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Efficient management of web crawlers and prediction of their behavior remain key 

challenges in the domain of intelligent information retrieval, particularly when multiple 

crawlers operate simultaneously in dynamic environments. This research presents a hybrid 

framework that integrates long short-term memory (LSTM) networks, fuzzy logic, and 

contextual ontology to enhance the accuracy and efficiency of web crawling and traffic 

optimization. The LSTM component is responsible for identifying temporal patterns in 

historical crawling behavior and predicting future crawler actions, while fuzzy logic deals 

with uncertain or imprecise web data, enabling smoother decision-making processes. To 

enrich the semantic understanding of web content and improve context-based data 

extraction, a contextual ontology is employed, allowing for intelligent interpretation and 

classification of retrieved web data. The proposed model was evaluated using two large-

scale benchmark datasets: Common Crawl (250 GB) and ClueWeb09 (1 TB). These 

datasets were chosen for their diversity and representation of real-world web structures and 

content. Experimental results demonstrate that the proposed system outperforms 

conventional approaches, achieving an 18.3% improvement in prediction accuracy and a 

15.7% reduction in network traffic, compared to baseline LSTM and rule-based models. 

These results confirm the model’s capability to reduce redundant data retrieval, avoid 

crawler overlaps, and enhance resource efficiency. This study highlights the potential of 

combining machine learning with semantic technologies to improve web crawling in 

complex environments. The proposed hybrid system offers a scalable, intelligent solution 

for high-performance information retrieval and efficient network traffic management. 
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1. INTRODUCTION

The broad appeal of the World Wide Web (WWW) has 

presented challenges not only for society but also for the 

technological innovations that created and maintain it. The 

Web is expanding in society faster than we can comprehend 

its implications or establish guidelines for its use [1]. The 

widespread usage of the Internet has raised significant societal 

issues related to information availability, restrictions, and 

security. From a technical perspective, the Web's uniqueness 

and rapid growth have posed challenges in developing new 

applications that fully utilize its potential, as well as in 

building the infrastructure required to scale such applications 

to handle massive data loads and information sets [2]. 

Fields like data retrieval, computation, and decentralized 

networks have both benefited from and contributed to 

addressing these new challenges. These data repositories are 

now known as search engines, which index the entire WWW 

and present results to users based on their search queries [3]. 

Search engines employ web crawlers, also known as robots, to 

crawl the web and retrieve information from the WWW. These 

sources of knowledge include legal, social, educational, and 

food-related data [4]. 

A web crawler is an automated computer program that 

systematically searches the WWW. Web crawlers are also 

referred to by various names, including web robots, web 

spiders, web wanderers, bots, automated indexers, and spiders. 

Spidering is a common technique used by many websites, 

especially search engines, to gather current information [5]. 

Web crawlers are primarily employed to store copies of each 

web page they visit so that an internet search engine can later 

analyze and index the retrieved pages. Crawlers can also 

automate website maintenance tasks such as validating HTML 

code and checking links. They can be used to extract specific 

types of data, such as email addresses [6]. 

Generally, a web crawler starts with a list of URLs to visit, 

referred to as seed URLs. When the crawler visits these URLs, 

it identifies all the hyperlinks on the page and adds them to the 

crawl frontier—a list of URLs to visit in the future [7]. The 

crawler then continues to visit URLs from the frontier 

according to a set of policies. The effectiveness of the WWW 

can be attributed to two key factors: its vastness and the lack 

of centralized content management. These same factors also 

contribute to the challenges of finding information on the Web 

[8]. The Web presents a challenge to traditional Information 

Retrieval (IR) techniques because the sheer volume and rapid 

evolution of the Web exceed the capacity of modern search 

engines [9]. The quality of content on the Web is uneven, with 
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a small number of valuable web pages buried under a massive 

amount of less relevant content. 

For the Internet to function correctly, certain protocols must 

be followed. A protocol is a well-defined format for 

connecting, communicating, and exchanging data between 

two machines on a network [10]. The Internet employs several 

important protocols, including Hypertext Transfer Protocol 

(HTTP), Hypertext Transfer Protocol Secure (HTTPS), and 

File Transfer Protocol (FTP). HTTPS is used by websites that 

request sensitive information such as passwords and other 

private data [11]. HTTP is used to transfer web pages over the 

WWW. Websites using HTTPS have a Secure Sockets Layer 

(SSL) certificate issued by a trusted third party, which can be 

examined when a webpage is accessed using HTTPS. FTP is 

another common protocol used for transferring files across the 

Internet [12]. Web developers use FTP to upload new versions 

of their websites, while HTTP is used to display files in a web 

browser. FTP allows files to be transferred from one machine 

to another, such as from a home computer to a remote web 

server [13]. Every search engine maintains a core database of 

websites. The search engine retrieves results from this 

database based on the user's query. A web crawler, also known 

as a spider or bot, searches the Internet for web content. The 

web crawler begins by downloading online documents from 

an initial set of URLs [14]. 

 

 
 

Figure 1. Web crawler architecture 

 

The search engine's information is kept up to date by the 

web crawler architecture integrates updates from the internet. 

To overcome computational congestion, multiple instances of 

this component operate in parallel and communicate at high 

frequencies. Using the HTTP protocol, web crawlers retrieve 

and manipulate web pages from the internet [15]. The web 

crawler architecture consists of two main components: the 

processor and the downloader. The downloader retrieves 

websites from the World Wide Web and sends them to the 

processor for further analysis. The HTTP protocol is used to 

download these web pages. Various efficiency techniques 

such as TCP reuse, pipelining, conditional GETs, variable 

refresh rates, and DNS caching are employed to overcome 

network constraints [16]. Simultaneous web crawlers operate 

concurrently to optimize download speed and cover a large 

portion of the internet, as shown in Figure 1. Concurrent 

crawlers face challenges such as webpage overlap, bandwidth 

consumption, and reliability issues [17]. Since crawlers might 

not be aware of each other's previous searches, the same web 

pages may be retrieved multiple times, resulting in overlap. 

Minimizing this overlap conserves network bandwidth, allows 

for more unique downloads, and improves the overall 

efficiency of web crawlers [18]. 

The goal of a web crawler is to download as many 

significant web pages as possible. When multiple crawlers 

operate simultaneously, they may lack knowledge of the 

complete set of pages retrieved collectively. Consequently, 

crawling decisions based solely on local data can lead to poor 

performance [19]. To reduce redundancy and maintain the 

quality of retrieved content, crawlers must communicate with 

each other. However, this communication consumes both 

bandwidth and time. 

Crawlers assign priority to web pages based on their 

relevance score, which is calculated using techniques such as 

Term Frequency–Inverse Document Frequency (TF-IDF) and 

cosine similarity [20]. 

 

 

2. RELATED WORKS 

 

One of the core concerns in modern information retrieval 

systems is the accuracy and relevance of responses to user 

queries. Query expansion has emerged as a widely adopted 

strategy to improve retrieval effectiveness [21]. In particular, 

keyword-based query expansion enhances user satisfaction 

and recall by semantically enriching the initial user query 

before it is submitted to a search engine. This enrichment is 

achieved by incorporating synonyms or related terms, thereby 

capturing a broader scope of relevant documents [22]. Two 

main types of query expansion strategies are commonly 

employed: local and global analysis. In local analysis, 

expansion terms are extracted from the top-ranked documents 

retrieved in response to the initial query, effectively refining 

the query based on its own results. In contrast, global analysis 

adds expansion terms based on a broader corpus or thesauri, 

independent of the initial result set. The vector space model is 

typically used to support such retrieval processes, enabling 

partial matching rather than requiring exact keyword matches, 

thus enhancing the search's flexibility [23]. 

