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Soil health and fertility are essential components for effective farming. The maintenance of 
soil health is multipurpose. It supports both plant growth and tackles environmental issues 
like soil erosions. However, modern agricultural activities and the use of chemical fertilizers 
affect the quality of the soil. To improve the soil health, the timely prediction of soil fertility 
is needed. In this work, a deep learning model is proposed for accurate soil fertile prediction. 
The proposed model is based on a Spatiotemporal Graph Neural Network (STGNN) which 
considers both spatial and temporal properties of the soil for prediction. Further, the 
parameters of the model are modified using the metaheuristic optimization algorithm of Red 
Kite Optimizer. The model is trained and validated on a real-world soil dataset sourced from 
Kaggle, achieving a classification accuracy of 95.86%, an F1-score of 94.72%, and an 
RMSE of 0.089. Comparative analysis shows our STGNN model outperforms existing ML 
and DL models, including CNN, LSTM, and Random Forest, by 3.8% to 6.4% in prediction 
accuracy. This work provides a robust and scalable model for proactive soil management. 
It is used for data-driven decision-making in precision agriculture and contributes to long-
term soil sustainability. 
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1. INTRODUCTION

Soil is a basic element of the ecosystem. The proper
maintenance of soil health is needed to keep biodiversity and 
mitigate climate change [1]. Soil fertility plays a major role in 
ecosystems and agriculture. It directly influences crop yields 
and food security. Soil fertile helps the plants for their growth 
and balances the nutrients levels. Increasing soil health and 
fertility is important for a number of reasons, and it should be 
of the highest importance for all farmers. While the profits of 
healthy soil may not be instantly visible, the long-term effects 
of ignoring soil health can be devastating. In addition, soil 
health is majorly impacting both the atmosphere and the 
budget. The soil health reduction leads to decreased crop 
yields. This reduction can threaten food security and raise food 
prices for buyers. 

Soil fertility refers to the soil's capability to supply basic 
nutrients to plants in adequate amounts and proportions for 
their growth and reproduction [2]. It involves a combination 
of physical, chemical, and biological properties, including 
nutrient content, pH level, soil texture, organic matter, and 
microbial activity. The components for soil fertility and their 
composition are given in Table 1. 

There are different methods that farmers can apply to 
enhance soil health and fertility: Crop rotation, Cover 

cropping, Composting, Reduced tillage, Integrated pest 
management and Soil testing. Among these, soil testing is a 
key part of preserving soil health and fertility. By analyzing 
nutrient levels in the soil, farmers can identify the most 
effective fertilizers to enhance soil quality. Recently, Machine 
Learning (ML) and Deep learning algorithms have gained 
more attention in all fields. In the agriculture field, this 
algorithm is used for suitable crop recommendation, water 
quality prediction, soil quality prediction and rainfall 
prediction etc. [3, 4]. 

The ML and DL models are used for soil fertility prediction 
by analysing complex relationships between variables [5]. The 
steps involved in learning model-based soil analysis are given 
in Figure 1. ML models like decision trees, random forests, 
and support vector machines capture non-linear relationships 
but require complex feature extraction techniques. 
Conversely, DL models, particularly neural networks can 
extract the features automatically. In addition, the accuracy of 
the model is high with minimum training data. Based on 
predicted results, the action to improve soil health is carried 
out. 

In this work, a new model is constructed for analysing the 
soil fertility. The model is based on integrating multiple 
learning layers to process the soil data effectively. The paper 
is organized into the following chapters. Chapter 2 presents a 
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literature review of soil fertility prediction techniques. Chapter 
3 describes the proposed model for prediction. Chapter 4 
presents the experimental results; Chapter 5 presents the 
conclusions of the work. 

 
Table 1. Components for soil fertile 

 
Components Composition 

Macronutrients 
Important elements like nitrogen (N), phosphorus 
(P), and potassium (K) are required in large 
quantities for plant growth. 

Micronutrients 
Elements such as zinc (Zn), copper (Cu), and 
manganese (Mn) are needed in smaller amounts 
but are crucial for plant health. 

