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The interaction between cyber-physical systems (CPS) and 5G-enabled Internet of Things 
(IoT) networks introduce critical challenges related to security, resource efficiency, and 
simulated data threat detection. Existing security mechanisms struggle to adapt to the 
dynamic and heterogeneous nature of these network infrastructures. To address these 
challenges, this study proposes a Firefly Optimization Algorithm (FOA) inspired by swarm-
based firefly intelligence to enhance security, resource allocation, and energy efficiency in 
CPS-IoT networks. The proposed approach integrates an enhanced attraction-based motion 
mechanism and an adaptive mutation strategy to dynamically adjust security parameters, 
optimizing intrusion detection, anomaly mitigation, and encryption complexity. Empirical 
evaluations demonstrate that FOA outperforms existing methods in terms of detection 
accuracy, latency reduction, and computational efficiency, ensuring a robust and adaptive 
security framework for next-generation CPS systems. This research contributes to the 
development of intelligent, adaptive, and sustainable security solutions for 5G-enabled IoT 
ecosystems. 
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1. INTRODUCTION

Cyber-physical systems (CPS) are widely used for
automating tasks enabling even basic hardware to function as 
smart devices. These devices typically have low power 
consumption, limited storage capacity, and minimal 
computational capability. The evolution of electronic systems 
has led to a new generation that integrates physical structures 
with computational methods. A computational method 
consists of a set of instructions that execute various operations 
on a physical system [1]. It includes network-connected 
computers that monitor and control different physical 
processes within a device. This automation reduces human 
intervention, minimizing errors and enhancing system 
efficiency. Examples of CPS applications include smart 
automobiles, smart homes, and intelligent devices. In the 
context of CPS, the Internet of Things (IoT) is driving 
advancements across multiple industries, contributing to the 
development of smart cities and intelligent residences [2]. 

CPS has become feasible due to internet connectivity and 
advancements in communication technologies, impacting 
industries ranging from manufacturing to research and 
development. While earlier generations of electrical devices 
featured automated processes, modern CPS systems are more 
dynamic, goal-oriented, and internet-connected, allowing for 
continuous interaction with devices from any location [3]. In a 
smart home system, automated air conditioning units can sense 
external temperatures and adjust accordingly. These systems 
can detect human presence, monitor environmental conditions, 
and analyse data to optimize room temperature settings for 

user comfort. As a result, CPS enhances decision-making 
capabilities in simulated data, making the system more 
adaptive and intelligent [4]. Figure 1 illustrates the 
components of CPS, detailing their implementation across 
various applications. The CPS architecture consists of three 
primary components: Things (Devices and Sensors); 
Applications & Data Analysis; and Manufacturing & 
Infrastructure. These components define the structural and 
functional aspects of CPS, enabling efficient automation and 
intelligent control across multiple domains [5]. 

Figure 1. Components of CPS 
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Connected objects or artifacts collect information about 
their environment. Depending on their nature, these objects 
may operate in either static or dynamic contexts. Static objects 
do not change their behavior in response to environmental 
variations; strictly follow predefined instructions. Dynamic 
objects are designed to adapt to simulated data conditions 
allowing them to modify their operations accordingly [6]. The 
two fundamental requirements for these objects are the ability 
to collect data and transmit it to CPS applications for further 
processing. Beyond providing processing power and data 
storage, CPS component enables the integration of various 
smart processing methods such as databases, cloud storage, 
and other similar technologies [7]. Analytical and software 
applications leverage CPS-generated data to support informed 
decision-making, while also offering users enhanced features, 
functionalities, and capabilities. One of the most advanced 
connectivity solutions in this domain is 5G, which aims to 
achieve ultra-low latency, high reliability, flexibility, and 
security. In terms of manufacturing efficiency, production 
system adaptability, and reconfiguration, 5G is expected to 
drive smart manufacturing facilities and other industrial 
settings [8]. 