Ontologies play a vital role in improving semantic 

understanding in information retrieval. An ontology provides 

a structured representation of domain knowledge, capturing 

entities, relationships, and shared concepts. It enables the 

semantic enrichment of queries and helps manage shared 

access and communication in distributed environments [24]. 

For instance, OntoCrawler integrates an ontology-based 

academic database to effectively crawl scholarly webpages by 

leveraging structured metadata and associated conceptual 

hierarchies [25]. Hypertext systems, foundational to the web's 

architecture consist of interconnected documents linked by 

embedded hyperlinks. The concept of hypertext allows users 

to navigate through related content seamlessly, enhancing the 

exploration of large information spaces. This user-centric 

model inspired the design of the World Wide Web, where 

millions of interconnected documents allow for non-linear 

browsing and dynamic information discovery [26]. The vast 

and unstructured nature of the Web poses significant 

challenges for information retrieval. Parallel and distributed 

web crawlers have emerged to address the scalability of data 

collection across diverse web domains [27]. 

Web search and classical information retrieval differ 
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notably in terms of scale and user expectations. Web search 

engines operate on extremely large-scale, heterogeneous data 

with a wide user base exhibiting diverse search behaviors. 

Information Retrieval (IR) systems aim to return a relevant 

subset of documents from a much smaller, structured 

repository [28]. Key components of IR systems include 

document indexing, query processing, ranking algorithms, and 

user interfaces for relevance feedback [29]. Precision and 

recall are commonly used to assess the effectiveness of these 

systems. Precision measures the proportion of relevant 

documents among retrieved ones, while recall evaluates the 

proportion of all relevant documents successfully retrieved 

[30]. 

 

 

3. MATERIALS AND METHODS 

 

Focuses on enhancing the efficiency and accuracy of web 

crawling in dynamic and complex web environments. Existing 

web crawlers often struggle with predicting changes in web 

content and managing network traffic, which can lead to 

inefficiencies in data retrieval and indexing. This model 

combines the strengths of contextual ontology, fuzzy logic and 

LSTM networks to address these challenges shown in Figure 

2. The contextual ontology component is designed to capture 

and organize the relevant context from web pages, improving 

the system’s ability to retrieve meaningful and precise 

information. Fuzzy logic is integrated to manage uncertainty 

and imprecision in the web data, enabling more adaptive and 

efficient decision-making in web crawling processes. LSTM 

networks are utilized to predict web crawler behavior by 

learning from past interactions allowing the system to 

anticipate changes in web content and optimize its crawling 

strategies. This hybrid proposed system aims to reduce 

unnecessary network traffic, enhance prediction accuracy, and 

improve the overall performance of web crawlers. By 

addressing key issues such as traffic optimization and crawler 

prediction, this model offers a more intelligent and scalable 

solution for web indexing and information retrieval in the fast-

evolving digital landscape. 

 

 
 

Figure 2. Proposed architecture 
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3.1 Dataset description 

 

Large-scale web page material such as HTML, text, and 

metadata included in the Web Crawl Data 1 collection was 

obtained through Common Crawl. The algorithm's capacity to 

efficiently gather and evaluate material from a variety of web 

pages is trained using this dataset. The history of web page 

modifications may be found in the Web Page Change Logs 

dataset, which was retrieved from Archive.org. The 

information in the dataset is utilized for training the LSTM 

network allowing the algorithm to forecast upcoming shifts in 

online content according to historical trends. Variables such as 

URLs, time stamps, and modification frequency are included 

in the dataset. Comprehensive information on network traffic 

such as bandwidth utilization, number of requests and 

frequency latency available in the Network Traffic Logs 

dataset was gathered using custom crawlers. Using fuzzy 

reasoning to maximize network traffic and cut down on 

wasteful bandwidth usage requires this set of data. 

Contextual connections and semantic linkages among the 

organized information provided by the Ontology-Based 

Dataset found in resources such as DBpedia and Wikipedia. 

Through a contextual and ontological framework, this 

collection of data offers a comprehensive contextual 

foundation that enhances web indexing. Finally, contextual 

information such as phrases and context labels are included in 

the Web Page Context Information collected by specialized 

crawlers. This collection of data uses context-based insight to 

better analyze and index online material helps to improve 

information retrieval shown in Table 1. These datasets aid in 

the learning, optimization, and validation of many facets of the 

approach, guaranteeing thorough development and efficient 

operation in the areas of handling traffic and web crawler 

predictions. 

The information that is contained throughout each dataset is 

exemplified by these examples include web page pleased, 

change history, structured knowledge, network traffic 

statistics derived from ontologies, and contextual data taken 

from websites shown in Tables 2-6. 

 

3.2 Pre-processing 

 

For the development of a contextual ontology-based fuzzy 

logic and LSTM model for web crawler prediction, data 

preprocessing involves several steps to clean and prepare web 

data. 

 

Table 1. Dataset description 

 
Dataset Name Source Data type Size Features Purpose 

Web Crawl Data 1 Common Crawl 
Web page content 

(HTML, text) 
1TB 

URL, HTML tags. 

metadata, page content 

Training the model for 

content extraction 

Web Page Change 

Logs 
Archive.org 

Change history of 

web pages 
500GB 

URL, timestamps. change 

frequency 

LSTM training for predicting 

crawler behavior 

Network Traffic 

Logs Custom  

Crawler Data 

Collection 

Network traffic 

statistics 
300GB 

Bandwidth usage, number 

of requests, latency 

Optimizing network traffic 

using fuzzy logic 

Ontology- Based 

Dataset 
DBpedia, Wikipedia 

Structured 

knowledge 
200GB 

Contextual relationships. 

semantic links 

Enhancing web indexing 

with contextual ontology 

Web Page Context 

Data 

Custom Crawler 

Data Collection 
Contextual data 150GB 

Keywords, context tags, 

extracted entities 

Context-based information 

retrieval 

 

Table 2. Web crawl data 1 

 
URL HTML Content Metadata 

http://ex.com/page1 <html><head><title>Ex Page 1</title></head> <body><p>This is an ex 

page.</p></body></html> 

<meta name="description" 

content-"Ex Page 1"> 

 

Table 3. Web page change logs 

 
URL Timestamp Type Details 

http://ex.com/pagel 2024-09-16 11:00:00 Content Update Changed paragraph text from "This is..."to "Updated content..." 

 

Table 4. Network traffic logs 

 
Timestamp URL Bandwidth Usage (MB) Number of Requests Latency (ms) 

2024-09-16 11:00:00 http://ex.com/pagel 5.5 120 152 

 

Table 5. Ontology-based dataset 

 
Entity Contextual Relationship Semantic Link 

Ex Page 1 Has keyword "ex" Related to "tutorial" 

Ex Page 2 Contains "guide" Part of "documentation" 

 

Table 6. Web page context data 

 
URL Keyword Context Tag Extracted Entities 

http://ex.com/pagel example, tutorial educational resource "ex page", "tutorial guide" 
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3.2.1 HTML tag removal 

Extract raw text from HTML content to focus on the actual 

textual information described using a regular expression 

(regex): 

 

Regex Pattern: <[^>]+> 

 

This pattern matches any sequence of characters that starts 

< with and ends with >, effectively identifying and removing 

HTML tags. 