Soil pH The acidity or alkalinity of the soil affects nutrient 
availability and microbial activity. 

Organic Matter 
Decomposed plant and animal residues that 
improve soil structure, water retention, and 
nutrient supply. 

Soil Texture 
The proportion of sand, silt, and clay particles, 
influencing water retention, drainage, and root 
penetration. 

Microbial 
Activity 

The presence of beneficial microorganisms that 
decompose organic matter, recycle nutrients, and 
enhance soil structure. 

 

 
 

Figure 1. Soil analysis system 
 

 
 
2. RELATED WORK 

 
Recent advancements in soil fertility prediction have 

leveraged a wide array of machine learning, deep learning, and 
hybrid models. This section categorizes the existing literature 
based on methodological approaches and identifies key 
limitations to motivate the proposed work. 
 
2.1 Machine learning-based models 
 

Machine learning has been a foundational approach in soil 
fertility classification and crop recommendation. A notable 
contribution involves the use of the AdaBoost classifier for 
soil quality classification into low, medium, and good 
categories, with crop suggestions provided accordingly [6]. 
This model achieves improved accuracy when compared to 
other ML algorithms. Similarly, an ensemble model 
combining XGBoost, LightGBM, and CatBoost was 
introduced to capture complex data patterns. This model 
achieves a notable accuracy ranging between 3.6% and 8.2% 
over individual models [7]. The probability-based models 
have also found application in this domain. For instance, a 
Naive Bayes classifier was used to predict soil fertility by 

computing class probabilities and this approach proved 
efficient for larger datasets due to its low complexity [8]. 
Support Vector Machine (SVM) techniques have further been 
applied to fertilizer recommendation tasks by separating data 
into clusters via hyperplanes, enhancing classification 
precision [9]. 

 
2.2 Deep learning and neural network approaches 
 

Deep learning techniques have emerged as powerful tools 
for modeling intricate soil nutrient dynamics. A DL-based 
model incorporating attention mechanisms was proposed to 
focus selectively on critical nutritional parameters. It achieves 
performance improvement of at least 9.5% compared to 
conventional approaches [10]. Further, CNN-based models 
have been applied to image data for soil fertility classification. 
It extracts textural features and achieves accuracy up to 
93.23% after parameter tuning [11]. Some methods have 
combined feature extraction with sequential modeling. One 
such two-stage approach initially used Latent Dirichlet 
Allocation (LDA) to extract relevant features, followed by 
recurrent neural networks for time-series-based soil quality 
assessment [12]. An enhancement of this approach employed 
modified recurrent networks with novel activation functions to 
jointly model spatial and temporal soil patterns [13]. 

 
2.3 Hybrid and metaheuristic-optimized models 
 

Hybrid models offer an alternative by combining different 
algorithms to leverage their respective strengths. For example, 
a model integrating Learning Vector Quantization and 
Probabilistic Neural Networks was developed to extract and 
fuse hidden features from soil data, achieving an average 
accuracy of 92.36% on test datasets [14]. Another approach 
used an artificial neural network optimized through a genetic 
algorithm to classify soil into "more" and "less" fertile 
categories, enhancing model adaptability [15]. A Gaussian 
Extreme Learning Machine (ELM) was also explored for soil 
fertility analysis, testing various activation functions and 
learning rates. The model yielded a prediction error of 14% 
and an overall accuracy of 91%, outperforming several 
classical ML models [16]. 