A key challenge in this transformation is the need for deep 
integration of Operational Technology (OT) and Information 
Technology (IT). This makes the transition to Industry 4.0 
(I4.0) for a specific business, region, or factory a complex, 
multidisciplinary task. Numerous frameworks and approaches 
have been proposed to support transition, primarily by 
developing roadmaps based on technological readiness and 
digitization levels [9]. The primary goal of these frameworks 
is to assist industrial manufacturing companies in assessing 
their digital maturity levels and guiding their digitalization 
strategies through structured evaluation stages at each phase 
of the process. These models emphasize that reliable wireless 
communication is the key enabler of system interconnectivity 
ensuring seamless integration of all manufacturing resources 
[10]. This facilitates the implementation of both OT and 
advanced IT solutions such as mobile autonomous robots, 
matrix manufacturing, big data, and Artificial Intelligence 
(AI). While some frameworks consider communication-
specific features, particularly in relation to industrial 
application requirements, they often lack detailed insights into 
how specific wireless communication methods perform in 
particular industrial environments. Wi-Fi remains the 
dominant connectivity choice in manufacturing settings; the 
wireless landscape consists of multiple technologies with 
diverse characteristics, requiring careful selection based on 
industry-specific demands [11]. 

Wi-Fi operates on unlicensed frequency bands, where the 
electromagnetic spectrum is shared with other networks. As a 
result, its efficiency and reliability can vary significantly 
depending on the specific environment and application 
scenario. Under such conditions, high dependability and 
Quality-of-Service (QoS) requirements may not always be 
met, as network access for transmissions requires contention-
based competition [12]. With the initial commercial 5G 
networks now deployed for industrial applications is crucial to 
ensure that the full potential of 5G is properly evaluated and 
leveraged within manufacturing environments. 5G promises 
higher reliability and improved efficiency; however, there is a 
noticeable lack of comprehensive use case analyses, 
performance evaluations, and recommendations regarding the 
integration of wireless technologies into various I4.0 processes 

and broader digital transformation initiatives. To enhance the 
security of IoT networks against cyberattacks, the 
development of Intrusion Detection Systems (IDS) as an 
additional line of defense is essential. Machine learning (ML)-
based Intrusion Detection Systems have been widely studied 
to protect IoT devices from unauthorized access [13]. Several 
research efforts have explored intrusion detection techniques 
for security systems, Wireless Sensor Networks (WSNs), ad 
hoc networks, and cloud-based IoT environments. The unique 
characteristics of IoT ecosystems present challenges for 
existing intrusion detection methods make insufficient or 
inefficient in safeguarding connected devices. Some of these 
challenges include limited bandwidth, energy constraints, 
diverse device types, and the pervasive nature of IoT networks 
[14]. ML has gained prominence for its ability to detect 
security threats in IoT networks effectively. Existing network 
monitoring techniques are often unsuitable for WSNs due to 
their restricted computational and transmission capabilities. 
ML models for traffic analysis are being extensively 
researched for WSN-based IDS [15]. As WSNs continue to 
expand in size and user base generate high-dimensional traffic 
data making it difficult for existing ML models to perform 
feature extraction and maintain detection accuracy. These 
limitations may fail to address the specific security 
requirements of WSN environments. By leveraging ML-based 
approaches, computational overhead can be reduced, and a 
better understanding of traffic anomalies can be achieved 
ultimately improving IDS accuracy compared to existing 
methods [16]. 

1.1 Problem statement 

The integration of CPS with 5G-enabled IoT networks has 
enabled simulated data exchange and low-latency 
communication across domains such as smart cities, 
healthcare, and industrial automation. The large-scale 
deployment of heterogeneous and resource-constrained 
devices increases exposure to cyber threats, rendering existing 
static security measures ineffective. Key challenges include 
secure data transmission, simulated data threat detection, and 
lack of adaptive security frameworks. To ensure 
confidentiality, integrity, and availability in these critical 
infrastructures, there is a pressing need for intelligent, 
scalable, and energy-efficient security architectures that 
combine encryption, access control, and AI-driven detection 
techniques. 

