
Hybrid Contextual Ontology-Fuzzy Logic and LSTM Model for Efficient Web Crawler

Prediction and Traffic Optimization

Suresh Ponnur Mani* , Raja Kothandaraman

Department of Computer Science and Engineering, SRM Institute of Science and Technology, Chennai 600089, India

Corresponding Author Email: sureshpm.networks@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.300504 ABSTRACT

Received: 29 January 2025

Revised: 19 April 2025

Accepted: 29 April 2025

Available online: 31 May 2025

Efficient management of web crawlers and prediction of their behavior remain key

challenges in the domain of intelligent information retrieval, particularly when multiple

crawlers operate simultaneously in dynamic environments. This research presents a hybrid

framework that integrates long short-term memory (LSTM) networks, fuzzy logic, and

contextual ontology to enhance the accuracy and efficiency of web crawling and traffic

optimization. The LSTM component is responsible for identifying temporal patterns in

historical crawling behavior and predicting future crawler actions, while fuzzy logic deals

with uncertain or imprecise web data, enabling smoother decision-making processes. To

enrich the semantic understanding of web content and improve context-based data

extraction, a contextual ontology is employed, allowing for intelligent interpretation and

classification of retrieved web data. The proposed model was evaluated using two large-

scale benchmark datasets: Common Crawl (250 GB) and ClueWeb09 (1 TB). These

datasets were chosen for their diversity and representation of real-world web structures and

content. Experimental results demonstrate that the proposed system outperforms

conventional approaches, achieving an 18.3% improvement in prediction accuracy and a

15.7% reduction in network traffic, compared to baseline LSTM and rule-based models.

These results confirm the model’s capability to reduce redundant data retrieval, avoid

crawler overlaps, and enhance resource efficiency. This study highlights the potential of

combining machine learning with semantic technologies to improve web crawling in

complex environments. The proposed hybrid system offers a scalable, intelligent solution

for high-performance information retrieval and efficient network traffic management.

Keywords:

contextual ontology, fuzzy logic, LSTM, web

crawler prediction, traffic optimization,

parallel web crawlers, intelligent

information retrieval, network traffic

management, temporal dependencies

1. INTRODUCTION

The broad appeal of the World Wide Web (WWW) has

presented challenges not only for society but also for the

technological innovations that created and maintain it. The

Web is expanding in society faster than we can comprehend

its implications or establish guidelines for its use [1]. The

widespread usage of the Internet has raised significant societal

issues related to information availability, restrictions, and

security. From a technical perspective, the Web's uniqueness

and rapid growth have posed challenges in developing new

applications that fully utilize its potential, as well as in

building the infrastructure required to scale such applications

to handle massive data loads and information sets [2].

Fields like data retrieval, computation, and decentralized

networks have both benefited from and contributed to

addressing these new challenges. These data repositories are

now known as search engines, which index the entire WWW

and present results to users based on their search queries [3].

Search engines employ web crawlers, also known as robots, to

crawl the web and retrieve information from the WWW. These

sources of knowledge include legal, social, educational, and

food-related data [4].

A web crawler is an automated computer program that

systematically searches the WWW. Web crawlers are also

referred to by various names, including web robots, web

spiders, web wanderers, bots, automated indexers, and spiders.

Spidering is a common technique used by many websites,

especially search engines, to gather current information [5].

Web crawlers are primarily employed to store copies of each

web page they visit so that an internet search engine can later

analyze and index the retrieved pages. Crawlers can also

automate website maintenance tasks such as validating HTML

code and checking links. They can be used to extract specific

types of data, such as email addresses [6].

Generally, a web crawler starts with a list of URLs to visit,

referred to as seed URLs. When the crawler visits these URLs,

it identifies all the hyperlinks on the page and adds them to the

crawl frontier—a list of URLs to visit in the future [7]. The

crawler then continues to visit URLs from the frontier

according to a set of policies. The effectiveness of the WWW

can be attributed to two key factors: its vastness and the lack

of centralized content management. These same factors also

contribute to the challenges of finding information on the Web

[8]. The Web presents a challenge to traditional Information

Retrieval (IR) techniques because the sheer volume and rapid

evolution of the Web exceed the capacity of modern search

engines [9]. The quality of content on the Web is uneven, with

Ingénierie des Systèmes d’Information
Vol. 30, No. 5, May, 2025, pp. 1147-1161

Journal homepage: http://iieta.org/journals/isi

1147

https://orcid.org/0009-0008-6126-2449
https://orcid.org/0000-0003-1599-1284
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.300504&domain=pdf

a small number of valuable web pages buried under a massive

amount of less relevant content.

For the Internet to function correctly, certain protocols must

be followed. A protocol is a well-defined format for

connecting, communicating, and exchanging data between

two machines on a network [10]. The Internet employs several

important protocols, including Hypertext Transfer Protocol

(HTTP), Hypertext Transfer Protocol Secure (HTTPS), and

File Transfer Protocol (FTP). HTTPS is used by websites that

request sensitive information such as passwords and other

private data [11]. HTTP is used to transfer web pages over the

WWW. Websites using HTTPS have a Secure Sockets Layer

(SSL) certificate issued by a trusted third party, which can be

examined when a webpage is accessed using HTTPS. FTP is

another common protocol used for transferring files across the

Internet [12]. Web developers use FTP to upload new versions

of their websites, while HTTP is used to display files in a web

browser. FTP allows files to be transferred from one machine

to another, such as from a home computer to a remote web

server [13]. Every search engine maintains a core database of

websites. The search engine retrieves results from this

database based on the user's query. A web crawler, also known

as a spider or bot, searches the Internet for web content. The

web crawler begins by downloading online documents from

an initial set of URLs [14].

Figure 1. Web crawler architecture

The search engine's information is kept up to date by the

web crawler architecture integrates updates from the internet.

To overcome computational congestion, multiple instances of

this component operate in parallel and communicate at high

frequencies. Using the HTTP protocol, web crawlers retrieve

and manipulate web pages from the internet [15]. The web

crawler architecture consists of two main components: the

processor and the downloader. The downloader retrieves

websites from the World Wide Web and sends them to the

processor for further analysis. The HTTP protocol is used to

download these web pages. Various efficiency techniques

such as TCP reuse, pipelining, conditional GETs, variable

refresh rates, and DNS caching are employed to overcome

network constraints [16]. Simultaneous web crawlers operate

concurrently to optimize download speed and cover a large

portion of the internet, as shown in Figure 1. Concurrent

crawlers face challenges such as webpage overlap, bandwidth

consumption, and reliability issues [17]. Since crawlers might

not be aware of each other's previous searches, the same web

pages may be retrieved multiple times, resulting in overlap.

Minimizing this overlap conserves network bandwidth, allows

for more unique downloads, and improves the overall

efficiency of web crawlers [18].

The goal of a web crawler is to download as many

significant web pages as possible. When multiple crawlers

operate simultaneously, they may lack knowledge of the

complete set of pages retrieved collectively. Consequently,

crawling decisions based solely on local data can lead to poor

performance [19]. To reduce redundancy and maintain the

quality of retrieved content, crawlers must communicate with

each other. However, this communication consumes both

bandwidth and time.

