mathematical 

programming approaches. 

These baselines were selected to evaluate the contribution 

of each component in the integrated framework and to 

benchmark against traditional industry approaches. The 

comparison enables assessment of how the proposed 

methodology performs relative to both learning-based and 

optimization-based alternatives across various performance 

dimensions relevant to transportation logistics. 

5.1.3 Implementation specifications 

The PPO-GNN implementation utilized carefully designed 

neural network architecture optimized for transportation 

routing problems. The policy network comprised three fully 

connected layers (256-128-64 units) with ReLU activations, 

enabling effective mapping from states to actions within the 

complex decision space. The value network mirrored this 

structure with three fully connected layers (256-128-64 units) 

and ReLU activations, providing accurate state value 

estimation for advantage calculation. The GNN component 

incorporated three graph convolutional layers with 64 

channels each, facilitating effective information propagation 

across the transportation network representation. 

Training parameters were calibrated to ensure stable and 

efficient learning in the stochastic environment. The learning 

rate was set at 3×10⁻⁴ with adaptive scheduling to 

accommodate changing learning dynamics throughout the 

training process. The discount factor (γ) of 0.99 balanced 

immediate and future rewards, while the GAE parameter (λ) 

of 0.95 reduced the variance in advantage estimation. The 

clipping parameter (ε) was set to 0.2, preventing destructive 

policy updates during training. Value function and entropy 

coefficients (0.5 and 0.01 respectively) balanced the multiple 

objectives within the loss function. 

The training process encompassed 50,000 episodes with 

early stopping criteria to prevent overfitting, using batch sizes 

of 2048 timesteps for stable gradient updates. The Adam 

optimizer handled parameter updates, while hardware 

acceleration through NVIDIA A100 GPUs and 32-core CPUs 

enabled efficient training of the neural networks. All 

experiments maintained controlled conditions with identical 

random seeds across methods, ensuring consistent 
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stochasticity for fair comparison. 

5.2 Performance metrics 

The study employed multiple complementary metrics to 

provide a comprehensive assessment of solution quality across 

different dimensions relevant to transportation logistics. 

Total operational cost represented the primary economic 

metric, calculated as the sum of vehicle deployment, travel, 

and delivery costs across the transportation network. This 

metric directly measures the economic efficiency of generated 

solutions, reflecting the financial impact of routing decisions 

on transportation operations. Demand satisfaction rate 

quantified the percentage of total fuel demand successfully 

delivered across all stations, serving as a key measure of 

service quality in the transportation system. This metric 

reflects the effectiveness of generated routes in meeting 

customer requirements under demand uncertainty. 

Constraint violation rate measured the percentage of 

solutions violating operational constraints, providing insight 

into the practical feasibility of generated routes within real-

world transportation constraints. This metric is particularly 

important for assessing the viability of different approaches in 

highly regulated transportation domains like fuel delivery. 

Computational efficiency metrics captured solution time and 

scalability across problem sizes, measuring the practical 

applicability of different methods in time-sensitive operational 

contexts. The study also assessed robustness to uncertainty 

through performance stability analysis under varying degrees 

of demand stochasticity. 

These metrics collectively provide a comprehensive 

assessment of algorithm performance in terms of both 

economic efficiency and operational feasibility. The multi-

dimensional evaluation framework enables nuanced 

comparison between different approaches across the various 

aspects relevant to practical transportation logistics. 

5.3 Results and analysis 

5.3.1 Comparative performance analysis 

Table 1 presents the aggregate results across all problem 

instances, showing the average performance of each method 

on key metrics relevant to transportation logistics operations. 