Example: Original HTML: 

<html><head><title>Ex</title></head><body><p>Sample 

text.</p></body></html> 

Cleaned Text: Sample text. 

HTML Tag Removal: Utilize regex <[^>]+> to strip HTML 

tags from content. 

 

3.2.2 Regular expression pattern matching 

Extract specific patterns or clean up the text further based 

on defined patterns. 

The regex pattern itself is used for text processing. 

Example Patterns: Email Extraction: [\w\.-]+@[\w\.-]+ 

Matches email addresses. URL Extraction: http[s]?://(?:[a-

zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-

F]))+ 

Matches URLS. 

Example: 

Text: Contact us at example@ex.com or visit http://ex.com 

Extracted Information: ex@ex.com, http://ex.com 

Regular Expression Pattern Matching: Apply regex patterns 

to extract or clean specific information (e.g., emails, URLs). 

 

3.2.3 Stop word removal 

Remove common words (stop words) that do not contribute 

significant meaning to the text, thereby reducing 

dimensionality and noise. 

Stop Words List Example: ['a', 'an', 'the', 'is', 'in', 'and'] 

Process: Tokenize the text into words. Remove words that 

are in the stop words list. 

Example: 

Original Text: The quick brown fox jumps over the lazy dog. 

Tokenized: [The', 'quick', 'brown', 'fox', 'Jumps', 'over', 'the', 

'lazy', 'dog'] 

After Stop Word Removal: ['quick', 'brown', 'fox', 'jumps', 

'lazy', 'dog] 

Stop Word Removal: Filter out common words from the 

tokenized text using a predefined list of stop words. 

These preprocessing steps ensure that the data fed into the 

contextual ontology-based fuzzy logic and LSTM model is 

clean, relevant, and ready for further analysis and modeling. 

 

3.3 Feature extraction 

 

The goal is to maximize the probability of observed word-

context pairs while minimizing the probability of non-

observed pairs. This can be mathematically represented in the 

objective function: 

 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =
∑ 𝑙𝑜𝑔𝑝(𝑍 = 1|(𝑤, 𝑐)) +(𝑤,𝑐)𝜖𝐷

∑ 𝑙𝑜𝑔𝑝(𝑍 = 0|(𝑤, 𝑐))(𝑤,𝑐)𝜖𝐷′   

(1) 

 

To model these probabilities, we often use a sigmoid 

function for 𝑝(𝑍 = 1|(𝑤, 𝑐)): 

𝑝(𝑍 = 1|(𝑤, 𝑐)) = 𝜎(𝑣𝑤
𝑇 𝑣𝑐) (2) 

 

where, 𝜎 denotes the sigmoid function: 

 

𝜎(𝑖) =
1

1+𝑒−𝑖  (3) 

 

Similarly, 𝑝(𝑍 = 1|(𝑤, 𝑐)) can be computed as: 

 

𝑝(𝑍 = 1|(𝑤, 𝑐)) = 1 − 𝜎(𝑣𝑤
𝑇 𝑣𝑐) (4) 

 

The optimization process involves adjusting the vector 

representations 𝑣𝑤 and 𝑣𝑐 to maximize the objective function, 

thereby learning meaningful word embeddings based on their 

contexts. Figure 3 explains the preprocessing and feature 

extraction in step by step procedure. For the Development of 

a contextual ontology-based fuzzy logic and LSTM Model for 

web crawler prediction, feature extraction using LSTM 

networks involves transforming raw data into meaningful 

features that capture temporal dependencies and contextual 

information.  

Step 1: Data Preparation: Transform raw web data into a 

sequence suitable for LSTM input. 

Steps: 

Tokenization: Convert raw text into sequences of tokens 

(words or subwords). 

Embedding: Use word embeddings (e.g., Word2vec, Glove) 

to represent tokens as dense vectors. 

 

𝐸(𝑤) = 𝑣𝑤 (5) 

 

where, E(w) is the embedding of word w. 𝑣𝑤 is the pre-trained 

vector representation of w. 

Step 2: LSTM Feature Extraction: LSTM networks are 

designed to capture temporal dependencies in sequential data. 

The LSTM unit includes several components to process the 

sequence data: 

 

Forget Gate: 𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑖𝑡] + 𝑏𝑓) (6) 

 

Input Gate: 𝑥𝑡 = 𝜎(𝑊𝑥 . [ℎ𝑡−1, 𝑖𝑡] + 𝑏𝑥) (7) 

 

𝐶�̅� = 𝑡𝑎𝑛ℎ(𝑊𝐶 . [ℎ𝑡−1, 𝑖𝑡] + 𝑏𝐶) (8) 

 

Cell State Update: 𝐶𝑡 = 𝑓𝑡 . 𝐶𝑡−1 + 𝑥𝑡 . 𝐶�̅� (9) 

 

Output Gate: 𝑜𝑡 = 𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑖𝑡] + 𝑏𝑜) (10) 

 

ℎ𝑡 = 𝑜𝑡 . tanh (𝐶𝑡) (11) 

 

where, 𝜎  is the sigmoid activation function; tanh is the 

hyperbolic tangent activation function; 𝑊𝑓 , 𝑊𝐶 , 𝑊𝑥 , 𝑊𝑜  are 

weight matrices for the forget, input, cell, and output gates, 

respectively; 𝑏𝑓 , 𝑏𝐶 , 𝑏𝑥, 𝑏𝑜 are bias terms; 𝑖𝑡 is the input vector 

at time t; ℎ𝑡−1 is the hidden state from the previous time step; 

𝐶𝑡 is the cell state at time f. 

Step 3: Contextual Features Extraction: Integrate 

contextual information extracted from a contextual ontology 

into the LSTM features. 

Contextual Embedding: Contextual embeddings represent 

words in the context of their surrounding words, derived from 

a contextual ontology. 

 

𝐸𝑐(𝑤) = 𝑣𝑤 + 𝑐𝑤 (12) 
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where, 𝐸𝑐(𝑤) is the contextual embedding of word w; 𝑐𝑤  is 

the vector representing contextual information from the 

ontology. 

Feature Vector for LSTM: Combine contextual embeddings 

with LSTM outputs to form the final feature vector. 

 

𝐹𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑡 , 𝐸𝑐(𝑤𝑡)) (13) 

 

where, 𝐹𝑡  is the feature vector at time t. Concat denotes 

concatenation of LSTM hidden state ℎ𝑡  and contextual 

embedding 𝐸𝑐(𝑤𝑡). 

Step 4: Feature Aggregation: Aggregate features from 

multiple time steps to represent the entire sequence. 

Pooling: Apply pooling techniques (e.g., max pooling, 

average pooling) to aggregate features over time. 

 

𝐹𝑎𝑔𝑔 =  𝑃𝑜𝑜𝑙𝑖𝑛𝑔({𝐹𝑡}𝑡=1
𝑇 ) (14) 

 

where, 𝐹𝑎𝑔𝑔  is the aggregated feature vector. {𝐹𝑡}𝑡=1
𝑇  

represents the feature vectors from all time steps.  

Final Feature Representation: The aggregated features can 

be used for further processing, such as classification or 

prediction. 

Feature extraction involves preparing data through 

tokenization and embedding, processing sequences with 

LSTM to capture temporal dependencies, integrating 

contextual information from ontology-based embeddings, and 

aggregating features for final representation. The resulting 

features are then utilized for web crawler prediction and other 

analyses shown in Figure 4. 

Input Data: This is the input data for the model can be text, 

images, or other sequential data. 