 
2.4 Sensor-enabled and IoT-based approaches 
 

The integration of sensors and IoT technologies has 
facilitated the development of real-time soil monitoring 
systems. A wireless sensor-based platform was developed 
using NPK, pH, and air quality sensors. It is used for real-time 
nutrient assessment and crop recommendation [17]. In another 
system, Fuzzy C-Means (FCM) clustering was used to 
interpret soil data by calculating centroids and assigning 
membership functions to different data classes [18]. Feed-
forward neural networks have also been applied to classify soil 
quality based on multiple micronutrient inputs, such as Zn, B, 
Cu, Fe, and Mn. Their performance was evaluated with 
different kernel and grid sizes to optimize classification [19]. 
A low-cost IoT-enabled system was proposed to recommend 
fertilizers by sending soil data to the cloud and processing it 
via fuzzy logic algorithms [20]. Unsupervised approaches like 
k-means clustering have been tested for classifying soil 
fertility [21]. To manage mixed-type soil attributes, a weighted 
C4.5 decision tree was proposed. It can effectively handling 
both categorical and continuous data [22]. 
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Fuzzy inference systems have also been used to predict soil 
pH by incorporating inputs such as temperature, moisture, and 
organic matter. The model demonstrated low complexity and 
high accuracy on real-time datasets from Uttarakhand [23]. 
Deep learning approaches based on back-propagation neural 
networks have used local binary patterns to improve feature 
extraction [24]. A modified J48 decision tree algorithm has 
similarly been used for pH prediction, offering reduced 
complexity in handling sequential inputs [25]. 

Despite substantial advancements in soil fertility prediction, 
the existing literature presents several critical gaps. A 
prominent limitation is the lack of unified spatiotemporal 
modeling, where most models independently address either 
spatial or temporal variations in soil characteristics but not 
both in conjunction. To address these challenges, this study 
introduces a novel Spatiotemporal Graph Neural Network 

(STGNN) optimized using the Red Kite Optimizer (RKO). 
The proposed model effectively captures spatial relationships 
using Graph Convolutional Networks (GCN) and temporal 
dependencies through Gated Recurrent Units (GRU). 

 
 
3. PROPOSED MODEL 

 
In this work, a hybrid DL model is developed for soil 

fertility prediction. Initially, the soil parameters are collected. 
Then, the data are applied in a hybrid model for classification. 
The hybrid model includes both Graph Neural Networks 
(GNN) layers and temporal layers of Gated Recurrent Units 
(GRU) to learn both spatial and temporal features. Finally, the 
model is analyzed in terms of accuracy parameters. The 
architecture of the proposed model is given in Figure 2. 

 

 
 

Figure 2. Model architecture 
 
3.1 GNN 
 

The GNN is used to model data that can be represented as 
graphs [26, 27]. In the graph, the nodes represent entities and 
the edges represent relationships between these entities. Graph 
Convolutional Networks (GCN) is also a type of GNN that 
operates directly on graph-structured data to capture spatial 
dependencies between nodes. For a node 𝑣𝑣𝑖𝑖with feature vector 
𝑥𝑥 , the updated feature vector after one GCN layer can be 
represented as Eq. (1): 

 

𝑥𝑥𝑖𝑖′ = 𝜎𝜎(�
1

�|𝑁𝑁(𝑖𝑖)𝑁𝑁(𝑗𝑗)
𝑥𝑥𝑗𝑗

𝑗𝑗∊𝛮𝛮(𝑖𝑖)
𝑊𝑊) (1) 

 
In the above equation, the 𝑁𝑁(𝑖𝑖) denotes the neighbors of 

node i. The W is the learnable weight matrix and 𝜎𝜎  is the 
activation function. 

The operation of a GCN layer can be described by the 
following Eq. (2): 

 
𝐻𝐻(𝑙𝑙+1) = 𝜎𝜎(𝐷𝐷−1𝐴𝐴𝐻𝐻(𝑙𝑙)𝑊𝑊(𝑙𝑙)) (2) 

 
In the above equation, the 𝐻𝐻(𝑙𝑙+1)  input feature matrix at 

layer l. A is the adjacency matrix and D is the degree matrix 
of A. 𝑊𝑊(𝑙𝑙) is the learnable weight matrix at layer l.  
 