Crawlers assign priority to web pages based on their

relevance score, which is calculated using techniques such as

Term Frequency–Inverse Document Frequency (TF-IDF) and

cosine similarity [20].

2. RELATED WORKS

One of the core concerns in modern information retrieval

systems is the accuracy and relevance of responses to user

queries. Query expansion has emerged as a widely adopted

strategy to improve retrieval effectiveness [21]. In particular,

keyword-based query expansion enhances user satisfaction

and recall by semantically enriching the initial user query

before it is submitted to a search engine. This enrichment is

achieved by incorporating synonyms or related terms, thereby

capturing a broader scope of relevant documents [22]. Two

main types of query expansion strategies are commonly

employed: local and global analysis. In local analysis,

expansion terms are extracted from the top-ranked documents

retrieved in response to the initial query, effectively refining

the query based on its own results. In contrast, global analysis

adds expansion terms based on a broader corpus or thesauri,

independent of the initial result set. The vector space model is

typically used to support such retrieval processes, enabling

partial matching rather than requiring exact keyword matches,

thus enhancing the search's flexibility [23].

Ontologies play a vital role in improving semantic

understanding in information retrieval. An ontology provides

a structured representation of domain knowledge, capturing

entities, relationships, and shared concepts. It enables the

semantic enrichment of queries and helps manage shared

access and communication in distributed environments [24].

For instance, OntoCrawler integrates an ontology-based

academic database to effectively crawl scholarly webpages by

leveraging structured metadata and associated conceptual

hierarchies [25]. Hypertext systems, foundational to the web's

architecture consist of interconnected documents linked by

embedded hyperlinks. The concept of hypertext allows users

to navigate through related content seamlessly, enhancing the

exploration of large information spaces. This user-centric

model inspired the design of the World Wide Web, where

millions of interconnected documents allow for non-linear

browsing and dynamic information discovery [26]. The vast

and unstructured nature of the Web poses significant

challenges for information retrieval. Parallel and distributed

web crawlers have emerged to address the scalability of data

collection across diverse web domains [27].

Web search and classical information retrieval differ

1148

notably in terms of scale and user expectations. Web search

engines operate on extremely large-scale, heterogeneous data

with a wide user base exhibiting diverse search behaviors.

Information Retrieval (IR) systems aim to return a relevant

subset of documents from a much smaller, structured

repository [28]. Key components of IR systems include

document indexing, query processing, ranking algorithms, and

user interfaces for relevance feedback [29]. Precision and

recall are commonly used to assess the effectiveness of these

systems. Precision measures the proportion of relevant

documents among retrieved ones, while recall evaluates the

proportion of all relevant documents successfully retrieved

[30].

3. MATERIALS AND METHODS

Focuses on enhancing the efficiency and accuracy of web

crawling in dynamic and complex web environments. Existing

web crawlers often struggle with predicting changes in web

content and managing network traffic, which can lead to

inefficiencies in data retrieval and indexing. This model

combines the strengths of contextual ontology, fuzzy logic and

LSTM networks to address these challenges shown in Figure

2. The contextual ontology component is designed to capture

and organize the relevant context from web pages, improving

the system’s ability to retrieve meaningful and precise

information. Fuzzy logic is integrated to manage uncertainty

and imprecision in the web data, enabling more adaptive and

efficient decision-making in web crawling processes. LSTM

networks are utilized to predict web crawler behavior by

learning from past interactions allowing the system to

anticipate changes in web content and optimize its crawling

strategies. This hybrid proposed system aims to reduce

unnecessary network traffic, enhance prediction accuracy, and

improve the overall performance of web crawlers. By

addressing key issues such as traffic optimization and crawler

prediction, this model offers a more intelligent and scalable

solution for web indexing and information retrieval in the fast-

evolving digital landscape.

Figure 2. Proposed architecture

1149

3.1 Dataset description

Large-scale web page material such as HTML, text, and

metadata included in the Web Crawl Data 1 collection was

obtained through Common Crawl. The algorithm's capacity to

efficiently gather and evaluate material from a variety of web

pages is trained using this dataset. The history of web page

modifications may be found in the Web Page Change Logs

dataset, which was retrieved from Archive.org. The

information in the dataset is utilized for training the LSTM

network allowing the algorithm to forecast upcoming shifts in

online content according to historical trends. Variables such as

URLs, time stamps, and modification frequency are included

in the dataset. Comprehensive information on network traffic

such as bandwidth utilization, number of requests and

frequency latency available in the Network Traffic Logs

dataset was gathered using custom crawlers. Using fuzzy

reasoning to maximize network traffic and cut down on

wasteful bandwidth usage requires this set of data.

Contextual connections and semantic linkages among the

organized information provided by the Ontology-Based

Dataset found in resources such as DBpedia and Wikipedia.

Through a contextual and ontological framework, this

collection of data offers a comprehensive contextual

foundation that enhances web indexing. Finally, contextual

information such as phrases and context labels are included in

the Web Page Context Information collected by specialized

crawlers. This collection of data uses context-based insight to

better analyze and index online material helps to improve

information retrieval shown in Table 1. These datasets aid in

the learning, optimization, and validation of many facets of the

approach, guaranteeing thorough development and efficient

operation in the areas of handling traffic and web crawler

predictions.

The information that is contained throughout each dataset is

exemplified by these examples include web page pleased,

change history, structured knowledge, network traffic

statistics derived from ontologies, and contextual data taken

from websites shown in Tables 2-6.

3.2 Pre-processing

For the development of a contextual ontology-based fuzzy

logic and LSTM model for web crawler prediction, data

preprocessing involves several steps to clean and prepare web

data.

Table 1. Dataset description

Dataset Name Source Data type Size Features Purpose

Web Crawl Data 1 Common Crawl
Web page content

(HTML, text)
1TB

URL, HTML tags.

metadata, page content

Training the model for

content extraction

Web Page Change

Logs
Archive.org

Change history of

web pages
500GB

URL, timestamps. change

frequency

LSTM training for predicting

crawler behavior

Network Traffic

Logs Custom

Crawler Data

Collection

Network traffic

statistics
300GB

Bandwidth usage, number

of requests, latency

Optimizing network traffic

using fuzzy logic

Ontology- Based

Dataset
DBpedia, Wikipedia

Structured

knowledge
200GB

Contextual relationships.

semantic links

Enhancing web indexing

with contextual ontology

Web Page Context

Data

Custom Crawler

Data Collection
Contextual data 150GB

Keywords, context tags,

extracted entities

Context-based information

retrieval

Table 2. Web crawl data 1

URL HTML Content Metadata

http://ex.com/page1 <html><head><title>Ex Page 1</title></head> <body><p>This is an ex

page.</p></body></html>

<meta name="description"

content-"Ex Page 1">

Table 3. Web page change logs

URL Timestamp Type Details

http://ex.com/pagel 2024-09-16 11:00:00 Content Update Changed paragraph text from "This is..."to "Updated content..."