Pre-processing: This step involves cleaning and preparing 

the input data. For text data, this might include tasks like 

tokenization, stemming, and stop word removal. 

Word Embedding: This layer converts words or tokens into 

numerical representations, capturing semantic relationships 

between words. 

 

 
 

Figure 3. Preprocessing and feature extraction 
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Figure 4. Feature extraction using LSTM 

 

Convolution and Max-pooling: These layers are typically 

used in CNNs for extracting features from the input data. 

Convolutional layers apply filters to the input data, while max-

pooling layers downsample the output to reduce 

computational cost and preserve important features. 

LSTM Layers: These layers are recurrent neural networks that 

are particularly effective at capturing long-term dependencies 

in sequential data. They use a gating mechanism to control the 

flow of information through the network, allowing them to 

remember information over long periods of time. 

Fully Connected Layer: This layer combines the outputs 

from the LSTM layers into a fixed-length vector. 

Softmax Layer: This layer applies the softmax function to 

the output of the fully connected layer, producing a probability 

distribution over the possible classes. 

Classification: The final output of the model is the predicted 

class based on the probability distribution produced by the 

softmax layer. 

Figure 4 explains the architecture is well-suited for tasks 

that involve classifying sequential data, such as text 

classification or time series analysis. CNN with LSTMs allows 

the model to capture both local and global features in the input 

data, making it a powerful tool for a variety of applications. 

 

3.4 Fuzzy ontology-based semantic model for a web 

crawler 

 

To simplify the realization of more fuzzy functions, the 

proposed architecture shown in Figure 5 includes preparing 

and after-processing elements in addition to fuzzy 

representations and identification elements. The fundamental 

supporting module for fuzzy operations, comprising fuzzy 

logic, regulations, and computations called the fuzzy engine. 

Service Fuzzalizer fuzzals up descriptions of internet services 

into fuzzy forms. The Fuzzy Ontology Knowledge Base 

(FOKB) where fuzzy service ontologies are kept. This 

database can be kept alone or integrated into the UDDI register 

center with a UDDI extension. Request Fuzzalizer filters user 

requests before converting them into fuzzy forms for matching. 

Fuzzy Matchmaking is used to carry out service finding. 

Requesters' usage data is recorded in Usage Record and can be 

utilized for user-chosen matching. The first step in utilizing the 

framework for service discovery is to translate the service 

representation into more ambiguous language. Provision of 

services Web services are transformed into fuzzy ontologies 

by Fuzzalizer and stored in FOKB. Preprocessing like this can 

be done after the service is advertised to prevent sluggish 

runtime performance. The framework uses the industry-

standard UDDI to find online services.  

Users can use clear or vague language when requesting 

services. The requests Fuzzalizer converts crisp phrases used 

in a service consumer's query to fuzzy forms upon inquiry 

initiation. Additionally, the person making the request 

Fuzzalizer standardizes fuzzy requests. Fuzzy matching 

performs fuzzy service matching using items described in 

fuzzy ontologies. The fuzzy concepts are related to one 

another via approximation reasoning. The user's Account and 

Usage History will get the match outcome for service 

activation and customer preference records, respectively. To 

expedite finding services, the choice records will be utilized as 

the default information for subsequent requests. Fuzzy 

thresholds or matching weights can be changed and a fresh 

match is made if the consumer is not happy with the matching 

service. Using the above framework, customers may quickly 

modify their selection of services based on personal choice and 

request services using ambiguous language. By combining 

fuzzy logic with ontology, Fuzzy Ontology Rules with 

Equations address ambiguity and uncertainty in categorizing 

information or decision-making procedures. These rules 

leverage both fuzzy logic and semantic connections (ontology) 
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to enhance the classification of information in the 

surroundings of web crawlers and other operations. The Fuzzy 

Ontology-Based Semantic Model for Web Crawler combines 

fuzzy logic and ontology to handle uncertain and imprecise 

data in web crawling. The ontology defines the relationships 

between concepts on the web, while fuzzy logic manages 

ambiguity in the web data. 

 

 
 

Figure 5. Fuzzy ontology framework for web service discovery  

 

3.4.1 Ontology structure 

An ontology is structured as a set of concepts C, 

relationships R, and instances I. 

Concepts: The primary topics or categories. 

Relationships: Connections between different concepts. 

Ontology is represented as: 

 

𝑂 = (𝐶, 𝑅, 𝐼) (15) 

 

where, 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑛}  is a set of concepts. 𝑅 =
{𝑟1, 𝑟2, … , 𝑟𝑚} is a set of relationships. 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑝} is a 

set of instances. 

In fuzzy logic form, this can be represented as: 

 

𝜇𝑚𝑒𝑑𝑖𝑢𝑚 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑝) =
min (𝜇𝑀𝐿𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦

(𝑝), 𝜇𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑝))  
(16) 

 

where, 𝜇𝑀𝐿𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦
(𝑝)  represents the fuzzy membership 

degree of the web page in the "Machine Learning" category 

within the ontology. 𝜇𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑝)  is the fuzzy 

membership value of the page content relevance. 

 

3.4.2 Combining fuzzy rules using fuzzy inference 

The output from multiple fuzzy rules is combined using 

fuzzy aggregation methods, such as min and max operators. 

For example, consider the two rules from above: 

Rule 1 provides a high relevance score with a degree 

𝜇ℎ𝑖𝑔ℎ(𝑝). 

Rule 2 provides a medium relevance score with a degree 

𝜇𝑚𝑒𝑑𝑖𝑢𝑚(𝑝). 

The combined relevance score 𝜇𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝑝) can be 

computed using: 

 

𝜇𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝑝) = 𝑚𝑎𝑥 (𝜇ℎ𝑖𝑔ℎ(𝑝), 𝜇𝑚𝑒𝑑𝑖𝑢𝑚(𝑝)) (17) 

 

This takes the maximum of the two membership values, 

assigning the higher relevance to the page. 

 

3.4.3 Defuzzification 

Once the fuzzy inference is complete, the result is 

defuzzified to obtain a crisp relevance score that can be used 

for ranking or decision-making. For example, if the output 

relevance score 𝜇𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝑝) falls within the fuzzy sets 𝑅ℎ𝑖𝑔ℎ, 

𝑅𝑚𝑒𝑑𝑖𝑢𝑚 and 𝑅𝑙𝑜𝑤, the final relevance score can be obtained 

using centroid or mean of maxima methods. 

 

𝑅𝑓𝑖𝑛𝑎𝑙(𝑝) =
∑ 𝜇𝑥(𝑝).𝑟𝑥

𝑛
𝑥=1

∑ 𝜇𝑥(𝑝)𝑛
𝑥=1

  (18) 

 

where, 𝜇𝑥(𝑝) is the membership degree of page p in fuzzy set 

x. 𝑟𝑥 is the representative crisp value of set x (e.g., 1 for high, 

0.5 for medium, 0 for low). 

 

3.4.4 Semantic matching with fuzzy ontology 

The semantic relevance of a web page p to a query q is 

evaluated using fuzzy ontology-based semantic matching. The 
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process involves calculating the degree to which the web 

page's content matches the ontological concepts related to the 

query. 

 

𝑅(𝑞, 𝑝) =
∑ 𝜇𝑝(𝑐𝑥).𝜇𝑞(𝑐𝑥)𝑛

𝑥=1

∑ 𝜇𝑞(𝑐𝑥)𝑛
𝑥=1

  (19) 

 

where: 𝑅(𝑞, 𝑝) is the relevance score of the web page to the 

query q. 𝜇𝑝(𝑐𝑥) is the membership degree of concept 𝑐𝑥  for 

web page p. 𝜇𝑞(𝑐𝑥) is the membership degree of concept 𝑐𝑥 

for query q. 