1.2 Motivation 

CPS plays a vital role in mission-critical applications, where 
security failures can lead to severe consequences. The 
convergence of CPS and 5G-IoT enables benefits like massive 
MTC, URLLC, and advanced data processing but also opens 
avenues for advanced persistent threats and unauthorized 
access. The dynamic nature of these systems demands 
adaptive solutions beyond existing security models. 
Innovations such as blockchain-based authentication, AI-
powered anomaly detection, and quantum-resistant encryption 
are essential to safeguard sensitive data and maintain trust. 
Developing such a robust framework is crucial to ensuring 
reliable, secure, and uninterrupted operation of next-
generation intelligent environments.
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2. RELATED WORKS 
 
The deployment of small cells is pivotal for enabling ultra-

dense 5G networks, particularly in intelligent medical 
applications that demand high data rates (e.g., remote surgeries 
ranging from 137 Mbps to 1.6 Gbps) [17]. Small cells 
femtocells, picocells, and microcells are low-power nodes 
with coverage areas from a few meters to a few kilometers. 
Femtocells, suitable for hospitals or homes, enhance signal 
quality and availability. Picocells extend network coverage in 
confined areas, while microcells support up to 2,000 users 
across a 2 km radius [18]. Compared to macrocells (20-mile 
coverage), small cells offer improved spectral efficiency and 
localized service shown in Figure 2. 

 

 
 

Figure 2. 5G based smart healthcare architecture 
 
A dual-layer architecture where macrocell base stations 

manage control signaling at lower frequencies and small cells 
handle high-speed data at higher frequencies enables efficient 
and flexible 5G coverage. This separation between the user 
and control planes allows User Equipment (UE) to maintain 
simultaneous connectivity to both layers, facilitating high-
throughput and mobility [19, 20]. CPS and Industry 4.0 
environments face complex operational risks that require 
multi-level risk assessment strategies. Robust security 
frameworks integrating encrypted communications have been 
proposed for critical infrastructures and smart cities [21]. 
Studies suggest adapting transmission characteristics, such as 
beam-shaping and block length, to optimize covert 
communication efficiency while minimizing risk exposure. 
With increasing automation and remote surveillance, there is 
a growing demand for reliable authentication protocols to 
ensure system integrity [22]. 

Energy consumption remains a critical limitation in IoT, 
given the battery-constrained nature of many devices. Several 
works emphasize the importance of energy-efficient protocols, 
including optimized routing and node placement [23]. Cross-
layer optimization and power-aware routing strategies have 
been proposed to minimize energy use while maintaining 
reliable communication. Lightweight encryption and low-

power authentication mechanisms have been introduced to 
enhance security without significantly increasing 
computational overhead [24]. Security in 5G-enabled IoT and 
CPS networks has garnered significant attention. Traditional 
approaches use Intrusion Detection Systems, cryptographic 
algorithms, and authentication mechanisms. To improve trust 
and decentralization, blockchain-based identity verification 
and distributed trust management platforms have been 
proposed [25]. 

Advanced methods such as federated learning and AI-based 
anomaly detection preserve privacy while enabling simulated 
data threat response. Deep reinforcement learning (DRL) 
algorithms have shown promise in adapting to evolving cyber 
threats. Meanwhile, SDN and Zero Trust Architectures (ZTA) 
are gaining traction for enabling network segmentation and 
precise access control [26, 27]. Emerging concerns about 
quantum threats have led to the exploration of Post-Quantum 
Cryptography (PQC), ultra-lightweight encryption, and 
homomorphic encryption to secure resource-constrained 
devices [28]. Despite progress, scalability, latency, and 
hardware limitations remain challenges, underlining the need 
for integrated, low-latency, and energy-aware security 
frameworks in future CPS deployments. 
 