Table 4. Network traffic logs

Timestamp URL Bandwidth Usage (MB) Number of Requests Latency (ms)

2024-09-16 11:00:00 http://ex.com/pagel 5.5 120 152

Table 5. Ontology-based dataset

Entity Contextual Relationship Semantic Link

Ex Page 1 Has keyword "ex" Related to "tutorial"

Ex Page 2 Contains "guide" Part of "documentation"

Table 6. Web page context data

URL Keyword Context Tag Extracted Entities

http://ex.com/pagel example, tutorial educational resource "ex page", "tutorial guide"

1150

3.2.1 HTML tag removal

Extract raw text from HTML content to focus on the actual

textual information described using a regular expression

(regex):

Regex Pattern: <[^>]+>

This pattern matches any sequence of characters that starts

< with and ends with >, effectively identifying and removing

HTML tags.

Example: Original HTML:

<html><head><title>Ex</title></head><body><p>Sample

text.</p></body></html>

Cleaned Text: Sample text.

HTML Tag Removal: Utilize regex <[^>]+> to strip HTML

tags from content.

3.2.2 Regular expression pattern matching

Extract specific patterns or clean up the text further based

on defined patterns.

The regex pattern itself is used for text processing.

Example Patterns: Email Extraction: [\w\.-]+@[\w\.-]+

Matches email addresses. URL Extraction: http[s]?://(?:[a-

zA-Z]|[0-9]|[$-_@.&+]|[!*\\(\\),]|(?:%[0-9a-fA-F][0-9a-fA-

F]))+

Matches URLS.

Example:

Text: Contact us at example@ex.com or visit http://ex.com

Extracted Information: ex@ex.com, http://ex.com

Regular Expression Pattern Matching: Apply regex patterns

to extract or clean specific information (e.g., emails, URLs).

3.2.3 Stop word removal

Remove common words (stop words) that do not contribute

significant meaning to the text, thereby reducing

dimensionality and noise.

Stop Words List Example: ['a', 'an', 'the', 'is', 'in', 'and']

Process: Tokenize the text into words. Remove words that

are in the stop words list.

Example:

Original Text: The quick brown fox jumps over the lazy dog.

Tokenized: [The', 'quick', 'brown', 'fox', 'Jumps', 'over', 'the',

'lazy', 'dog']

After Stop Word Removal: ['quick', 'brown', 'fox', 'jumps',

'lazy', 'dog]

Stop Word Removal: Filter out common words from the

tokenized text using a predefined list of stop words.

These preprocessing steps ensure that the data fed into the

contextual ontology-based fuzzy logic and LSTM model is

clean, relevant, and ready for further analysis and modeling.

3.3 Feature extraction

The goal is to maximize the probability of observed word-

context pairs while minimizing the probability of non-

observed pairs. This can be mathematically represented in the

objective function:

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =
∑ 𝑙𝑜𝑔𝑝(𝑍 = 1|(𝑤, 𝑐)) +(𝑤,𝑐)𝜖𝐷

∑ 𝑙𝑜𝑔𝑝(𝑍 = 0|(𝑤, 𝑐))(𝑤,𝑐)𝜖𝐷′

(1)

To model these probabilities, we often use a sigmoid

function for 𝑝(𝑍 = 1|(𝑤, 𝑐)):

𝑝(𝑍 = 1|(𝑤, 𝑐)) = 𝜎(𝑣𝑤
𝑇 𝑣𝑐) (2)

where, 𝜎 denotes the sigmoid function:

𝜎(𝑖) =
1

1+𝑒−𝑖 (3)

Similarly, 𝑝(𝑍 = 1|(𝑤, 𝑐)) can be computed as:

𝑝(𝑍 = 1|(𝑤, 𝑐)) = 1 − 𝜎(𝑣𝑤
𝑇 𝑣𝑐) (4)

The optimization process involves adjusting the vector

representations 𝑣𝑤 and 𝑣𝑐 to maximize the objective function,

thereby learning meaningful word embeddings based on their

contexts. Figure 3 explains the preprocessing and feature

extraction in step by step procedure. For the Development of

a contextual ontology-based fuzzy logic and LSTM Model for

web crawler prediction, feature extraction using LSTM

networks involves transforming raw data into meaningful

features that capture temporal dependencies and contextual

information.

Step 1: Data Preparation: Transform raw web data into a

sequence suitable for LSTM input.

Steps:

Tokenization: Convert raw text into sequences of tokens

(words or subwords).

Embedding: Use word embeddings (e.g., Word2vec, Glove)

to represent tokens as dense vectors.

𝐸(𝑤) = 𝑣𝑤 (5)

where, E(w) is the embedding of word w. 𝑣𝑤 is the pre-trained

vector representation of w.

Step 2: LSTM Feature Extraction: LSTM networks are

designed to capture temporal dependencies in sequential data.

The LSTM unit includes several components to process the

sequence data:

Forget Gate: 𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑖𝑡] + 𝑏𝑓) (6)

Input Gate: 𝑥𝑡 = 𝜎(𝑊𝑥 . [ℎ𝑡−1, 𝑖𝑡] + 𝑏𝑥) (7)

𝐶�̅� = 𝑡𝑎𝑛ℎ(𝑊𝐶 . [ℎ𝑡−1, 𝑖𝑡] + 𝑏𝐶) (8)

Cell State Update: 𝐶𝑡 = 𝑓𝑡 . 𝐶𝑡−1 + 𝑥𝑡 . 𝐶�̅� (9)

Output Gate: 𝑜𝑡 = 𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑖𝑡] + 𝑏𝑜) (10)

ℎ𝑡 = 𝑜𝑡 . tanh (𝐶𝑡) (11)

where, 𝜎 is the sigmoid activation function; tanh is the

hyperbolic tangent activation function; 𝑊𝑓 , 𝑊𝐶 , 𝑊𝑥 , 𝑊𝑜 are

weight matrices for the forget, input, cell, and output gates,

respectively; 𝑏𝑓 , 𝑏𝐶 , 𝑏𝑥, 𝑏𝑜 are bias terms; 𝑖𝑡 is the input vector

at time t; ℎ𝑡−1 is the hidden state from the previous time step;

𝐶𝑡 is the cell state at time f.

Step 3: Contextual Features Extraction: Integrate

contextual information extracted from a contextual ontology

into the LSTM features.

Contextual Embedding: Contextual embeddings represent

words in the context of their surrounding words, derived from

a contextual ontology.

𝐸𝑐(𝑤) = 𝑣𝑤 + 𝑐𝑤 (12)

1151

where, 𝐸𝑐(𝑤) is the contextual embedding of word w; 𝑐𝑤 is

the vector representing contextual information from the

ontology.

Feature Vector for LSTM: Combine contextual embeddings

with LSTM outputs to form the final feature vector.

𝐹𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑡 , 𝐸𝑐(𝑤𝑡)) (13)

where, 𝐹𝑡 is the feature vector at time t. Concat denotes

concatenation of LSTM hidden state ℎ𝑡 and contextual

embedding 𝐸𝑐(𝑤𝑡).

Step 4: Feature Aggregation: Aggregate features from

multiple time steps to represent the entire sequence.

Pooling: Apply pooling techniques (e.g., max pooling,

average pooling) to aggregate features over time.