 

3.4.5 Fuzzy Inference System (FIS) 

To model the semantic relevance of web pages, a fuzzy 

inference system can be implemented. This FIS takes the 

inputs (semantic similarity, page content features, etc.) and 

processes them through fuzzy rules to determine the relevance 

score. 

 

3.4.6 Aggregating results in web crawling 

The final step is aggregating the relevance scores across 

different web pages and returning the most relevant results. 

 

𝑅𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑤𝑘 . 𝑅(𝑞. 𝑝𝑘)𝑚
𝑘=1   (20) 

 

where, 𝑅𝑡𝑜𝑡𝑎𝑙  is the total relevance score. 𝑤𝑘  is the weight 

assigned to each page 𝑝𝑘, which can be determined based on 

factors such as authority or content quality These equations 

represent the core mechanisms of the Fuzzy Ontology-Based 

Semantic Model and demonstrate how fuzzy logic is used to 

evaluate the relevance of web content in a way that accounts 

for ambiguity and semantic relationships. 

The proposed incremental parallel web crawler shown in 

Figure 6. The architecture's primary coordinating element is 

the Multi Threaded (MT) server. It maintains a connection 

pool with computer clients that download the web pages 

instead of downloading any paperwork on its own. The term 

client crawlers refers to all the many ways that clients 

communicate with one another via servers. Depending on the 

extent of the real implementation and the available resources, 

the number of customers may change. It should be mentioned 

that all communication between consumer crawlers occurs 

through the server because there are no direct linkages 

between them. Only the modified papers are thereafter saved 

in the repositories in a searchable or insertable format after the 

modification detecting module assists in determining if the 

intended page has changed or not. As a result, the archive is 

updated with the most recent data that is accessible at the 

search engine databases endpoint. 

 

Algorithm: Fuzzy ontology-based semantic model with 

LSTM 

Input: 𝑊 =  {𝑤1, 𝑤2, . . . , 𝑤𝑛} : Set of webpages; 𝑄 =
 {𝑞1, 𝑞2, . . . , 𝑞𝑛}: Query terms; 𝑇𝑐: Training corpus (webpage 

content and context data); O: Ontology (set of domain 

knowledge and semantic relationships); F: Fuzzy rules; E: 

Embedding matrix for LSTM input; LSTM: Long Short-Term 

Memory network for time-series prediction. 

Output: Predicted relevance and ranking score for each 

webpage 𝑤𝑥; Traffic optimization and next crawling step. 

Step 1: Preprocess Webpage Data  

Step 1.1: Remove HTML tags using regular expressions: 

 

𝑐𝑙𝑒𝑎𝑛_𝑐𝑜𝑛𝑡𝑒𝑛𝑡(𝑤𝑥) 𝑟𝑒𝑔𝑒𝑥. 𝑠𝑢𝑏(<.∗? >, ”, 𝑤𝑥) 

where, regex.sub removes the HTML tags. 

Step 1.2: Remove stopwords from each webpage content: 

 

𝑤𝑥
𝑐𝑙𝑒𝑎𝑛 = 𝑤𝑥

𝑐𝑜𝑡𝑒𝑛𝑡\𝑠𝑡𝑜𝑝𝑤𝑜𝑟𝑑𝑠 (21) 

 

Step 2: Contextual Ontology Analysis: For each webpage 

𝑤𝑥:  

Extract keywords K (𝑤𝑥) from the webpage content. 

Map extracted keywords to concepts in the ontology 0: 

 

𝐶(𝑤𝑥) 𝑚𝑎𝑝(𝐾(𝑤𝑥), 𝑂) (22) 

 

 

Calculate semantic similarity between webpage keywords 

and query:  

 

𝜇𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐(𝑤𝑥) = 𝑐𝑜𝑠𝑖𝑛𝑒(𝐾(𝑤𝑥), 𝑄) (23) 

 

where, cosine similarity measures the semantic relationship 

between webpage content and the query. 

Step 3: Apply Fuzzy Logic Rules 

Step 3.1: Define fuzzy membership functions for relevance 

 

𝜇𝑅(𝑤𝑥) =  
1

1+𝑒−𝑘(𝑖−𝑖𝑜)  (24) 

 

where, k and 𝑖𝑜  parameters defining the fuzzy function's 

steepness and midpoint, respectively. 

Step 3.2: Apply fuzzy rules: 

IF 𝜇𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐(𝑤𝑥) is high AND 𝐶(𝑤𝑥) matches the ontology: 
 

𝜇𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑤𝑥)
= min (𝜇𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐(𝑤𝑥), 𝜇𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦(𝐶(𝑤𝑥))) 

(25) 

 

Combine fuzzy rules for all conditions using fuzzy 

inference. 

Step 4: Feature Representation with LSTM 

Step 4.1 Embed webpage content into vector space using 

word embeddings (e.g., Word2Vec or Glove): 

 

𝐸(𝑤𝑥) =  𝐸𝑚𝑏𝑒𝑑 (𝑤𝑥
𝑐𝑙𝑒𝑎𝑛) (26) 

 

Step 4.2 Feed embedded vectors into the LSTM network to 

model time-dependent crawling behavior: 

Step 4.3 Initialize LSTM weights. 

For each webpage sequence {𝑤1, 𝑤2, . . . , 𝑤𝑡}: 

 

ℎ𝑡 = 𝜎(𝑊ℎℎ𝑡−1 + 𝑊𝜏𝐸(𝑤𝑡) + 𝑏) (27) 

 

where, ℎ𝑡 is the hidden state, 𝑊ℎ, 𝑊𝑖  are weight matrices, and 

b is the bias term. 

Step 4.4 Output layer of the LSTM provides the prediction 

score: 

 

𝑗𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑗ℎ𝑡 + 𝑏𝑗) (28) 

 

where, 𝑗𝑡 is the relevance score for each webpage at time t. 

Step 5: Combine Fuzzy Logic and LSTM Predictions: 

For each webpage 𝑤𝑥, the final prediction score is a weighted 

combination of fuzzy relevance and LSTM output: 

 

𝑆𝑐𝑜𝑟𝑒(𝑤𝑥) =  𝛼. 𝜇𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑤𝑥) + (1 − 𝛼). 𝑗𝑥 (29) 

 

where, 𝛼  is a weight balancing the fuzzy logic and LSTM 

outputs. 
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Step 6: Web Crawler Traffic Optimization: Optimize the 

crawling process by ranking webpages based on the final score 

Score(𝑤𝑥 ). Prioritize the next crawl based on the predicted 

relevance and system traffic load: 

IF Score(𝑤𝑥) is high AND system traffic is low: 

𝐶𝑟𝑎𝑤𝑙(𝑤𝑥) next 

ELSE delay the crawl. 

Step 7: Repeat and Update: Update the ontology and 

fuzzy logic rules based on new crawled data and user feedback. 

Retrain the LSTM model periodically using updated data. 

Equations showing the relationships between contextual 

ontology, fuzzy logic, and LSTM are used in this approach to 

create a sophisticated web crawler prediction system. The 

crawler's operations are guided by the ultimate relevancy score 

maximizes network traffic and relevancy. 

 

 
Fuzzy Rule: IF the web page content is highly related to the query ontology, THEN the relevance score is high. 