3. MATERIALS AND METHODS 
 
3.1 Problem formulation for secure CPS in 5G-enabled IoT 
networks  
 

CPS in 5G-enabled IoT networks face significant security 
threats due to their distributed nature, heterogeneous devices, 
and simulated data communication requirements. Existing 
security mechanisms struggle with high latency, scalability, 
and dynamic attack surfaces. The problem can be 
mathematically formulated as follows: 

Network model: Let N denote the number of lot devices in 
the CPS network, where each device 𝐷𝐷𝑥𝑥(𝑥𝑥 = 1,2, … ,𝑁𝑁) 
connected via a SG-enabled infrastructure. The 
communication between devices and edge servers follows:  

 
𝐶𝐶𝑥𝑥,𝑦𝑦(𝑡𝑡) = 𝐵𝐵. 𝑙𝑙𝑙𝑙𝑙𝑙2(1 + 𝑆𝑆𝑁𝑁𝑆𝑆𝑥𝑥,𝑦𝑦(𝑡𝑡)) (1) 

 
where, 𝐶𝐶𝑥𝑥,𝑦𝑦(𝑡𝑡) is the channel capacity between device x and 
server y at time t.B is the channel bandwidth. 𝑆𝑆𝑁𝑁𝑆𝑆𝑥𝑥,𝑦𝑦(𝑡𝑡) is the 
Signal-to-Noise Ratio (SNR) between device x and server y.  

Attack model: Security threats in CPS can be classified into 
confidentiality, integrity, and availability attacks. The 
probability of a successful attack 𝑃𝑃attack  can be expressed as:  

 
𝑃𝑃attack = 

1 − (1 − 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)(1 − 𝑃𝑃𝑑𝑑𝑑𝑑𝑖𝑖𝑑𝑑_𝑖𝑖𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖)(1 − 𝑃𝑃𝐷𝐷𝐷𝐷𝑖𝑖𝐷𝐷) (2) 

 
where, 𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  represents the probability of unauthorized 
access.𝑃𝑃𝑑𝑑𝑑𝑑𝑖𝑖𝑑𝑑_𝑖𝑖𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖  represents the probability of malicious 
data modification. 𝑃𝑃𝐷𝐷𝐷𝐷𝑖𝑖𝐷𝐷  represents the probability of a 
Distributed Denial-of-Service (DDoS) attack.  

Security Optimization Objective: The security mechanism 
must optimize detection rate 𝐷𝐷𝑖𝑖  minimize false positives FP, 
and maintain a low energy consumption E. The objective 
function is formulated as:  

 
max
𝐷𝐷

[𝛼𝛼𝐷𝐷𝑖𝑖 − 𝛽𝛽𝛽𝛽𝑃𝑃 − 𝛾𝛾𝛾𝛾] (3) 
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where, S is the security mechanism. 𝛼𝛼 , 𝛽𝛽 , 𝛾𝛾 are weighting 
factors for accuracy, false positives, and energy consumption, 
respectively.  

Secure Data Transmission: To ensure secure data 
transmission, encryption is applied using an optimized 
cryptographic function 𝛾𝛾𝑖𝑖𝑡𝑡𝑠𝑠:  

 
𝛾𝛾𝑖𝑖𝑡𝑡𝑠𝑠 = 𝐻𝐻(𝑀𝑀) ⊕𝐾𝐾 (4) 

 
where, H(M) is the cryptographic hash of message M. K is the 
secret key. ⊕ represents the XOR operation.  

Resource Allocation for Secure CPS: The resource 
allocation problem for ensuring security while minimizing 
latency L is formulated as: 

 

min
𝑅𝑅

�(𝑊𝑊𝑥𝑥. 𝐿𝐿𝑥𝑥 + 𝜆𝜆𝑆𝑆𝑥𝑥)
𝑁𝑁

𝑥𝑥=1

 (5) 

 
where, 𝑊𝑊𝑥𝑥 is the weight factor for latency-sensitive devices; 
𝐿𝐿𝑥𝑥 is the latency for device x, 𝜆𝜆 is the security weight factor; 
𝑆𝑆𝑥𝑥 represents the security level of device x.  

This formulation provides a foundation for designing robust 
security mechanisms in 5G-enabled CPS by optimizing 

detection accuracy, resource utilization, and secure 
communication while mitigating security risks effectively. 