𝐹𝑎𝑔𝑔 = 𝑃𝑜𝑜𝑙𝑖𝑛𝑔({𝐹𝑡}𝑡=1
𝑇) (14)

where, 𝐹𝑎𝑔𝑔 is the aggregated feature vector. {𝐹𝑡}𝑡=1
𝑇

represents the feature vectors from all time steps.

Final Feature Representation: The aggregated features can

be used for further processing, such as classification or

prediction.

Feature extraction involves preparing data through

tokenization and embedding, processing sequences with

LSTM to capture temporal dependencies, integrating

contextual information from ontology-based embeddings, and

aggregating features for final representation. The resulting

features are then utilized for web crawler prediction and other

analyses shown in Figure 4.

Input Data: This is the input data for the model can be text,

images, or other sequential data.

Pre-processing: This step involves cleaning and preparing

the input data. For text data, this might include tasks like

tokenization, stemming, and stop word removal.

Word Embedding: This layer converts words or tokens into

numerical representations, capturing semantic relationships

between words.

Figure 3. Preprocessing and feature extraction

1152

Figure 4. Feature extraction using LSTM

Convolution and Max-pooling: These layers are typically

used in CNNs for extracting features from the input data.

Convolutional layers apply filters to the input data, while max-

pooling layers downsample the output to reduce

computational cost and preserve important features.

LSTM Layers: These layers are recurrent neural networks that

are particularly effective at capturing long-term dependencies

in sequential data. They use a gating mechanism to control the

flow of information through the network, allowing them to

remember information over long periods of time.

Fully Connected Layer: This layer combines the outputs

from the LSTM layers into a fixed-length vector.

Softmax Layer: This layer applies the softmax function to

the output of the fully connected layer, producing a probability

distribution over the possible classes.

Classification: The final output of the model is the predicted

class based on the probability distribution produced by the

softmax layer.

Figure 4 explains the architecture is well-suited for tasks

that involve classifying sequential data, such as text

classification or time series analysis. CNN with LSTMs allows

the model to capture both local and global features in the input

data, making it a powerful tool for a variety of applications.

3.4 Fuzzy ontology-based semantic model for a web

crawler

To simplify the realization of more fuzzy functions, the

proposed architecture shown in Figure 5 includes preparing

and after-processing elements in addition to fuzzy

representations and identification elements. The fundamental

supporting module for fuzzy operations, comprising fuzzy

logic, regulations, and computations called the fuzzy engine.

Service Fuzzalizer fuzzals up descriptions of internet services

into fuzzy forms. The Fuzzy Ontology Knowledge Base

(FOKB) where fuzzy service ontologies are kept. This

database can be kept alone or integrated into the UDDI register

center with a UDDI extension. Request Fuzzalizer filters user

requests before converting them into fuzzy forms for matching.

Fuzzy Matchmaking is used to carry out service finding.

Requesters' usage data is recorded in Usage Record and can be

utilized for user-chosen matching. The first step in utilizing the

framework for service discovery is to translate the service

representation into more ambiguous language. Provision of

services Web services are transformed into fuzzy ontologies

by Fuzzalizer and stored in FOKB. Preprocessing like this can

be done after the service is advertised to prevent sluggish

runtime performance. The framework uses the industry-

standard UDDI to find online services.

Users can use clear or vague language when requesting

services. The requests Fuzzalizer converts crisp phrases used

in a service consumer's query to fuzzy forms upon inquiry

initiation. Additionally, the person making the request

Fuzzalizer standardizes fuzzy requests. Fuzzy matching

performs fuzzy service matching using items described in

fuzzy ontologies. The fuzzy concepts are related to one

another via approximation reasoning. The user's Account and

Usage History will get the match outcome for service

activation and customer preference records, respectively. To

expedite finding services, the choice records will be utilized as

the default information for subsequent requests. Fuzzy

thresholds or matching weights can be changed and a fresh

match is made if the consumer is not happy with the matching

service. Using the above framework, customers may quickly

modify their selection of services based on personal choice and

request services using ambiguous language. By combining

fuzzy logic with ontology, Fuzzy Ontology Rules with

Equations address ambiguity and uncertainty in categorizing

information or decision-making procedures. These rules

leverage both fuzzy logic and semantic connections (ontology)

1153

to enhance the classification of information in the

surroundings of web crawlers and other operations. The Fuzzy

Ontology-Based Semantic Model for Web Crawler combines

fuzzy logic and ontology to handle uncertain and imprecise

data in web crawling. The ontology defines the relationships

between concepts on the web, while fuzzy logic manages

ambiguity in the web data.

Figure 5. Fuzzy ontology framework for web service discovery

3.4.1 Ontology structure

An ontology is structured as a set of concepts C,

relationships R, and instances I.

Concepts: The primary topics or categories.

Relationships: Connections between different concepts.

Ontology is represented as:

𝑂 = (𝐶, 𝑅, 𝐼) (15)

where, 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑛} is a set of concepts. 𝑅 =
{𝑟1, 𝑟2, … , 𝑟𝑚} is a set of relationships. 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑝} is a

set of instances.

In fuzzy logic form, this can be represented as:

𝜇𝑚𝑒𝑑𝑖𝑢𝑚 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑝) =
min (𝜇𝑀𝐿𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦

(𝑝), 𝜇𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑝))
(16)

where, 𝜇𝑀𝐿𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦
(𝑝) represents the fuzzy membership

degree of the web page in the "Machine Learning" category

within the ontology. 𝜇𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑝) is the fuzzy

membership value of the page content relevance.

3.4.2 Combining fuzzy rules using fuzzy inference

The output from multiple fuzzy rules is combined using

fuzzy aggregation methods, such as min and max operators.

For example, consider the two rules from above:

Rule 1 provides a high relevance score with a degree

𝜇ℎ𝑖𝑔ℎ(𝑝).

Rule 2 provides a medium relevance score with a degree

𝜇𝑚𝑒𝑑𝑖𝑢𝑚(𝑝).

The combined relevance score 𝜇𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝑝) can be

computed using:

𝜇𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝑝) = 𝑚𝑎𝑥 (𝜇ℎ𝑖𝑔ℎ(𝑝), 𝜇𝑚𝑒𝑑𝑖𝑢𝑚(𝑝)) (17)

This takes the maximum of the two membership values,

assigning the higher relevance to the page.

3.4.3 Defuzzification

Once the fuzzy inference is complete, the result is

defuzzified to obtain a crisp relevance score that can be used

for ranking or decision-making. For example, if the output

relevance score 𝜇𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝑝) falls within the fuzzy sets 𝑅ℎ𝑖𝑔ℎ,

𝑅𝑚𝑒𝑑𝑖𝑢𝑚 and 𝑅𝑙𝑜𝑤, the final relevance score can be obtained

using centroid or mean of maxima methods.

𝑅𝑓𝑖𝑛𝑎𝑙(𝑝) =
∑ 𝜇𝑥(𝑝).𝑟𝑥

𝑛
𝑥=1

∑ 𝜇𝑥(𝑝)𝑛
𝑥=1

 (18)

where, 𝜇𝑥(𝑝) is the membership degree of page p in fuzzy set

x. 𝑟𝑥 is the representative crisp value of set x (e.g., 1 for high,

0.5 for medium, 0 for low).