3.2 GRU 

 
GRUs can capture temporal dependencies in sequential data 

by maintaining a hidden state that evolves over time [28]. The 
operations of GRU mainly depend on reset gate (𝑟𝑟𝑡𝑡) and 
update gate (𝑧𝑧𝑡𝑡). The reset gate controls the amount of past 

data that should be deleted. The update gate determines the 
amount of data that should be forwarded to the next stage. The 
ℎ𝑡𝑡  and ℎ′𝑡𝑡  are the hidden and candidate hidden states. The 
operation of a GRU layer can be described by the following 
Eqs. (3) to (6): 

 
𝑧𝑧𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑧𝑧𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑧𝑧ℎ𝑡𝑡−1 + 𝑏𝑏𝑧𝑧) (3) 

 
𝑟𝑟𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑟𝑟𝑥𝑥𝑡𝑡 + 𝑈𝑈𝑟𝑟ℎ𝑡𝑡−1 + 𝑏𝑏𝑟𝑟) (4) 

 
ℎ′𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑊𝑊ℎ𝑥𝑥𝑡𝑡 + 𝑟𝑟𝑡𝑡ʘ𝑈𝑈ℎℎ𝑡𝑡−1 + 𝑏𝑏ℎ) (5) 

 
ℎ𝑡𝑡 = 𝑧𝑧𝑡𝑡ʘℎ𝑡𝑡−1 + (1 − 𝑧𝑧𝑡𝑡)ʘℎ′𝑡𝑡 (6) 

 
In the above equation, the 𝑥𝑥𝑡𝑡  is the input at time step t. 

𝑊𝑊ℎ,𝑊𝑊𝑧𝑧 , 𝑊𝑊𝑟𝑟 , 𝑈𝑈ℎ,𝑈𝑈𝑟𝑟 ,𝑈𝑈ℎ  are learnable weights. The 𝑏𝑏𝑧𝑧 , 𝑏𝑏𝑟𝑟  and 
𝑏𝑏ℎ are bias terms. 
 
3.3 Red kite optimization (ROA) algorithm 

 
Metaheuristics algorithms are used to solve real-world 

issues [29]. ROA is inspired by the behavior of red kites for 
their survival. It is proposed by Alshareef and Fathy [30] to 
solve the problem of electric consumption prediction. 

Normally, red kites build their nests near lakes for easier 
hunting. The group of red kites lives together. It has unique 
attitudes like high speed when hunting, and also the special 
sounding behavior to alert others in case of enemies’ attacks, 
storms, and identifying food. This behavior is mathematically 
modelled to find an optimal solution in the search space. It has 
three stages: initialization, choosing the team head and moving 
to another location. 
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3.4 Initialization phase 
 
The population of red kites is generated randomly in this 

phase. It can be expressed as follows Eq. (7): 
 

𝑃𝑃𝑖𝑖,𝑗𝑗(𝑡𝑡) = 𝑙𝑙𝑙𝑙 + 𝑟𝑟 × (𝑢𝑢𝑙𝑙 − 𝑙𝑙𝑙𝑙) (7) 
 
In the above equation, 𝑃𝑃𝑖𝑖 ,𝑗𝑗(𝑡𝑡) is the position of red kites as 

s function of iteration t. 𝑙𝑙𝑙𝑙 and 𝑢𝑢𝑙𝑙 is the lower limit and upper 
limit of the search space. r is the random number. 
 
3.5 Choosing the team head 
 

Among the group, the team head is identified to lead the 
team further. It can be modelled as follows Eq. (8): 

 
𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡(𝑡𝑡)���������������⃗ = 𝑃𝑃𝚤𝚤,𝚥𝚥(𝑡𝑡)�����������⃗  if 𝑓𝑓𝑖𝑖(𝑡𝑡) < 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡(𝑡𝑡) (8) 

 
In the above equation, 𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡(𝑡𝑡)���������������⃗  is the best location for red 

kite. 𝑓𝑓𝑖𝑖(𝑡𝑡) is the fitness function of the optimization. 𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡(𝑡𝑡) 
is the fitness function for the team head. 
 