Table 1. Performance comparison across all problem 

instances (average values) 

Method 

Total 

Cost 

($) 

Unmet 

Demand 

(%) 

Constraint 

Violations 

(%) 

Solve 

Time 

(s) 

PPO-GNN 12.8 2 1 180 

Classical PPO 13.8 8 6 120 

Clarke-Wright 14.2 5 3 60 

Deterministic 

Optimization 
15.6 11 0.5 3600+ 

The results demonstrate that the integrated PPO-GNN 

framework outperforms all baselines in terms of total cost and 

demand satisfaction. The approach achieves a 7.2% cost 

reduction compared to classical PPO and a 9.9% improvement 

over the Clarke-Wright heuristic. This economic advantage 

stems from the enhanced spatial representation provided by 

the GNN component, which enables more efficient route 

construction that minimizes unnecessary travel while 

effectively servicing demand points. 

The constraint violation rate of 1.0% for PPO-GNN is 

significantly lower than both classical PPO (6.0%) and the 

Clarke-Wright heuristic (3.0%), highlighting the effectiveness 

of the constraint validation mechanism in ensuring operational 

feasibility. This substantial improvement in feasibility without 

compromising cost efficiency demonstrates the value of 

integrating optimization principles within the learning 

framework. 

While deterministic optimization achieves the lowest 

constraint violation rate (0.5%), it results in substantially 

higher operational costs and unmet demand, primarily due to 

its inability to adapt to stochastic variations in the 

transportation environment. Furthermore, its computational 

requirements become prohibitive for large-scale instances, 

with solution times exceeding 3600 seconds, rendering it 

impractical for daily operational planning in transportation 

logistics. 

These findings directly support the core research objectives 

stated in the introduction: the proposed PPO-GNN framework 

demonstrates superior capability in managing operational 

uncertainty, producing cost-efficient and feasible solutions in 

a way that conventional optimization and learning-based 

baselines fail to match. The consistent improvement across 

key KPIs highlights the benefit of integrating spatial reasoning 

via GNNs and constraint validation into reinforcement 

learning for transportation systems. 

5.3.2 Performance across network scales 

Figure 3 illustrates the relative performance of each method 

across different network scales, normalized against PPO-GNN 

to highlight scaling effects in transportation optimization. 

The analysis reveals that the performance gap between 

PPO-GNN and the baselines widens as network scale 

increases, demonstrating the superior scalability of the 

integrated approach in transportation logistics. For small-scale 

networks, all methods achieve comparable results, with PPO-

GNN showing a modest 4.3% improvement over the best 

baseline. In medium-scale networks, the advantage increases 

to 8.6% as the spatial complexity of the transportation problem 

grows. 

The most significant differentiation appears in large-scale 

networks, where PPO-GNN outperforms classical PPO by 

12.7% and the Clarke-Wright heuristic by 18.2% in terms of 

total cost. This substantial performance gap in complex 

networks stems from the GNN's ability to capture spatial 

dependencies regardless of network size, enabling effective 

generalization to larger problem instances without 

proportional increases in model complexity. The graph-based 

representation becomes increasingly valuable as the 

transportation network expands, capturing critical 

relationships that flat representations fail to encode 

effectively. 

Deterministic optimization shows particularly poor scaling, 

with performance deteriorating rapidly as network size 

increases. For large-scale instances, this approach becomes 

computationally infeasible within practical timeframes, 

highlighting the fundamental limitations of traditional 

optimization in complex stochastic transportation 

environments. 

5.3.3 Robustness to demand uncertainty 

To evaluate operational resilience under different 

uncertainty levels, all methods were tested across problem 

instances with varying coefficients of variation in demand 
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(ranging from 0.1 to 0.3). Figure 4 illustrates the performance 

stability of each approach under increasing demand 

uncertainty. 

The integrated PPO-GNN approach demonstrates 

remarkable stability in transportation performance, 

maintaining consistent solution quality even as demand 

uncertainty increases. At the highest uncertainty level 

(CV=0.3), PPO-GNN experiences only a 6.8% degradation in 

solution quality compared to the low-uncertainty scenario, 

while classical PPO and Clarke-Wright show substantially 

greater degradations of 15.3% and 18.7%, respectively. 