3.4.4 Semantic matching with fuzzy ontology

The semantic relevance of a web page p to a query q is

evaluated using fuzzy ontology-based semantic matching. The

1154

process involves calculating the degree to which the web

page's content matches the ontological concepts related to the

query.

𝑅(𝑞, 𝑝) =
∑ 𝜇𝑝(𝑐𝑥).𝜇𝑞(𝑐𝑥)𝑛

𝑥=1

∑ 𝜇𝑞(𝑐𝑥)𝑛
𝑥=1

 (19)

where: 𝑅(𝑞, 𝑝) is the relevance score of the web page to the

query q. 𝜇𝑝(𝑐𝑥) is the membership degree of concept 𝑐𝑥 for

web page p. 𝜇𝑞(𝑐𝑥) is the membership degree of concept 𝑐𝑥

for query q.

3.4.5 Fuzzy Inference System (FIS)

To model the semantic relevance of web pages, a fuzzy

inference system can be implemented. This FIS takes the

inputs (semantic similarity, page content features, etc.) and

processes them through fuzzy rules to determine the relevance

score.

3.4.6 Aggregating results in web crawling

The final step is aggregating the relevance scores across

different web pages and returning the most relevant results.

𝑅𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑤𝑘 . 𝑅(𝑞. 𝑝𝑘)𝑚
𝑘=1 (20)

where, 𝑅𝑡𝑜𝑡𝑎𝑙 is the total relevance score. 𝑤𝑘 is the weight

assigned to each page 𝑝𝑘, which can be determined based on

factors such as authority or content quality These equations

represent the core mechanisms of the Fuzzy Ontology-Based

Semantic Model and demonstrate how fuzzy logic is used to

evaluate the relevance of web content in a way that accounts

for ambiguity and semantic relationships.

The proposed incremental parallel web crawler shown in

Figure 6. The architecture's primary coordinating element is

the Multi Threaded (MT) server. It maintains a connection

pool with computer clients that download the web pages

instead of downloading any paperwork on its own. The term

client crawlers refers to all the many ways that clients

communicate with one another via servers. Depending on the

extent of the real implementation and the available resources,

the number of customers may change. It should be mentioned

that all communication between consumer crawlers occurs

through the server because there are no direct linkages

between them. Only the modified papers are thereafter saved

in the repositories in a searchable or insertable format after the

modification detecting module assists in determining if the

intended page has changed or not. As a result, the archive is

updated with the most recent data that is accessible at the

search engine databases endpoint.

Algorithm: Fuzzy ontology-based semantic model with

LSTM

Input: 𝑊 = {𝑤1, 𝑤2, . . . , 𝑤𝑛} : Set of webpages; 𝑄 =
 {𝑞1, 𝑞2, . . . , 𝑞𝑛}: Query terms; 𝑇𝑐: Training corpus (webpage

content and context data); O: Ontology (set of domain

knowledge and semantic relationships); F: Fuzzy rules; E:

Embedding matrix for LSTM input; LSTM: Long Short-Term

Memory network for time-series prediction.

Output: Predicted relevance and ranking score for each

webpage 𝑤𝑥; Traffic optimization and next crawling step.

Step 1: Preprocess Webpage Data

Step 1.1: Remove HTML tags using regular expressions:

𝑐𝑙𝑒𝑎𝑛_𝑐𝑜𝑛𝑡𝑒𝑛𝑡(𝑤𝑥) 𝑟𝑒𝑔𝑒𝑥. 𝑠𝑢𝑏(<.∗? >, ”, 𝑤𝑥)

where, regex.sub removes the HTML tags.

Step 1.2: Remove stopwords from each webpage content:

𝑤𝑥
𝑐𝑙𝑒𝑎𝑛 = 𝑤𝑥

𝑐𝑜𝑡𝑒𝑛𝑡\𝑠𝑡𝑜𝑝𝑤𝑜𝑟𝑑𝑠 (21)

Step 2: Contextual Ontology Analysis: For each webpage

𝑤𝑥:

Extract keywords K (𝑤𝑥) from the webpage content.

Map extracted keywords to concepts in the ontology 0:

𝐶(𝑤𝑥) 𝑚𝑎𝑝(𝐾(𝑤𝑥), 𝑂) (22)

Calculate semantic similarity between webpage keywords

and query:

𝜇𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐(𝑤𝑥) = 𝑐𝑜𝑠𝑖𝑛𝑒(𝐾(𝑤𝑥), 𝑄) (23)

where, cosine similarity measures the semantic relationship

between webpage content and the query.

Step 3: Apply Fuzzy Logic Rules

Step 3.1: Define fuzzy membership functions for relevance

𝜇𝑅(𝑤𝑥) =
1

1+𝑒−𝑘(𝑖−𝑖𝑜) (24)

where, k and 𝑖𝑜 parameters defining the fuzzy function's

steepness and midpoint, respectively.

Step 3.2: Apply fuzzy rules:

IF 𝜇𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐(𝑤𝑥) is high AND 𝐶(𝑤𝑥) matches the ontology:

𝜇𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑤𝑥)
= min (𝜇𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐(𝑤𝑥), 𝜇𝑜𝑛𝑡𝑜𝑙𝑜𝑔𝑦(𝐶(𝑤𝑥)))

(25)

Combine fuzzy rules for all conditions using fuzzy

inference.

Step 4: Feature Representation with LSTM

Step 4.1 Embed webpage content into vector space using

word embeddings (e.g., Word2Vec or Glove):

𝐸(𝑤𝑥) = 𝐸𝑚𝑏𝑒𝑑 (𝑤𝑥
𝑐𝑙𝑒𝑎𝑛) (26)

Step 4.2 Feed embedded vectors into the LSTM network to

model time-dependent crawling behavior:

Step 4.3 Initialize LSTM weights.

For each webpage sequence {𝑤1, 𝑤2, . . . , 𝑤𝑡}:

ℎ𝑡 = 𝜎(𝑊ℎℎ𝑡−1 + 𝑊𝜏𝐸(𝑤𝑡) + 𝑏) (27)

where, ℎ𝑡 is the hidden state, 𝑊ℎ, 𝑊𝑖 are weight matrices, and

b is the bias term.

Step 4.4 Output layer of the LSTM provides the prediction

score:

𝑗𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑗ℎ𝑡 + 𝑏𝑗) (28)

where, 𝑗𝑡 is the relevance score for each webpage at time t.

Step 5: Combine Fuzzy Logic and LSTM Predictions:

For each webpage 𝑤𝑥, the final prediction score is a weighted

combination of fuzzy relevance and LSTM output:

𝑆𝑐𝑜𝑟𝑒(𝑤𝑥) = 𝛼. 𝜇𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑤𝑥) + (1 − 𝛼). 𝑗𝑥 (29)

where, 𝛼 is a weight balancing the fuzzy logic and LSTM

outputs.

1155

Step 6: Web Crawler Traffic Optimization: Optimize the

crawling process by ranking webpages based on the final score

Score(𝑤𝑥). Prioritize the next crawl based on the predicted

relevance and system traffic load:

IF Score(𝑤𝑥) is high AND system traffic is low:

𝐶𝑟𝑎𝑤𝑙(𝑤𝑥) next

ELSE delay the crawl.