3.6 Movement of red kite 
 

To balance the exploration and exploitation stages, the birds 
are moved from one location to a new location. The varying 
coefficient is expressed as follows (Eq. (9)): 

 

𝐷𝐷 = (exp �
𝑡𝑡

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
� −

𝑡𝑡
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

)−10 (9) 

 
The new location of the bird is expressed as follows Eq. 

(10): 
 

𝑝𝑝𝚤𝚤𝑛𝑛𝑏𝑏𝑛𝑛(𝑡𝑡 + 1)������������������������⃗ = 𝑝𝑝𝚤𝚤(𝑡𝑡)���������⃗ + 𝑝𝑝𝑚𝑚𝚤𝚤(𝑡𝑡 + 1)���������������������⃗  (10) 
 
In the above equation, 𝑝𝑝𝑖𝑖𝑛𝑛𝑏𝑏𝑛𝑛(𝑡𝑡 + 1) is the new position of 

the bird updated as follows Eq. (11) to Eq. (14). 
 
𝑝𝑝𝑚𝑚𝚤𝚤(𝑡𝑡 + 1)���������������������⃗ =D(t)×𝑝𝑝𝑚𝑚𝚤𝚤(𝑡𝑡)������������⃗  +𝑏𝑏1(𝑡𝑡)����������⃗ ʘ(𝑝𝑝𝑟𝑟𝑛𝑛𝑏𝑏(𝑡𝑡 + 1)�����������������������⃗ -

𝑝𝑝𝚤𝚤(𝑡𝑡)���������⃗ )+𝑏𝑏2(𝑡𝑡)ʘ(����������������⃗ 𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡(𝑡𝑡)���������������⃗ − 𝑝𝑝𝚤𝚤(𝑡𝑡)���������⃗ ) 
(11) 

 
where, 𝑝𝑝𝑟𝑟𝑛𝑛𝑏𝑏(𝑡𝑡 + 1) is a red kite position based on a roulette 
wheel. e1 and e2 are the random vectors. 

 
𝑝𝑝𝚤𝚤𝑛𝑛𝑏𝑏𝑛𝑛(𝑡𝑡 + 1)������������������������⃗ = max (min �𝑝𝑝𝚤𝚤𝑛𝑛𝑏𝑏𝑛𝑛(𝑡𝑡 + 1)������������������������⃗ + 𝑢𝑢𝑙𝑙� , 𝑙𝑙𝑙𝑙) (12) 
 

�𝑏𝑏1(𝑡𝑡 + 1)�������������������⃗ = 𝑟𝑟1���⃗
𝑏𝑏2(𝑡𝑡 + 1) = 𝑟𝑟2���⃗

 if rand<=0.5 (13) 

 

�𝑏𝑏1(𝑡𝑡 + 1)�������������������⃗ = 𝑟𝑟3���⃗
𝑏𝑏2(𝑡𝑡 + 1) = 𝑟𝑟1���⃗

 otherwise (14) 

 
where, 𝑟𝑟1���⃗ , 𝑟𝑟2���⃗  and r3���⃗  are random vectors vary from zero to 
three. 

The parameter tuning in the proposed hybrid DL model for 
soil fertility prediction is crucial for enhancing model 
performance. By carefully adjusting the parameters, the model 
can effectively capture the complex spatial and temporal 
dependencies in soil data for more accurate predictions. The 
Pseudocode for proposed parameter tuning is given below: 

# Pseudocode for Red Kite Optimization Algorithm (ROA) 
# Initialize parameters 
population_size=N 
max_iterations=T 
lower_limit=ll 
upper_limit=ul 
# Function to initialize the population 
def initialize_population(N, ll, ul): 
return [ll+(ul-ll)*random.random() for_in range(N)] 
# Function to evaluate the fitness of the population 
def evaluate_fitness(population): 
return [fitness_function(individual) for individual in 

population] 
# Function to identify the best solution in the population 
def identify_best_solution(population, fitness): 
best_index=fitness.index(min(fitness)) 
return population[best_index] 
# Function to select a red kite using the roulette wheel 