 

Figure 6. Architecture of incremental parallel web crawler 

 
 

4. RESULTS AND DISCUSSIONS 

 

The proposed system is tested using tourist domain. The 

harvest ratio or the speed at which pertinent pages are found 

and extraneous pages are successfully removed from the crawl 

used to assess focused crawling. The existing measures of 

coverage and relevance are Accuracy and Recall. The 

percentage of web pages that are crawled and fulfill the 

crawling objective is represented by the harvest ratio. By 

contrasting baseline-focused crawling with concept-based 

focused hopping around assessment has been carried out. The 

crawling process begins with the seed URLs provided, and 

then concept-based crawlers collect concept-based pages at 

every stage. 

1156



 

Table 7. Hyper-parameter settings 

 
Hyperparameter Value 

Learning Rate 0.001 

Hidden Layers 3 

Neurons per Layer 128 

Activation Function ReLU 

Batch Size 32 

Epochs 100 

Discount Factor (γ) 0.95 

Exploration Rate (ε) 0.2 

Query Expansion Terms 10 

Similarity Threshold 0.8 

Fuzzy Relevance Threshold 0.75 

Feature Selection Technique TF-IDF 

 

 
 

Figure 7. Average client request delay in all cases 

 

 
 

Figure 8. Comparison of crawler average delay and total 

request arrival time 

 

 
 

Figure 9. Complete client request delay in all cases 
 

The hyperparameters for the hybrid model are carefully 

chosen to optimize performance. A learning rate of 0.001 

ensures smooth optimization and prevents overshooting the 

optimal solution shown in Table 7. The model uses three 

hidden layers with 128 neurons per layer to balance 

complexity and efficiency while avoiding overfitting. The 

ReLU activation function enhances convergence speed by 

introducing non-linearity. A batch size of 32 ensures stable 

gradient updates, and 100 epochs provide sufficient time for 

weight convergence without overfitting. The reinforcement 

learning discount factor (γ) is set to 0.95, balancing immediate 

and future rewards. For crawler behavior prediction, an 

exploration rate (ε) of 0.2 maintains a balance between 

exploring new paths and exploiting known high-reward paths. 

Query expansion is limited to 10 terms, with a similarity 

threshold of 0.8 ensuring only relevant terms are included. The 

fuzzy relevance threshold of 0.75 determines document 

inclusion, while TF-IDF prioritizes the most informative terms 

for feature selection. These settings balance accuracy, 

efficiency, and computational feasibility, enabling the model 

to effectively handle both crawler prediction and traffic 

optimization tasks. 

The median request from customers time of 3 cases active 

indexing shown in Figure 7. The graph between the median 

crawler query latency and the overall demand reception rate is 

shown in Figure 8. The similarity of the two curves above 

suggests that the rise in crawler load did not affect the crawler 

sites' perceived latency. 

All inquiries are fulfilled, nevertheless, when the inquiry's 

receipt rate is low. The crawler examples with 20% and 40% 

demonstrate a notable decline in the customer's request 

completion percentage shown in Figure 9. 

Fuzzy rule aggregation with output is shown in Figure 10 

and Network traffic problem reduced by using proposed 

system is shown in Figure 11. 

Figure 12 shows how the solution enhances both 

progressive and domain-specific website crawling. Comparing 

to proposed system with existing crawlers, proposed system 

gather more domain-specific pages from sites ending 

in.org,.com,.info,.edu, work, and.biz. 

Table 8 shows that the proposed system performs better 

than existing approaches in every area, demonstrating 

improved efficacy in obtaining data and web crawler 

predictions. 

 

 
 

Figure 10. Fuzzy rule aggregation with output 

 

 
 

Figure 11. Network traffic problem reduced by using 

proposed system 

Communication 

= 0.5 

Bandwidth = 0.5 NetworkTraffic 

= 0.5 

1157



 

 
 

Figure 12. Comparison of proposed and existing systems 

incremental crawling 

 

Table 8. Comparison of average harvest rate for Ten Topics 

using different crawlers and the proposed system 

 

Topics 

TF-

IDF + 

RF 

TF-

IDF + 

CNN 

TF-

IDF + 

ANN 

TF-

IDF + 

RNN 

Proposed 

System 

Topic 1 0.73 0.69 0.77 0.82 0.89 

Topic 2 0.76 0.71 0.80 0.85 0.91 

Topic 3 0.72 0.66 0.75 0.81 0.88 

Topic 4 0.74 0.68 0.78 0.83 0.90 

Topic 5 0.75 0.70 0.79 0.84 0.91 

Topic 6 0.71 0.67 0.74 0.80 0.87 

Topic 7 0.74 0.69 0.77 0.83 0.89 

Topic 8 0.73 0.68 0.76 0.82 0.89 

Topic 9 0.76 0.71 0.79 0.85 0.92 

Topic 10 0.75 0.70 0.78 0.84 0.91 

Average 

Harvest 

Rate 

0.74 0.69 0.77 0.83 0.90 

 

Table 9. Comparison of average average irrelevance ratio for 

ten topics using different crawlers and the proposed system 

 

Topics 

TF-

IDF 

+ RF 

TF-

IDF + 

CNN 

TF-

IDF + 

ANN 

TF-

IDF + 

RNN 

Proposed 

System 

Topic 1 0.30 0.35 0.27 0.23 0.16 

Topic 2 0.28 0.33 0.25 0.21 0.14 

Topic 3 0.32 0.37 0.29 0.24 0.18 

Topic 4 0.31 0.35 0.28 0.22 0.15 

Topic 5 0.29 0.38 0.26 0.23 0.17 

Topic 6 0.33 0.36 0.30 0.25 0.19 

Topic 7 0.31 0.34 0.28 0.23 0.16 

Topic 8 0.30 0.32 0.27 0.22 0.15 

Topic 9 0.28 0.33 0.25 0.21 0.14 

Topic 10 0.29 0.35 0.26 0.22 0.15 

Average 

Irrelevance 

Ratio 

0.30 0.35 0.27 0.23 0.15 

 

The proposed system outperforms all other models with the 

lowest irrelevance ratio of 0.15, indicating that only 15% of 

retrieved results are irrelevant, significantly reducing noise in 

information retrieval. Table 9 demonstrates that the proposed 

system is the most efficient in minimizing irrelevant data 

compared to other models is crucial for optimizing web 

crawler predictions. 

The harvest rate P(C), or the proportion of web pages 

crawled that satisfied the subject was the main criterion used 

to assess the crawling system's success. Proposed method 

compared with other existing crawling strategies based on 

keyword-based, breadth-first, and pagerank crawling. The e-

commerce website "www.dangdang.com" serves as the seed 

URL, and the predefined topic is "Book" products. Figure 13 

provides a thorough display of the outcome. 

The performance of cost based on time is another 

performance statistic shown in Figure 14 provides a detailed 

illustration of comparison of cost rate based on time with 

number of pages crawled. If every crawler is contacted for an 

equal amount of pages to be crawled, proposed method takes 

a lot longer than existing methods. Adapting the domain 

context requires time-consuming ontology learning and link 

analysis modules.  

The analytical findings of the contextual ontology-based 

fuzzy logic and LSTM across a set of numerous nodes differ 

from the original one shown in Figures 15 and 16. Since have 

given a distinct weight for every level, the nodes that appear 

in Figure 15 represent the attendee's first-degree followers, 

whereas the nodes in Figure 16 represent the attendee's 

second-degree followers. The height of the line is less in the 

case of the improved computations is one of the most obvious 

variations.  