Step 7: Repeat and Update: Update the ontology and

fuzzy logic rules based on new crawled data and user feedback.

Retrain the LSTM model periodically using updated data.

Equations showing the relationships between contextual

ontology, fuzzy logic, and LSTM are used in this approach to

create a sophisticated web crawler prediction system. The

crawler's operations are guided by the ultimate relevancy score

maximizes network traffic and relevancy.

Fuzzy Rule: IF the web page content is highly related to the query ontology, THEN the relevance score is high.

Figure 6. Architecture of incremental parallel web crawler

4. RESULTS AND DISCUSSIONS

The proposed system is tested using tourist domain. The

harvest ratio or the speed at which pertinent pages are found

and extraneous pages are successfully removed from the crawl

used to assess focused crawling. The existing measures of

coverage and relevance are Accuracy and Recall. The

percentage of web pages that are crawled and fulfill the

crawling objective is represented by the harvest ratio. By

contrasting baseline-focused crawling with concept-based

focused hopping around assessment has been carried out. The

crawling process begins with the seed URLs provided, and

then concept-based crawlers collect concept-based pages at

every stage.

1156

Table 7. Hyper-parameter settings

Hyperparameter Value

Learning Rate 0.001

Hidden Layers 3

Neurons per Layer 128

Activation Function ReLU

Batch Size 32

Epochs 100

Discount Factor (γ) 0.95

Exploration Rate (ε) 0.2

Query Expansion Terms 10

Similarity Threshold 0.8

Fuzzy Relevance Threshold 0.75

Feature Selection Technique TF-IDF

Figure 7. Average client request delay in all cases

Figure 8. Comparison of crawler average delay and total

request arrival time

Figure 9. Complete client request delay in all cases

The hyperparameters for the hybrid model are carefully

chosen to optimize performance. A learning rate of 0.001

ensures smooth optimization and prevents overshooting the

optimal solution shown in Table 7. The model uses three

hidden layers with 128 neurons per layer to balance

complexity and efficiency while avoiding overfitting. The

ReLU activation function enhances convergence speed by

introducing non-linearity. A batch size of 32 ensures stable

gradient updates, and 100 epochs provide sufficient time for

weight convergence without overfitting. The reinforcement

learning discount factor (γ) is set to 0.95, balancing immediate

and future rewards. For crawler behavior prediction, an

exploration rate (ε) of 0.2 maintains a balance between

exploring new paths and exploiting known high-reward paths.

Query expansion is limited to 10 terms, with a similarity

threshold of 0.8 ensuring only relevant terms are included. The

fuzzy relevance threshold of 0.75 determines document

inclusion, while TF-IDF prioritizes the most informative terms

for feature selection. These settings balance accuracy,

efficiency, and computational feasibility, enabling the model

to effectively handle both crawler prediction and traffic

optimization tasks.

The median request from customers time of 3 cases active

indexing shown in Figure 7. The graph between the median

crawler query latency and the overall demand reception rate is

shown in Figure 8. The similarity of the two curves above

suggests that the rise in crawler load did not affect the crawler

sites' perceived latency.

All inquiries are fulfilled, nevertheless, when the inquiry's

receipt rate is low. The crawler examples with 20% and 40%

demonstrate a notable decline in the customer's request

completion percentage shown in Figure 9.

Fuzzy rule aggregation with output is shown in Figure 10

and Network traffic problem reduced by using proposed

system is shown in Figure 11.

Figure 12 shows how the solution enhances both

progressive and domain-specific website crawling. Comparing

to proposed system with existing crawlers, proposed system

gather more domain-specific pages from sites ending

in.org,.com,.info,.edu, work, and.biz.

Table 8 shows that the proposed system performs better

than existing approaches in every area, demonstrating

improved efficacy in obtaining data and web crawler

predictions.

Figure 10. Fuzzy rule aggregation with output

Figure 11. Network traffic problem reduced by using

proposed system

Communication

= 0.5

Bandwidth = 0.5 NetworkTraffic

= 0.5

1157

Figure 12. Comparison of proposed and existing systems

incremental crawling

Table 8. Comparison of average harvest rate for Ten Topics

using different crawlers and the proposed system

Topics

TF-

IDF +

RF

TF-

IDF +

CNN

TF-

IDF +

ANN

TF-

IDF +

RNN

Proposed

System

Topic 1 0.73 0.69 0.77 0.82 0.89

Topic 2 0.76 0.71 0.80 0.85 0.91

Topic 3 0.72 0.66 0.75 0.81 0.88

Topic 4 0.74 0.68 0.78 0.83 0.90

Topic 5 0.75 0.70 0.79 0.84 0.91

Topic 6 0.71 0.67 0.74 0.80 0.87

Topic 7 0.74 0.69 0.77 0.83 0.89

Topic 8 0.73 0.68 0.76 0.82 0.89

Topic 9 0.76 0.71 0.79 0.85 0.92

Topic 10 0.75 0.70 0.78 0.84 0.91

Average

Harvest

Rate

0.74 0.69 0.77 0.83 0.90

Table 9. Comparison of average average irrelevance ratio for

ten topics using different crawlers and the proposed system

Topics

TF-

IDF

+ RF

TF-

IDF +

CNN

TF-

IDF +

ANN

TF-

IDF +

RNN

Proposed

System

Topic 1 0.30 0.35 0.27 0.23 0.16

Topic 2 0.28 0.33 0.25 0.21 0.14

Topic 3 0.32 0.37 0.29 0.24 0.18

Topic 4 0.31 0.35 0.28 0.22 0.15

Topic 5 0.29 0.38 0.26 0.23 0.17

Topic 6 0.33 0.36 0.30 0.25 0.19

Topic 7 0.31 0.34 0.28 0.23 0.16

Topic 8 0.30 0.32 0.27 0.22 0.15

Topic 9 0.28 0.33 0.25 0.21 0.14

Topic 10 0.29 0.35 0.26 0.22 0.15

Average

Irrelevance

Ratio

0.30 0.35 0.27 0.23 0.15

The proposed system outperforms all other models with the

lowest irrelevance ratio of 0.15, indicating that only 15% of

retrieved results are irrelevant, significantly reducing noise in

information retrieval. Table 9 demonstrates that the proposed

system is the most efficient in minimizing irrelevant data

compared to other models is crucial for optimizing web

crawler predictions.

The harvest rate P(C), or the proportion of web pages

crawled that satisfied the subject was the main criterion used

to assess the crawling system's success. Proposed method

compared with other existing crawling strategies based on

keyword-based, breadth-first, and pagerank crawling. The e-

commerce website "www.dangdang.com" serves as the seed

URL, and the predefined topic is "Book" products. Figure 13

provides a thorough display of the outcome.

The performance of cost based on time is another

performance statistic shown in Figure 14 provides a detailed

illustration of comparison of cost rate based on time with

number of pages crawled. If every crawler is contacted for an

equal amount of pages to be crawled, proposed method takes

a lot longer than existing methods. Adapting the domain

context requires time-consuming ontology learning and link

analysis modules.