 
3.2 Dataset description 
 

A variety of variables that record network traffic in 
simulated data, device behavior, and security-related factors 
make up the dataset for Secure CPS in 5G-enabled IoT 
Networking shown in Table 1. It contains device-specific 
information like Device ID and Device Type provide activity 
accountability and temporal information (Timestamp) to 
monitor occurrences. Analysis of interaction effectiveness and 
the detection of possible cyber threats are aided by network-
related characteristics such as network activity, protocol size, 
procedure, delay, nervousness, and loss of packets. CPU 
Usage, Memory Usage, and Battery Level offer valuable 
information on how much computing power IoT devices are 
used for identifying anomalous activity brought on by 
hardware malfunctions or cyberattacks. The dataset includes 
an assault Type to categorize different safety hazards and an 
Anomaly Flag to indicate if a recorded occurrence is typical or 
indicative of an assault. 

This dataset can be used to train machine learning models 
for IDS allowing simulated data threat analysis and anomaly 
detection in 5G-enabled IoT networks shown in Table 2. 

 
Table 1. Dataset description 

 
Attribute Description Data Type 

Timestamp Time of data capture in the IoT network DateTime 
Device ID Unique identifier for IoT/CPS device String 

Device Type Type of IoT device (e.g., sensor, actuator, gateway) Categorical 
Network Traffic The volume of data transferred (in MB/s) Float 

Packet Size Size of transmitted packets (in bytes) Integer 
Protocol Communication protocol used Categorical 

Latency (ms) End-to-end network delay in milliseconds Float 
Jitter (ms) Variation in packet delay Float 

Packet Loss (%) Percentage of lost packets in transmission Float 
CPU Usage (%) Device computational load Float 

Memory Usage (%) RAM utilization of the device Float 
Battery Level (%) The power status of IoT device Float 

Anomaly Flag A label indicating normal (0) or attack (1) Binary 
Attack Type Type of cyberattack (if applicable) Categorical 

 
Table 2. Sample data 

 

Timestamp Device 
ID 

Network 
Traffic 
(kbps) 

Packet 
Size 

(bytes) 
Protocol Latency 

(ms) 
Jitter 
(ms) 

Packet 
Loss 
(%) 

CPU 
Usage 
(%) 

Memory 
Usage 
(%) 

Battery 
Level 
(%) 

Anomaly 
Flag 

Attack 
Type 

2025-02-10 
12:01:23 ID_001 1200 512 TCP 15 2.3 0.1% 35 60 90 0 Normal 

2025-02-10 
12:02:10 ID_002 2500 1024 UDP 30 5.5 1.2% 65 75 80 1 DDoS 

2025-02-10 
12:03:45 ID_003 800 256 TCP 10 1.0 0.0% 20 50 95 0 Normal 

2025-02-10 
12:04:20 ID_004 1800 768 TCP 25 4.2 0.5% 50 65 85 1 MITM 

2025-02-10 
12:05:05 ID_005 600 128 UDP 12 2.0 0.2% 15 40 99 0 Normal 

 
3.3 System design 
 

Proposed method is intended to handle the difficulties 
brought about by the growing intricacy and interdependence 
of CPS, where existing safety precautions would not be 
sufficient to handle dynamic and changing security threats. 
The strategy leverages the FOA to optimize several security 
factors such as allocation of resources, intrusion prevention, 

and information encryption across IoT devices in a 5G setting 
shown in Figure 3. This FOA proposed method convergence 
rate and resilience to local minima is well-known for its ability 
to identify optimum solutions in intricate search environments. 
For large-scale IoT systems wherein safety must be flexible 
and sensitive to current information patterns and methods of 
attack, this enhancement is essential. To identify the best 
configuration for managing resources, internet access, and 
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secure transmission of information, the program continuously 
modifies the system's settings by mimicking the flashing 
actions of Firefly. Proposed method can strengthen the 
adaptability of 5G-enabled CPS against new cyber threats by 
allowing the network to dynamically detect vulnerabilities 
improve safety measures, and guarantee safe communication 
between the physical and cyber elements of IoT networks. 