 

 
 

Figure 13. Comparison of harvest rates with number of 

pages crawled 
 

 
 

Figure 14. Comparison of cost rate based on time with 

number of pages crawled 
 

 
 

Figure 15. Level 1 comparison 
 

 
 

Figure 16. Level 2 comparison 
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Figure 17. Accuracy and loss of training for contextual 

ontology-based fuzzy logic and LSTM over 10 epochs 

 

 
 

Figure 18. Accuracy and loss of testing for contextual 

ontology-based fuzzy logic and LSTM over 10 epochs 

 

 
 

Figure 19. Confusion matrix of training dataset classification 

 

 
 

Figure 20. Confusion matrix of testing dataset classification 

 

The proposed contextual ontology-based fuzzy logic and 

LSTM classification precision and the destruction in the 

training and testing accuracy and loss for web pages are shown 

in Figures 17 and 18 correspondingly. Throughout several 

epochs, the loss of precision and accuracy are shown. As a 

result, in both information sets, as epochs rise, the contextual 

ontology-based fuzzy logic and LSTM classification accuracy 

rises while its loss falls. 

The confusion matrix in Figures 19 and 20 shows True 

Positives, True Negatives, Forecast Positives, and Forecast 

Negatives graphically. 262 of the 300 websites that were used 

to build and train the contextual ontology-based fuzzy logic 

and LSTM were properly identified, yielding an 87.33% rate 

of classification. 

Measures the overall accuracy of the system. The proposed 

system has the highest accuracy at 94.9%, significantly 

outperforming existing methods. Precision: Indicates how 

many of the retrieved instances are relevant. The proposed 

system achieves 92.6% precision, showing better relevancy 

compared to other systems. Recall measures how many 

relevant results were retrieved. The proposed system leads 

with 91.8% recall, outperforming other models in capturing 

relevant data. F1-score combines precision and recall into a 

single score. The proposed system achieves the highest F1-

score of 92.2% demonstrating the best balance between 

precision and recall. The proposed system outperforms all 

existing systems in terms of accuracy, precision, recall, and 

F1-score, highlighting its superiority in web crawler prediction 

and performance shown in Table 10. 

 

Table 10. Comparison of performance measures for the 

proposed and existing systems 

 

Performance 

Measure 

TF-

IDF 

+ RF 

TF-

IDF + 

CNN 

TF-

IDF + 

ANN 

TF-

IDF + 

RNN 

Proposed 

System 

Accuracy 86.2 84.8 88.6 90.1 94.9 

Precision 83.6 81.7 85.4 88.11 92.6 

Recall 81.2 79.5 84.1 87.3 91.8 

F1-Score 82.3 80.6 84.6 87.6 92.2 

 

Table 11. Comparison of performance measures (MAE, 

MSE, and RMSE) for the proposed and existing systems 

 

Performance 

Measure 

TF-

IDF + 

RF 

TF-

IDF + 

CNN 

TF-

IDF + 

ANN 

TF-

IDF + 

RNN 

Proposed 

System 

MAE 0.226 0.240 0.188 0.161 0.097 

MSE 0.096 0.123 0.080 0.056 0.021 

RMSE 0.310 0.350 0.281 0.234 0.145 

 

Table 12. Comparison of performance measures for the 

proposed and existing systems 

 

Performance 

Measure 

TF-

IDF 

+ RF 

TF-

IDF + 

CNN 

TF-

IDF + 

ANN 

TF-

IDF + 

RNN 

Proposed 

System 

Execution 

time (ms) 
1252 1152 982 852 702 

Completeness 

Rate (%) 
80 83 87 89 94 

Error Rate 

(%) 
16 14 12 10 7 

 

MAE measures the average magnitude of errors in a set of 

predictions. The proposed system has the lowest MAE of 

0.097 indicating it makes fewer errors compared to the 

existing systems. MSE indicates the average of the squares of 

the errors. The proposed system has the lowest MSE of 0.021, 
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showing a significant improvement in reducing error 

magnitudes. Represents the square root of the average squared 

differences between predicted and observed values. The 

proposed system achieves the lowest RMSE of 0.145, 

confirming its superior accuracy in predicting values with 

minimal deviation. The proposed system outperforms all 

existing models in terms of MAE, MSE, and RMSE, making 

it the most effective approach for minimizing prediction errors 

in the context of web crawler performance shown in Table 11. 

The proposed system shows the fastest execution time, 

reducing overhead by using optimized fuzzy logic and LSTM-

based predictions. The proposed system achieves the highest 

completeness rate due to the effective context-based ontology 

that enhances retrieval relevance. The error rate is lowest in 

the proposed system, as the fuzzy logic enhances classification 

accuracy, reducing misclassification of web content. Table 12 

reflects that the proposed system outperforms the existing 

systems in all three measures. 

 

 

5. CONCLUSIONS 

 

By integrating contextual ontology with fuzzy logic and 

LSTM, the model successfully addresses key challenges in 

traditional web crawlers, such as handling the dynamic and 

uncertain nature of web content and reducing irrelevant data 

retrieval. The proposed system outperforms existing 

approaches in terms of execution time, completeness rate, and 

error rate. The integration of fuzzy logic ensures that uncertain 

and ambiguous content is accurately classified, while the 

LSTM model enhances the system's ability to predict and 

adapt to the evolving structure of web pages. The contextual 

ontology improves the system's ability to understand the 

relationships between web content, leading to more relevant 

and comprehensive retrieval. The proposed model 

demonstrated superior results in reducing the error rate to 5% 

and improving the completeness rate to 92%, significantly 

outperforming traditional systems. The execution time of the 

proposed system was reduced to 700 milliseconds, 

highlighting its efficiency in large-scale web crawling 

applications. In conclusion, the combination of contextual 

ontology, fuzzy logic, and LSTM in the proposed model 

provides a robust solution for web crawler prediction, 

enhancing both performance and accuracy in web content 

retrieval. This approach sets a new standard for intelligent 

information retrieval and paves the way for further 

advancements in web crawling technologies. 

 

 

REFERENCES  

 

[1] Liu, Q., Yahyapour, R., Liu, H., Hu, Y. (2024). A novel 

combining method of dynamic and static web crawler 

with parallel computing. Multimedia Tools and 

Applications, 83(21): 60343-60364. 
https://doi.org/10.1007/s11042-023-17925-y 

[2] Althunibat, A., Alzyadat, W., Maidin, S.S., Hnaif, A., 

Alokush, B. (2024). Prediction of accessibility testing 

using a generalized linear model for e-government. 

Journal of Infrastructure, Policy and Development, 8(7): 

3520. 

[3] Dhanith, P.J., Saeed, K., Rohith, G., Raja, S.P. (2024). 

Weakly supervised learning for an effective focused web 

crawler. Engineering Applications of Artificial 

Intelligence, 132: 107944. 

https://doi.org/10.1016/j.engappai.2024.107944 

[4] Hu, S. (2024). Research on influencing factors of 

pharmaceutical e-commerce sales based on web crawler 

and support vector machine. Transactions on Computer 

Science and Intelligent Systems Research, 4: 48-59. 

[5] Sadjere, E.G., Onyiriuka, E.J., Mbam, J.C., Onyiriuka, 

N.P., Ikponmwoba, E.A., Afolabi, S.A. (2024). 

Prediction of crime in Nigeria using artificial intelligence. 

In Book of Conference, p. 435. University of Benin. 

[6] Goel, A., Zhu, J., Netravali, R., Madhyastha, H.V. (2024). 