The analytical findings of the contextual ontology-based

fuzzy logic and LSTM across a set of numerous nodes differ

from the original one shown in Figures 15 and 16. Since have

given a distinct weight for every level, the nodes that appear

in Figure 15 represent the attendee's first-degree followers,

whereas the nodes in Figure 16 represent the attendee's

second-degree followers. The height of the line is less in the

case of the improved computations is one of the most obvious

variations.

Figure 13. Comparison of harvest rates with number of

pages crawled

Figure 14. Comparison of cost rate based on time with

number of pages crawled

Figure 15. Level 1 comparison

Figure 16. Level 2 comparison

1158

Figure 17. Accuracy and loss of training for contextual

ontology-based fuzzy logic and LSTM over 10 epochs

Figure 18. Accuracy and loss of testing for contextual

ontology-based fuzzy logic and LSTM over 10 epochs

Figure 19. Confusion matrix of training dataset classification

Figure 20. Confusion matrix of testing dataset classification

The proposed contextual ontology-based fuzzy logic and

LSTM classification precision and the destruction in the

training and testing accuracy and loss for web pages are shown

in Figures 17 and 18 correspondingly. Throughout several

epochs, the loss of precision and accuracy are shown. As a

result, in both information sets, as epochs rise, the contextual

ontology-based fuzzy logic and LSTM classification accuracy

rises while its loss falls.

The confusion matrix in Figures 19 and 20 shows True

Positives, True Negatives, Forecast Positives, and Forecast

Negatives graphically. 262 of the 300 websites that were used

to build and train the contextual ontology-based fuzzy logic

and LSTM were properly identified, yielding an 87.33% rate

of classification.

Measures the overall accuracy of the system. The proposed

system has the highest accuracy at 94.9%, significantly

outperforming existing methods. Precision: Indicates how

many of the retrieved instances are relevant. The proposed

system achieves 92.6% precision, showing better relevancy

compared to other systems. Recall measures how many

relevant results were retrieved. The proposed system leads

with 91.8% recall, outperforming other models in capturing

relevant data. F1-score combines precision and recall into a

single score. The proposed system achieves the highest F1-

score of 92.2% demonstrating the best balance between

precision and recall. The proposed system outperforms all

existing systems in terms of accuracy, precision, recall, and

F1-score, highlighting its superiority in web crawler prediction

and performance shown in Table 10.

Table 10. Comparison of performance measures for the

proposed and existing systems

Performance

Measure

TF-

IDF

+ RF

TF-

IDF +

CNN

TF-

IDF +

ANN

TF-

IDF +

RNN

Proposed

System

Accuracy 86.2 84.8 88.6 90.1 94.9

Precision 83.6 81.7 85.4 88.11 92.6

Recall 81.2 79.5 84.1 87.3 91.8

F1-Score 82.3 80.6 84.6 87.6 92.2

Table 11. Comparison of performance measures (MAE,

MSE, and RMSE) for the proposed and existing systems

Performance

Measure

TF-

IDF +

RF

TF-

IDF +

CNN

TF-

IDF +

ANN

TF-

IDF +

RNN

Proposed

System

MAE 0.226 0.240 0.188 0.161 0.097

MSE 0.096 0.123 0.080 0.056 0.021

RMSE 0.310 0.350 0.281 0.234 0.145

Table 12. Comparison of performance measures for the

proposed and existing systems

Performance

Measure

TF-

IDF

+ RF

TF-

IDF +

CNN

TF-

IDF +

ANN

TF-

IDF +

RNN

Proposed

System

Execution

time (ms)
1252 1152 982 852 702

Completeness

Rate (%)
80 83 87 89 94

Error Rate

(%)
16 14 12 10 7

MAE measures the average magnitude of errors in a set of

predictions. The proposed system has the lowest MAE of

0.097 indicating it makes fewer errors compared to the

existing systems. MSE indicates the average of the squares of

the errors. The proposed system has the lowest MSE of 0.021,

1159

showing a significant improvement in reducing error

magnitudes. Represents the square root of the average squared

differences between predicted and observed values. The

proposed system achieves the lowest RMSE of 0.145,

confirming its superior accuracy in predicting values with

minimal deviation. The proposed system outperforms all

existing models in terms of MAE, MSE, and RMSE, making

it the most effective approach for minimizing prediction errors

in the context of web crawler performance shown in Table 11.

The proposed system shows the fastest execution time,

reducing overhead by using optimized fuzzy logic and LSTM-

based predictions. The proposed system achieves the highest

completeness rate due to the effective context-based ontology

that enhances retrieval relevance. The error rate is lowest in

the proposed system, as the fuzzy logic enhances classification

accuracy, reducing misclassification of web content. Table 12

reflects that the proposed system outperforms the existing

systems in all three measures.

5. CONCLUSIONS

By integrating contextual ontology with fuzzy logic and

LSTM, the model successfully addresses key challenges in

traditional web crawlers, such as handling the dynamic and

uncertain nature of web content and reducing irrelevant data

retrieval. The proposed system outperforms existing

approaches in terms of execution time, completeness rate, and

error rate. The integration of fuzzy logic ensures that uncertain

and ambiguous content is accurately classified, while the

LSTM model enhances the system's ability to predict and

adapt to the evolving structure of web pages. The contextual

ontology improves the system's ability to understand the

relationships between web content, leading to more relevant

and comprehensive retrieval. The proposed model

demonstrated superior results in reducing the error rate to 5%

and improving the completeness rate to 92%, significantly

outperforming traditional systems. The execution time of the

proposed system was reduced to 700 milliseconds,

highlighting its efficiency in large-scale web crawling

applications. In conclusion, the combination of contextual

ontology, fuzzy logic, and LSTM in the proposed model

provides a robust solution for web crawler prediction,

enhancing both performance and accuracy in web content

retrieval. This approach sets a new standard for intelligent

information retrieval and paves the way for further

advancements in web crawling technologies.

REFERENCES

[1] Liu, Q., Yahyapour, R., Liu, H., Hu, Y. (2024). A novel

combining method of dynamic and static web crawler

with parallel computing. Multimedia Tools and

Applications, 83(21): 60343-60364.
https://doi.org/10.1007/s11042-023-17925-y

[2] Althunibat, A., Alzyadat, W., Maidin, S.S., Hnaif, A.,

Alokush, B. (2024). Prediction of accessibility testing

using a generalized linear model for e-government.

Journal of Infrastructure, Policy and Development, 8(7):

3520.

[3] Dhanith, P.J., Saeed, K., Rohith, G., Raja, S.P. (2024).

Weakly supervised learning for an effective focused web

crawler. Engineering Applications of Artificial

Intelligence, 132: 107944.

https://doi.org/10.1016/j.engappai.2024.107944

[4] Hu, S. (2024). Research on influencing factors of

pharmaceutical e-commerce sales based on web crawler

and support vector machine. Transactions on Computer

Science and Intelligent Systems Research, 4: 48-59.

[5] Sadjere, E.G., Onyiriuka, E.J., Mbam, J.C., Onyiriuka,

N.P., Ikponmwoba, E.A., Afolabi, S.A. (2024).

Prediction of crime in Nigeria using artificial intelligence.

In Book of Conference, p. 435. University of Benin.

[6] Goel, A., Zhu, J., Netravali, R., Madhyastha, H.V. (2024).