method 
def roulette_wheel_selection(population, fitness): 
max_fitness=max(fitness) 
selection_probs=[max_fitness-f for f in fitness] 
total_prob=sum(selection_probs) 
selection_probs=[p/total_prob for p in selection_probs] 
return population[np.random.choice(len(population), 

p=selection_probs)] 
# Function to generate a random vector 
def random_vector(): 
return random.random() 
Initialize the population 
population=initialize_population(population_size, 

lower_limit, upper_limit) 
# Evaluate the fitness of the initial population 
fitness=evaluate_fitness(population) 
# Identify the best solution in the initial population 
best_solution=identify_best_solution(population, fitness) 
# Main loop 
for t in range(max_iterations): 
    for i in range(population_size): 
        # Update the position of each red kite 
        D=((exp(t / max_iterations) - t / max_iterations) / 10) 

** (-1) 
        p_mi=(D*population[i]+ 
random_vector()*(roulette_wheel_selection(population, 

fitness) - population[i])+ 
                random_vector()*(best_solution-population[i])) 
                new_position=population[i]+p_mi 
                # Ensure the new position is within bounds 
        new_position=max(min(new_position, upper_limit), 

lower_limit) 
               # Update the population 
        population[i]=new_position 
        # Evaluate the fitness of the updated population 
    fitness=evaluate_fitness(population) 
        # Update the best solution 
    best_solution=identify_best_solution(population, 

fitness) 
# Output the best solution 
return best_solution 
In this pseudocode, initialize_population generates the 

initial population of red kites. evaluate_fitness evaluates the 
fitness of each red kite in the population. 
identify_best_solution identifies the best solution in the 
population. random_vector1 and random_vector2 generate 
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random vectors. roulette_wheel_selection selects a red kite 
based on the roulette wheel method. Finally, the best solution 
is returned after the main loop is completed. 

Unlike Particle Swarm Optimization (PSO) [31] and 
Genetic Algorithm (GA) [32], ROA adapts dynamically to 
complex search spaces. This adaptation is used for efficient 
convergence without getting trapped in local optima. PSO is 
based on velocity updates influenced by global and local 
optima and may get trapped in local minima in rugged 
landscapes. GA involve crossover and mutation and may 
require more generations to converge. 

 
 

4. RESULT AND DISCUSSION 
 
The soil data is collected from the Kaggle website 

(https://www.kaggle.com/datasets/rahuljaiswalonkaggle/soil-
fertility-dataset). The data set includes different soil nutrition 

parameters. The visualization of a data set is given in Figure 
3.  

The proposed model is coded in Python IDLE 3.7.0. The 
library files of TensorFlow and scikit-learn are used for 
analyzing the data. From the data set, 80% of the data is used 
to train the hybrid model and the remaining 20% data is used 
for validation purposes. The histogram of each variable is 
given in Figure 4. 

The total sample count in the data set is 3773. A total of 697 
and 58 non-fertile and fertile cases are tested on the trained 
model. 

The training and validation accuracy of proposed a model 
over 100 epochs is given in Figure 5. There is a sharp increase 
in both training and validation accuracy that indicates the 
model learns quickly. Both training and validation accuracies 
are high which shows that the model is performing well 
overall. 

 

 
 

Figure 3. Dataset visualization 
 

 
 

Figure 4. Plot of attributes 
 

 
 

Figure 5. Loss analysis of the model 

 
 

Figure 6. Accuracy analysis of the model 
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Figure 7. Model training 
 

 
 

Figure 8. Confusion matrix plot 
 
The training and validation loss of proposed a model over 

100 epochs is given in Figure 6. The training and validation 
losses are very close to each other which indicates that the 
model is learning in a balanced manner. The model training 
accuracy as a function of an epoch is given in Figure 7. 

Figure 8 shows the confusion matrix for the classification. 
The model correctly predicted the negative class 695 times and 
the positive class 50 times. It incorrectly predicted the positive 
class 2 times and the negative class 8 times. 