Deterministic optimization exhibits the poorest robustness, 

with performance deteriorating by 23.5% under high 

uncertainty. 

Figure 3. Comparative performance across methods 

Figure 4. Solution quality under varying levels of demand uncertainty 

Figure 5. Constraint violation analysis by type and severity 
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This enhanced robustness can be attributed to the model's 

effective learning of network-wide patterns and dependencies 

that remain stable despite local fluctuations in demand. The 

integration of GNN-based representations enables the policy 

to capture these structural patterns and adapt dynamically to 

observed deviations, providing resilience essential for 

practical transportation operations under uncertainty. 

5.3.4 Constraint satisfaction analysis 

Figure 5 provides a detailed breakdown of constraint 

violations by type and severity, offering insights into the 

operational feasibility of different approaches in transportation 

logistics. 

The integrated PPO-GNN approach achieves the lowest rate 

of severe violations (>10% deviation from constraint limits) 

across all constraint types. The most frequent violations relate 

to time window constraints (0.7%), while capacity constraints 

are rarely violated (0.2%). This pattern indicates that the 

model learns to prioritize critical operational constraints 

(capacity) while allowing minor flexibility in timing when 

economically advantageous in transportation planning. 

The constraint validation mechanism proves highly 

effective in transportation operations, reducing the overall 

violation rate by 83% compared to classical PPO. This 

dramatic improvement confirms the value of integrating 

optimization-based validation within the reinforcement 

learning framework. The approach maintains high solution 

quality while ensuring practical feasibility, addressing a 

critical limitation of standard reinforcement learning 

approaches in transportation logistics. 

5.3.5 Computational efficiency analysis 

Table 2 compares the computational requirements of each 

method across different problem scales, providing insight into 

practical implementation feasibility. 

Table 2. Computational performance comparison 

Method 

Small-

Scale 

(s) 

Medium-

Scale (s) 

Large-

Scale 

(s) 

Training 

Time (h) 

PPO-GNN 15 78 180 48 

Classical PPO 10 42 120 36 

Clarke-Wright 5 18 60 N/A 

Deterministic 

Optimization 
120 1800 >3600 N/A 

While the integrated PPO-GNN approach requires more 

inference time than heuristic approaches, this additional 

computational cost is justified by the substantial 

improvements in solution quality for transportation logistics. 

Furthermore, once trained, the model generates solutions 

within timeframes compatible with daily operational planning 

(15-180 seconds, depending on network scale), making it 

suitable for practical implementation in transportation 

systems. 

The training time for PPO-GNN (48 hours) represents a 

one-time investment that enables subsequent rapid inference 

across multiple problem instances. This characteristic makes 

the approach particularly attractive for recurring delivery 

operations where the underlying transportation network 

structure remains relatively stable, such as fuel distribution to 

established gas station networks. 

The training-investment versus inference-speed tradeoff 

aligns with our stated contribution of providing scalable, real-

time deployable routing strategies. This supports practical 

deployment across large-scale networks, validating the 

framework’s industrial relevance. 

5.4 Ablation studies 

To assess the contribution of each component in the 

integrated framework, ablation studies were conducted by 

systematically removing key elements and measuring 

performance changes in transportation optimization. The 

results are summarized in Table 3. 

These results confirm that each component makes a 

meaningful contribution to overall performance in 

transportation logistics optimization. The constraint validation 

mechanism reduces violations by 82.8% with a modest 2.3% 

increase in cost, highlighting its value in ensuring operational 

feasibility. Similarly, the GNN enhancement improves both 

cost efficiency (by 2.2%) and demand satisfaction (by 62.5%) 

compared to the non-GNN baseline, demonstrating the 

importance of spatial representation in transportation routing. 