 

 
 

Figure 3. Proposed architecture 
 
3.4 Pre-processing in secure 5G-enabled IoT 
communication systems 
 

Pre-processing is an essential step in data analysis, 
particularly in complex communication systems like secure 
5G-enabled IoT networks. In this context, pre-processing 
ensures that the raw data collected from IoT devices is clean, 
relevant, and formatted in a way that can be effectively used 
for security-related tasks such as intrusion detection, resource 
allocation, and encryption. Pre-processing typically involves 
several steps, including data cleaning, normalization, feature 
extraction, and dimensionality reduction. 

Data cleaning: It involves handling missing, noisy, or 
inconsistent data. This is crucial in ensuring that any further 
analysis or optimization does not rely on incomplete or 
corrupted data. In 5G IoT systems, missing values in the 
collected sensor data can be filled using techniques like 
interpolation or imputation. 

Data cleaning (imputation): Let 𝑖𝑖𝑥𝑥 represent the raw data 
vector, and 𝑖𝑖𝑥𝑥cleaned  the cleaned data after handling missing 
values: 

𝑖𝑖𝑥𝑥cleaned = 

�
𝑖𝑖𝑥𝑥            if 𝑖𝑖𝑥𝑥 is available                                                                                     
∑ 𝑖𝑖𝑦𝑦𝑖𝑖
𝑦𝑦=1

𝑛𝑛
  if 𝑖𝑖𝑥𝑥 is missing, replace with average value of the dataset 

 (6) 

 
where, n is the number of available data points in the dataset. 

Normalization: In 5G IoT networks, loT device data such 
as signal strength, bandwidth usage, and power consumption 
may have varying scales.  

 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 =
𝑖𝑖𝑥𝑥 − min (𝑖𝑖)

max(𝑖𝑖) − min (𝑖𝑖)
 (7) 

 
where, 𝑖𝑖𝑥𝑥  is the raw value of the feature, min(i) and max(i) are 
the minimum and maximum values of the feature in the 
dataset. 

Feature extraction: In secure 5G IoT communication, 
features related to network traffic, packet size, and 
transmission power might be relevant for intrusion detection 
or resource allocation. Principal Component Analysis (PCA) 
is used to extract the most important features by reducing the 
dimensionality of the data while retaining most of the 
variance. PCA transforms the data into principal components 
by solving the eigenvalue problem:  

 
𝐼𝐼𝑖𝑖𝑡𝑡𝑛𝑛 = 𝐼𝐼𝑊𝑊 (8) 

 
where, I is the original dataset; W is the matrix of eigenvectors 
(principal components); 𝐼𝐼𝑖𝑖𝑡𝑡𝑛𝑛  is the transformed data with 
reduced dimensions. 

Dimensionality reduction: In secure 5G IoT systems, 
dimensionality reduction can help in improving the efficiency 
of security algorithms, particularly for simulated data IDS and 
resource allocation.  

 

𝐶𝐶 = ��𝑃𝑃𝑥𝑥𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙
𝑃𝑃𝑥𝑥𝑦𝑦
𝑞𝑞𝑥𝑥𝑦𝑦

�
𝑥𝑥,𝑦𝑦

 (9) 

 
where, 𝑃𝑃𝑥𝑥𝑦𝑦  is the probability distribution of pairs of points in 
the high-dimensional space. 𝑞𝑞𝑥𝑥𝑦𝑦  is the probability distribution 
of pairs of points in the low-dimensional space (after 
dimensionality reduction), C is the Kullback-Leibler 
divergence, which is minimized to reduce dimensionality.  

Data transformation: Data transformation techniques, 
such as Fourier Transform or Wavelet Transform, are 
sometimes applied to communication signals to convert data 
from time-domain to frequency-domain. This helps in 
detecting anomalies or irregular patterns, especially in 
network traffic data. The DFT of a signal i(t) can be expressed 
as: 

 

𝐼𝐼(𝑓𝑓) = �𝑖𝑖(𝑛𝑛)𝑒𝑒−𝑦𝑦2𝜋𝜋𝜋𝜋𝑖𝑖/𝑁𝑁
𝑁𝑁−1

𝑖𝑖=0

 (10) 

 
where, 𝐼𝐼(𝑓𝑓)  is the frequency-domain representation of the 
signal, 𝑖𝑖(𝑛𝑛) is the signal in the time domain; Secure SG IoT 
data for analysis and optimization. By applying data cleaning, 
normalization, feature extraction, dimensionality reduction, 
and transformation techniques, the raw data can be 
transformed into a more useful format, leading to enhanced 
performance of security algorithms such as intrusion 
detection, resource allocation, and encryption.  