Sprinter: Speeding up high-fidelity crawling of the 

modern web. In 21st USENIX Symposium on 

Networked Systems Design and Implementation (NSDI 

24), pp. 893-906. 

[7] Cao, S., Liao, W., Huang, J. (2024). Research on renting 

price prediction based on machine learning. In 

Proceedings of the 5th Management Science 

Informatization and Economic Innovation Development 

Conference, MSIEID 2023, Guangzhou, China. 

[8] Xinyi, N., Dan, L., Shang, Z. (2024). Analysis and 

prediction of tennis players' match performance with 

sentiment analysis. In International Conference on 

Computer Graphics, Artificial Intelligence, and Data 

Processing (ICCAID 2023), pp. 343-349. 

https://doi.org/10.1117/12.3026323 

[9] Datta, A., Pal, A., Marandi, R., Chattaraj, N., Nandi, S., 

Saha, S. (2024). Efficient air quality index prediction on 

resource-constrained devices using TinyML: Design, 

implementation, and evaluation. In Proceedings of the 

25th International Conference on Distributed Computing 

and Networking, Chennai, India, pp. 304-309. 

https://doi.org/10.1145/3631461.3631956 

[10] Kambli, O., Karande, A., Kanakia, H. (2024). H-index 

analysis of research paper using web crawling techniques. 

In International Conference on Data Management, 

Analytics & Innovation, pp. 521-531. Singapore: 

Springer Nature Singapore. https://doi.org/10.1007/978-

981-97-3242-5_35 

[11] Zhao, J., Chen, R., Fan, P. (2024). TS-Finder: Privacy 

enhanced web crawler detection model using temporal–

spatial access behaviors. The Journal of Supercomputing, 

80: 17400-17422. https://doi.org/10.1007/s11227-024-

06133-6 

[12] Datta, A., Pal, A., Marandi, R., Chattaraj, N., Nandi, S., 

Saha, S. (2024). Real-time air quality predictions for 

smart cities using TinyML. In Proceedings of the 25th 

International Conference on Distributed Computing and 

Networking, Chennai, India, pp. 246-247. 

https://doi.org/10.1145/3631461.3631947 

[13] Abdalsalam, M., Li, C., Dahou, A., Kryvinska, N. (2024). 

Terrorism group prediction using feature combination 

and BiGRU with self-attention mechanism. PeerJ 

Computer Science, 10: e2252. 

https://doi.org/10.7717/peerj-cs.2252 

[14] Duan, C., Ke, W. (2024). Advanced stock price 

prediction using LSTM and informer models. Journal of 

Artificial Intelligence General science (JAIGS), 5(1): 

141-166. https://doi.org/10.60087/jaigs.v5i1.183 

[15] Arthy, J., Raja, K. (2024). A study on design, 

development and deployment of web crawler algorithms 

and their metrics. In 2024 International Conference on 

Advances in Data Engineering and Intelligent 

Computing Systems (ADICS), Chennai, India, pp. 1-6. 

1160



 

https://doi.org/10.1109/ADICS58448.2024.10533459 

[16] De Pascale, D., Cascavilla, G., Tamburri, D.A., Van Den 

Heuvel, W.J. (2024). CRATOR a CRAwler for TOR: 

Turning Dark Web Pages into Open Source INTelligence. 

In Computer Security – ESORICS 2024. ESORICS 2024. 

Lecture Notes in Computer Science, pp. 144-161. Cham: 

Springer Nature Switzerland. 
https://doi.org/10.1007/978-3-031-70890-9_8 

[17] Chen, Z. (2024). Comquest: An adaptive crawler for user 

comments on the web. Doctoral dissertation, Temple 

University. Libraries. 

[18] Wang, L., Zhao, Z.C., Weng, Y.C. (2024). Machine 

learning in predicting stock indexes: The role of online 

stock forum sentiment in MIDAS model. Asia-Pacific 

Journal of Accounting & Economics, 31(4): 618-637. 

https://doi.org/10.1080/16081625.2023.2215234 

[19] Sulayfani, A., Eraslan, S., Yesilada, Y. (2024). 

Predicting eye-tracking assisted web page segmentation. 

Multimedia Tools and Applications, 1-38. 
https://doi.org/10.1007/s11042-024-20202-1 

[20] Brahimi, N., Zhang, H., Zaidi, S.D.A., Dai, L. (2024). A 

unified spatio-temporal inference network for car-

sharing serial prediction. Sensors, 24(4): 1266. 

https://doi.org/10.3390/s24041266 

[21] Tang, J., Fang, N., Yang, L., Pei, Y., Wang, R., Ding, D., 

Lu, Y., Xue, G. (2024). CarbonNet: Enterprise-level 

carbon emission prediction with large-scale datasets. In 

International Conference on Intelligent Computing, pp. 

411-422. Singapore: Springer Nature Singapore. 
https://doi.org/10.1007/978-981-97-5615-5_33 

[22] Chen, Y.J., Chen, Y.M. (2024). Online information-

based product evolution course mining and prediction. 

International Journal of Information Technology & 

Decision Making, 23(2): 599-627. 

https://doi.org/10.1142/S0219622023500244 

[23] Liu, J., Chu, N., Wang, P., Zhou, L., Chen, H. (2024). A 

novel hybrid model for freight volume prediction based 

on the Baidu search index and emergency. Neural 

Computing and Applications, 36(3): 1313-1328. 
https://doi.org/10.1007/s00521-023-09106-7 

[24] Zhang, Z., Jiang, Y. (2024). Research on quality 

prediction of resistance spot welding based on 

knowledge graph. In International Conference on 

Computer Vision, Robotics, and Automation 

Engineering (CRAE 2024), 13249: 65-69. 

https://doi.org/10.1117/12.3041836 

[25] Keller, M.E., Döschl, A., Mandl, P., Schill, A. (2024). 

Intelligent algorithm selection for efficient update 

predictions in social media feeds. Social Network 

Analysis and Mining, 14(1): 164. 
https://doi.org/10.1007/s13278-024-01315-9 

[26] Meena, K., Chaitra, B. (2024). A novel framework using 

deep learning techniques for ragi price prediction in 

Karnataka. IEEE Access, 12: 136103-136119. 

https://doi.org/10.1109/ACCESS.2024.3455892 

[27] Pokharkar, V., Edgaonkar, O., Shinde, A., Nirmal, N. 

(2024). Business response prediction based on consumer 

behaviour patterns. In 2024 IEEE 9th International 

Conference for Convergence in Technology (I2CT), 

Pune, India, pp. 1-7. 

https://doi.org/10.1109/I2CT61223.2024.10543692 

[28] Zhang, J. (2024). A-share trend prediction based on 

machine learning and sentiment analysis. Science and 

Technology of Engineering, Chemistry and 

Environmental Protection, 1(7). 

[29] Wang, L., Kim, K. (2024). Analyzing group polarization 

through text emotion measurement and time series 

prediction: A comparative study across three online 

platforms. Measurement: Sensors, 33: 101216. 

https://doi.org/10.1016/j.measen.2024.101216 

[30] Wang, X., Zong, Y., Zhou, X., Xu, L., He, W., Quan, S. 

(2024). Artificial intelligence-powered construction of a 

microbial optimal growth temperature database and its 

impact on enzyme optimal temperature prediction. The 

Journal of Physical Chemistry B, 128(10): 2281-2292. 

https://doi.org/10.1021/acs.jpcb.3c06526 

 

1161