Table 3. Ablation study results (average across all 

instances) 

Variant 
Total 

Cost 

Unmet 

Demand 

(%) 

Constraint 

Violations (%) 

Full PPO-GNN 12.8 2 1 

PPO-GNN without 

constraint validation 
13.1 2.4 5.8 

PPO-GNN with 

simplified GNN 
13.5 3.1 2.3 

PPO without GNN 

enhancement 
13.8 8 6 

The ablation studies highlight the synergistic relationship 

between the GNN representation and constraint validation 

within transportation systems. The GNN helps guide the 

search toward promising regions of the solution space based 

on spatial relationships, while the validation mechanism 

ensures that generated solutions remain operationally feasible. 

This complementary interaction enables the integrated 

approach to balance solution quality with practical 

implementability in transportation logistics. 

5.5 Case study: Regional fuel distribution network 

To demonstrate practical applicability in real-world 

transportation logistics, the integrated PPO-GNN 

methodology was applied to an operational fuel distribution 

network serving 38 gas stations across a regional area. The 

network employed a heterogeneous fleet of 6 vehicles with 

varying capacities and operational characteristics, providing a 

representative example of medium-scale fuel distribution 

operations in transportation systems. 

The dataset was constructed in collaboration with a regional 

fuel distributor in Tunisia, covering operations over a four-

month planning horizon (July to October 2021). The 38 

delivery locations include urban and rural gas stations with 

varying daily demands. Each of the 6 vehicles is characterized 

by specific capacity, compartment configurations, fuel type 

compatibility, and regulatory limitations. While the dataset is 

not publicly released due to contractual confidentiality 

agreements, it contains detailed historical delivery logs, 

vehicle assignments, and geospatial route traces. 
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The case study incorporated authentic operational 

constraints encountered in practical fuel delivery logistics. The 

transportation network accommodated multiple fuel types 

(regular, premium, and diesel) with distinct demand patterns 

and seasonal variations, reflecting the complexity of multi-

product distribution. Time-dependent travel speeds were 

modeled based on historical traffic data, introducing temporal 

dynamics that affect routing decisions throughout operational 

hours. Vehicle-specific loading and unloading rates captured 

equipment variations within the heterogeneous fleet, with 

capacities ranging from 5,000 to 12,000 liters. Regulatory 

constraints included compliance with commercial driver hours 

of service regulations (maximum 11 hours driving per day) 

and hazardous material transportation requirements governing 

route selection and service scheduling. 

The geographic distribution of delivery locations presented 

significant spatial optimization challenges. Stations ranged 

from high-volume facilities requiring daily service to smaller 

locations served bi-weekly, creating complex scheduling 

requirements. Average distances between consecutive 

delivery points varied from 8 to 45 kilometers, with some 

remote stations located beyond the typical service radius. 

These operational realities created a multifaceted optimization 

problem requiring simultaneous consideration of vehicle 

capacity, time windows, demand uncertainty, and regulatory 

compliance. 

Implementation of the PPO-GNN framework involved 

several phases to ensure smooth integration with existing 

transportation operations. Initial network modeling 

incorporated historical demand data from the previous 12 

months, capturing seasonal variations and demand 

uncertainties with standard deviations ranging from 12% to 

28% of mean consumption across different station types. 

Route generation utilized real-time demand forecasts and 

traffic information, enabling dynamic adaptation to changing 

operational conditions. The constraint validation mechanism 

incorporated specific company policies regarding driver 

scheduling and vehicle maintenance requirements not 

captured in the mathematical model. 

Performance results demonstrated substantial 

improvements over the company's existing optimization 

system, which relied on mixed-integer programming with 

limited time horizons. The integrated methodology reduced 

total operational costs by 8.5%, primarily through more 

efficient vehicle utilization and route optimization. Analysis 

revealed that empty vehicle travel decreased by 17.3% 

compared to the baseline system previously employed by the 

company, which was based on daily manual route construction 

supported by basic heuristic software. This reduction was 

measured across the four-month study period and was 

consistently observed even during peak operational weeks. 