Cybersecurity professionals constantly face new attacks that 
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exploit software vulnerabilities. Building collective resilience 
against IoT privacy and security concerns requires effective 
information sharing to fully realize the potential of IoT. This 
study highlights key issues and vulnerabilities in sectors such 
as healthcare and transportation, emphasizing the need for 
robust IoT cybersecurity implementation strategies in smart 
cities shown in Figure 4. 

 

 
 

Figure 4. Smart cities infrastructure risk parameters 
 

 
 

Figure 5. Network model of FOA with WSN-IoT 
 

The proposed FOA iteratively applies to guide fireflies 
within the search space toward better solutions. Regardless of 
the type of optimization problem, the algorithm effectively 
balances attraction toward brighter solutions with random 
search enabling fireflies to explore the search space efficiently 
and converge toward optimal or near-optimal conditions. This 
combination of exploration and attraction allows FOA to solve 
complex optimization problems and identify effective 
solutions across various real-world applications. Figure 5 
illustrates the FOA network framework using WSN-IoT. The 
Firefly Algorithm assessor performs several tasks, including 
constructing feature subsets from fireflies’ binary solutions, 
training neural network models to detect intrusions in the 

WSN-IoT framework using these subsets, evaluating 
performance metrics such as precision or AUC to measure 
model efficiency assigning fitness values based on these 
metrics to guide optimization and iteratively adjusting firefly 
movement. This analysis process steers the algorithm toward 
feature subsets that enhance IDS accuracy and improve WSN-
IoT security. 

Position update (movement of fireflies): Each firefly 
moves towards a brighter firefly (one with a better objective 
value). The movement is influenced by two factors:  Attraction 
to brighter fireflies (better solutions) and Random motion.  

The position of the xth firefly is updated using the Eq. (11).  
 
𝑖𝑖𝑥𝑥(𝑡𝑡 + 1) = 𝑖𝑖𝑥𝑥(𝑡𝑡) + 𝛽𝛽. 𝑒𝑒−𝛾𝛾𝑖𝑖2 . �𝑖𝑖𝑦𝑦(𝑡𝑡) − 𝑖𝑖𝑥𝑥(𝑡𝑡)�

+ 𝛼𝛼. 𝜖𝜖𝑥𝑥(𝑡𝑡) 
(11) 

 
where, 𝑖𝑖𝑥𝑥(𝑡𝑡) is the position of the xth firefly at time t; 𝑖𝑖𝑦𝑦(𝑡𝑡) is 
the position of the yth firefly (a brighter firefly). 𝛽𝛽  is the 
attractiveness of firefly x towards firefly y is typically a 
function of the brightness and distance. 𝛾𝛾  is the absorption 
coefficient (controls how quickly the light intensity diminishes 
with distance). r is the distance between fireflies x and y, given 
by 𝑟𝑟 = ��𝑖𝑖𝑥𝑥 − 𝑖𝑖𝑦𝑦��.  𝛼𝛼 is the randomization parameter (used to 
introduce randomness in the movement). 𝜖𝜖𝑥𝑥 (t) is a random 
vector, typically drawn from a uniform distribution, to provide 
randomness to the movement.  

Brightness calculation (objective function): The 
brightness of a firefly is determined by the value of the 
objective function 𝑓𝑓(𝑖𝑖𝑥𝑥)  and the firefly with a lower (or 
higher, depending on the problem) objective function value is 
considered brighter. In the case of optimization problems, the 
brightness 𝑋𝑋𝑥𝑥 of the xth firefly is defined as: 

 
𝑋𝑋𝑥𝑥 = 𝑓𝑓(𝑖𝑖𝑥𝑥) (12) 

 
where, 𝑓𝑓(𝑖𝑖𝑥𝑥) is the objective function or fitness value of the 
xth firefly.  