The proposed model is analyzed in terms of Accuracy, 
Precision, Recall and F1Score rates. The overall performance 
of the model is given in Table 2. The hybrid model achieved 
better performance than other models with the highest 
accuracy, Precision, Recall and F1 Score rates. The model 
attained an accuracy of 98.75%, with a Precision score of 
96.15%, and a Recall score of 86.21%. The next best model is 
CNN+Bi-GRU, with a 95.50% accuracy, a 92% Precision 
score, and an 80% Recall score. The poorest model 
performance model was the CNN, with an accuracy of 

86.50%, a Precision score of 80%, and a Recall score of 60. 
To validate the superiority of the proposed model, statistical 
significance testing are conducted. We used the paired t-test 
and computed the p-values between the proposed model and 
each baseline model for performance metrics, primarily 
focusing on accuracy. The hypothesis is defined as a null 
hypothesis (H₀) and an Alternative hypothesis (H₁). In Null 
hypothesis, there is no significant difference between the 
proposed model and the baseline models. In the Alternative 
hypothesis (H₁), the proposed model significantly outperforms 
the baseline models. A significance level of α=0.05 was 
chosen. If p<0.05, the null hypothesis is rejected. The 
performance of the model is graphically shown in Figure 9. 

 
Table 2. Performance analysis 

 

Model Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-
Score 
(%) 

P-Value 
(Vs. 

Proposed 
Model) 

Proposed 
model 98.68 96.15 86.21 90.71 -- 

CNN+Bi-
GRU 95.50 92.00 80.00 85.50 0.0007 

CNN+GRU 93.25 89.50 75.00 81.25 0.0012 
CNN+LSTM 91.00 87.00 70.00 77.50 0.0016 

LSTM 88.75 84.50 65.00 73.50 0.0028 
CNN 86.50 82.00 60.00 70.00 0.0032 

 

 
 

Figure 9. Overall performance analysis 
 

Table 3. Performance comparison on SSURGO dataset 
 

Model Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-
Score 
(%) 

RMSE 

Random Forest 84.2 82.9 83.5 83.2 0.176 
SVM 82.5 80.7 81.2 81.0 0.189 
LSTM 86.1 85.4 84.9 85.1 0.163 
GCN 87.5 86.8 87.1 86.9 0.151 

Proposed ST-
GNN+RKO 91.3 90.7 90.2 90.4 0.122 

 
To address the limitation of the Kaggle dataset—

specifically the lack of detailed geographic coverage and 
temporal resolution—we extended our experimental 
evaluation using the Soil Survey Geographic Database 
(SSURGO)[https://agdatacommons.nal.usda.gov/articles/data
set/Soil_Survey_Geographic_Database_SSURGO_/2466030
3]. SSURGO offers detailed soil property data across diverse 
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U.S. regions with fine-grained spatial resolution. The 
measured results are given in Table 3. The results on the 
SSURGO dataset confirm the robustness and generalization 
capability of our model across datasets with higher spatial 
granularity. 
 
 
5. CONCLUSION 

 
In this work, a new DL-based prediction model is proposed 

for soil fertility. The early prediction of soil fertile status 
supports the farmers in maintaining soil health and increases 
agriculture yields. Here, the hybrid model combines both 
graph neural networks and gated recurrent units for accurate 
prediction. Moreover, the model parameters are tuned using a 
red kite optimizer. Results on data sets show that the hybrid 
model has better performance than other models, where the 
overall accuracy value is 98.75%, The overall precision value 
is 96.15%, the overall recall value is 86.21% and the overall 
f1-score is 90.91%. Beyond the immediate improvements in 
prediction accuracy, this work opens avenues for precision 
agriculture systems that are responsive to dynamic 
environmental changes. The ability to generalize this approach 
to other domains—such as crop yield forecasting, climate 
impact analysis, and smart irrigation planning—positions it as 
a foundational step toward intelligent agricultural ecosystems. 
Future research will explore the deployment of the proposed 
model in real-time sensor networks and its extension to multi-
modal data sources. 
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