The reduction directly contributes to lower fuel costs, better 

fleet utilization, and reduced CO₂ emissions. All comparisons 

were made under consistent operational constraints and 

delivery demand volumes. Delivery schedule reliability 

improved by 12%, with fewer instances of delayed or 

incomplete deliveries due to capacity or time constraints. 

Workload balancing across the fleet improved notably 

under the new optimization approach. Vehicle utilization rates 

showed greater consistency, with the standard deviation of 

daily operating hours reduced from 2.8 to 1.6 hours across the 

fleet. This improved balance enhanced driver satisfaction and 

reduced overtime costs while maintaining service quality 

standards. External variability was explicitly accounted for in 

the case study implementation. Time-dependent travel speeds 

were integrated using weighted averages from historical traffic 

datasets collected over the previous year. Seasonal demand 

fluctuations were modeled using monthly consumption 

profiles, which showed up to a 35% increase during the 

summer tourist season. The policy learned by the PPO-GNN 

model effectively adapted to these variations, demonstrating 

resilience under dynamic real-world conditions.The system 

demonstrated particular effectiveness in handling unexpected 

demand spikes, with successful accommodation of urgent 

deliveries without disrupting scheduled routes in 89% of cases 

tested. 

Figure 6. Optimized delivery routes for regional fuel 

distribution case study 

410



Route generation efficiency represented a critical practical 

advantage of the integrated approach. The PPO-GNN system 

generated complete daily delivery schedules within 45 seconds 

on standard computational hardware, compared to 

approximately 15-20 minutes required by the previous mixed-

integer programming system. This rapid generation enabled 

more frequent route optimization throughout the day, 

accommodating same-day changes in demand or operational 

disruptions. Real-time route adjustments became feasible, 

allowing dispatchers to respond dynamically to changing 

conditions while maintaining optimization quality. 

Seasonal demand variations presented particular challenges 

that the integrated approach handled effectively. During peak 

summer months, when fuel consumption increased by 35% at 

tourist destinations, the system-maintained cost efficiency by 

adapting vehicle assignments and service frequencies 

dynamically. The approach successfully managed the 

transition between high and low demand periods without 

requiring manual intervention or system reconfiguration, 

demonstrating practical robustness essential for commercial 

transportation operations. 

The case study implementation revealed several practical 

insights relevant to transportation logistics. First, the 

integration of graph-based spatial representation significantly 

improved route optimization compared to traditional 

approaches, particularly in networks with complex geographic 

distributions. Second, the constraint validation mechanism 

proved essential for ensuring regulatory compliance without 

sacrificing optimization objectives. Third, the adaptability of 

the learned policy to operational variations reduced the need 

for frequent manual interventions, improving operational 

efficiency and reducing planning overhead. 

Figure 6 visualizes the optimized delivery routes generated 

by PPO-GNN for this case study. These results validate the 

practical benefits of the integrated PPO-GNN methodology for 

transportation logistics providers facing complex optimization 

challenges. The approach demonstrated compatibility with 

existing operational frameworks while offering substantial 

performance improvements, suggesting broad applicability 

across similar transportation domains. The combination of 

computational efficiency, solution quality, and operational 

flexibility positions the methodology as a valuable tool for 

modernizing fuel distribution logistics in increasingly 

dynamic transportation environments. 

6. CONCLUSION AND FUTURE DIRECTIONS

The complex challenges of fuel delivery optimization in 

transportation networks necessitate advanced approaches that 

balance computational efficiency with solution quality. This 

research developed an integrated methodology combining 

reinforcement learning, GNNs, and deterministic constraint 

validation to address the limitations of existing approaches in 

transportation logistics optimization under uncertainty. 

The study presents several significant contributions to 

transportation logistics research and practice. First, it provides 

a comprehensive stochastic mathematical model with 

deterministic equivalent transformations that enable practical 

computation while preserving solution robustness. This 

formulation bridges the gap between theoretical modeling and 

computational tractability in transportation optimization. 