Sprinter: Speeding up high-fidelity crawling of the

modern web. In 21st USENIX Symposium on

Networked Systems Design and Implementation (NSDI

24), pp. 893-906.

[7] Cao, S., Liao, W., Huang, J. (2024). Research on renting

price prediction based on machine learning. In

Proceedings of the 5th Management Science

Informatization and Economic Innovation Development

Conference, MSIEID 2023, Guangzhou, China.

[8] Xinyi, N., Dan, L., Shang, Z. (2024). Analysis and

prediction of tennis players' match performance with

sentiment analysis. In International Conference on

Computer Graphics, Artificial Intelligence, and Data

Processing (ICCAID 2023), pp. 343-349.

https://doi.org/10.1117/12.3026323

[9] Datta, A., Pal, A., Marandi, R., Chattaraj, N., Nandi, S.,

Saha, S. (2024). Efficient air quality index prediction on

resource-constrained devices using TinyML: Design,

implementation, and evaluation. In Proceedings of the

25th International Conference on Distributed Computing

and Networking, Chennai, India, pp. 304-309.

https://doi.org/10.1145/3631461.3631956

[10] Kambli, O., Karande, A., Kanakia, H. (2024). H-index

analysis of research paper using web crawling techniques.

In International Conference on Data Management,

Analytics & Innovation, pp. 521-531. Singapore:

Springer Nature Singapore. https://doi.org/10.1007/978-

981-97-3242-5_35

[11] Zhao, J., Chen, R., Fan, P. (2024). TS-Finder: Privacy

enhanced web crawler detection model using temporal–

spatial access behaviors. The Journal of Supercomputing,

80: 17400-17422. https://doi.org/10.1007/s11227-024-

06133-6

[12] Datta, A., Pal, A., Marandi, R., Chattaraj, N., Nandi, S.,

Saha, S. (2024). Real-time air quality predictions for

smart cities using TinyML. In Proceedings of the 25th

International Conference on Distributed Computing and

Networking, Chennai, India, pp. 246-247.

https://doi.org/10.1145/3631461.3631947

[13] Abdalsalam, M., Li, C., Dahou, A., Kryvinska, N. (2024).

Terrorism group prediction using feature combination

and BiGRU with self-attention mechanism. PeerJ

Computer Science, 10: e2252.

https://doi.org/10.7717/peerj-cs.2252

[14] Duan, C., Ke, W. (2024). Advanced stock price

prediction using LSTM and informer models. Journal of

Artificial Intelligence General science (JAIGS), 5(1):

141-166. https://doi.org/10.60087/jaigs.v5i1.183

[15] Arthy, J., Raja, K. (2024). A study on design,

development and deployment of web crawler algorithms

and their metrics. In 2024 International Conference on

Advances in Data Engineering and Intelligent

Computing Systems (ADICS), Chennai, India, pp. 1-6.

1160

https://doi.org/10.1109/ADICS58448.2024.10533459

[16] De Pascale, D., Cascavilla, G., Tamburri, D.A., Van Den

Heuvel, W.J. (2024). CRATOR a CRAwler for TOR:

Turning Dark Web Pages into Open Source INTelligence.

In Computer Security – ESORICS 2024. ESORICS 2024.

Lecture Notes in Computer Science, pp. 144-161. Cham:

Springer Nature Switzerland.
https://doi.org/10.1007/978-3-031-70890-9_8

[17] Chen, Z. (2024). Comquest: An adaptive crawler for user

comments on the web. Doctoral dissertation, Temple

University. Libraries.

[18] Wang, L., Zhao, Z.C., Weng, Y.C. (2024). Machine

learning in predicting stock indexes: The role of online

stock forum sentiment in MIDAS model. Asia-Pacific

Journal of Accounting & Economics, 31(4): 618-637.

https://doi.org/10.1080/16081625.2023.2215234

[19] Sulayfani, A., Eraslan, S., Yesilada, Y. (2024).

Predicting eye-tracking assisted web page segmentation.

Multimedia Tools and Applications, 1-38.
https://doi.org/10.1007/s11042-024-20202-1

[20] Brahimi, N., Zhang, H., Zaidi, S.D.A., Dai, L. (2024). A

unified spatio-temporal inference network for car-

sharing serial prediction. Sensors, 24(4): 1266.

https://doi.org/10.3390/s24041266

[21] Tang, J., Fang, N., Yang, L., Pei, Y., Wang, R., Ding, D.,

Lu, Y., Xue, G. (2024). CarbonNet: Enterprise-level

carbon emission prediction with large-scale datasets. In

International Conference on Intelligent Computing, pp.

411-422. Singapore: Springer Nature Singapore.
https://doi.org/10.1007/978-981-97-5615-5_33

[22] Chen, Y.J., Chen, Y.M. (2024). Online information-

based product evolution course mining and prediction.

International Journal of Information Technology &

Decision Making, 23(2): 599-627.

https://doi.org/10.1142/S0219622023500244

[23] Liu, J., Chu, N., Wang, P., Zhou, L., Chen, H. (2024). A

novel hybrid model for freight volume prediction based

on the Baidu search index and emergency. Neural

Computing and Applications, 36(3): 1313-1328.
https://doi.org/10.1007/s00521-023-09106-7

[24] Zhang, Z., Jiang, Y. (2024). Research on quality

prediction of resistance spot welding based on

knowledge graph. In International Conference on

Computer Vision, Robotics, and Automation

Engineering (CRAE 2024), 13249: 65-69.

https://doi.org/10.1117/12.3041836

[25] Keller, M.E., Döschl, A., Mandl, P., Schill, A. (2024).

Intelligent algorithm selection for efficient update

predictions in social media feeds. Social Network

Analysis and Mining, 14(1): 164.
https://doi.org/10.1007/s13278-024-01315-9

[26] Meena, K., Chaitra, B. (2024). A novel framework using

deep learning techniques for ragi price prediction in

Karnataka. IEEE Access, 12: 136103-136119.

https://doi.org/10.1109/ACCESS.2024.3455892

[27] Pokharkar, V., Edgaonkar, O., Shinde, A., Nirmal, N.

(2024). Business response prediction based on consumer

behaviour patterns. In 2024 IEEE 9th International

Conference for Convergence in Technology (I2CT),

Pune, India, pp. 1-7.

https://doi.org/10.1109/I2CT61223.2024.10543692

[28] Zhang, J. (2024). A-share trend prediction based on

machine learning and sentiment analysis. Science and

Technology of Engineering, Chemistry and

Environmental Protection, 1(7).

[29] Wang, L., Kim, K. (2024). Analyzing group polarization

through text emotion measurement and time series

prediction: A comparative study across three online

platforms. Measurement: Sensors, 33: 101216.

https://doi.org/10.1016/j.measen.2024.101216

[30] Wang, X., Zong, Y., Zhou, X., Xu, L., He, W., Quan, S.

(2024). Artificial intelligence-powered construction of a

microbial optimal growth temperature database and its

impact on enzyme optimal temperature prediction. The

Journal of Physical Chemistry B, 128(10): 2281-2292.

https://doi.org/10.1021/acs.jpcb.3c06526

1161