Second, the research introduces a novel integration of PPO 

with GNNs, enabling adaptive decision-making that captures 

complex spatial dependencies in transportation networks. This 

integration enhances the representational power of 

reinforcement learning agents in spatial routing problems, 

addressing a critical limitation of standard approaches. Third, 

the development of a constraint validation mechanism ensures 

that generated solutions adhere to operational requirements, 

producing routes that are not only efficient but also 

implementable in regulated transportation domains. 

Experimental evaluation across diverse transportation 

networks demonstrated the integrated approach's superior 

performance compared to established baselines. The 

methodology achieved a 7.2% reduction in operational costs 

compared to standard reinforcement learning and a 9.9% 

improvement over traditional transportation heuristics. The 

constraint validation mechanism proved particularly effective, 

reducing constraint violations by 83% while maintaining 

computational efficiency suitable for operational timeframes. 

Furthermore, the approach exhibited robust performance 

under increasing demand uncertainty, with minimal 

degradation in solution quality even at high variability levels. 

These findings reinforce the study’s core objectives by 

demonstrating that the proposed framework can robustly 

address the dynamic and uncertain nature of real-world 

transportation systems. 

The application to a regional fuel distribution case study 

further confirmed the practical benefits of the approach. 

Implementation in an authentic transportation network 

reduced operational costs by 8.5% while improving service 

levels compared to existing optimization systems. Notable 

improvements included a 17.3% reduction in empty trips, 

better fleet utilization, and enhanced resilience to demand 

fluctuations. These outcomes demonstrate tangible operational 

benefits achievable through advanced transportation 

optimization techniques. The system also proved capable of 

maintaining service quality under seasonal demand variation 

and operational disruptions, validating its utility in dynamic 

logistics environments. 

Despite these promising results, several limitations merit 

consideration. The proposed approach requires a significant 

initial training investment (typically 48 hours for complex 

networks), which may pose adoption barriers. More critically, 

the model can exhibit sensitivity to structural changes in the 

transportation network, such as depot relocation, major 

infrastructure changes, or route reconfiguration. To mitigate 

this, future implementations could incorporate online learning 

strategies that enable real-time policy adaptation, or leverage 

transfer learning techniques to fine-tune pre-trained models on 

modified network topologies with limited new data. These 

mechanisms would enhance resilience to structural variability 

while minimizing retraining costs. Finally, the integrated 

framework’s complexity may reduce its interpretability for 

non-expert users, which could hinder deployment in 

conservative logistics environments. 

Future research directions should address these limitations 

while technically extending the methodology’s capabilities. 

One promising avenue involves integrating attention 

mechanisms within the GNN architecture to enhance the 

interpretability of routing decisions by highlighting critical 

spatial relationships. In addition, meta-reinforcement learning 

could be explored to enable rapid policy adaptation across 

different delivery contexts without retraining from scratch. For 

broader applicability, multi-agent formulations can be 

developed to handle multi-depot or intermodal transportation 

systems. Improving explainability and user trust could also be 
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achieved through post-hoc interpretability techniques, such as 

feature attribution methods applied to graph embeddings. 

Finally, testing the approach on public logistics benchmarks 

and expanding applications beyond fuel delivery—such as 

cold chain distribution or waste collection—would validate 

the generalizability of the framework. 

The integration of reinforcement learning, GNNs, and 

constraint validation represents a significant advancement in 

transportation optimization methodology. By combining the 

complementary strengths of learning-based and optimization-

based approaches, the framework creates a powerful tool for 

addressing the complexities of modern transportation 

logistics. The approach demonstrated in this research offers a 

promising direction for developing practical, efficient, and 

robust optimization systems capable of meeting the challenges 

of uncertainty in fuel delivery and related transportation 

domains. 
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