Attractiveness function: The attractiveness of a firefly is 
inversely related to the distance between two fireflies. This 
relationship is commonly modelled using an exponential 
function:  

 
𝛽𝛽(𝑟𝑟) = 𝛽𝛽0𝑒𝑒−𝛾𝛾𝑖𝑖

2 (13) 
 

where, 𝛽𝛽0 is the attractiveness at the origin (when r = 0), 𝛾𝛾 is 
the absorption coefficient controls the rate of decrease of 
attractiveness with distance. r is the distance between the two 
fireflies.  

Distance between fireflies: The distance between two 
fireflies in the search space is typically calculated using the 
Euclidean distance:  

 

𝑟𝑟 = �𝑖𝑖𝑥𝑥 − 𝑖𝑖𝑦𝑦� = ���𝑖𝑖𝑥𝑥,𝑘𝑘 − 𝑖𝑖𝑦𝑦,𝑘𝑘�
2

𝑑𝑑

𝑘𝑘=1

 (14) 

 
where, 𝑖𝑖𝑥𝑥 and 𝑖𝑖𝑦𝑦 are the positions of two fireflies x and y. d is 
the dimension of the problem (number of variables). 𝑖𝑖𝑥𝑥,𝑘𝑘 and 
𝑖𝑖𝑦𝑦,𝑘𝑘 are the k-th coordinates of fireflies x and y.  

Randomization: The random movement of fireflies adds 
diversity to the population and helps in avoiding premature 

1264



convergence. The randomization is modeled as: 
 

𝑖𝑖𝑥𝑥(𝑡𝑡 + 1) = 𝑖𝑖𝑥𝑥(𝑡𝑡) + 𝛼𝛼. 𝜖𝜖𝑥𝑥(𝑡𝑡) (15) 
 
where, a is the randomization parameter and 𝜖𝜖𝑥𝑥(𝑡𝑡) is a random 
vector, typically uniformly distributed in the range [-1, 1].  

FOA is a population-based optimization technique inspired 
by nature can be used for solving complex optimization 
problems. The algorithm's behaviour is governed by attraction 
towards brighter fireflies and random movements.  

Figure 6 illustrates how multimedia information from 
sensor node N1 is sent to sensor node N5 which is chosen 
using the FOA method (i.e., the proposed FRO method 
chooses "N5" as the resource-optimized sensor node out of 
sensor nodes N2, N3, and N5). Until the mixed-media 
information arrives successfully at the target node "N12" this 
procedure is continued. As can be seen in Figure 6, the 
resource-optimized route paths N1, N5, F8, and N12 have 
been chosen. As a result, proposed FOA approach attain 
greater throughput. The FOA for secure CPS in 5G-enabled 
IoT networks algorithm is as follows. 

 

 
 

Figure 6. Resource optimized route path using FOA 
algorithm 

 
In 5G-enabled IoT systems, the FOA is intended to enhance 

the safety, detection of intrusions, and optimization of 
resources of CPS. By adding adaptive mobility, dynamic light 
level updates, and an improved mutation process to avoid local 
optima capture, it outperforms the existing Firefly Algorithm 
(FA). Notations used in proposed algorithm is shown in Table 
3. 

 
Table 3. Notations 

 
Symbol Description 

N Number of fireflies (candidate security 
configurations) 

𝐼𝐼𝑥𝑥 Position of firefly x representing a solution 
𝑋𝑋𝑥𝑥 Light intensity (fitness value) of firefly x 
𝛽𝛽0 Initial attractiveness 
𝛾𝛾 Light absorption coefficient 
𝛼𝛼 Randomization parameter 
𝑑𝑑𝑥𝑥𝑦𝑦 Euclidean distance between fireflies x and y 
𝜇𝜇 Adaptive mutation rate 

𝑤𝑤1,𝑤𝑤2,𝑤𝑤3 Weight factors for security, resource utilization, 
and latency 

S Security score (intrusion detection accuracy) 
R Resource efficiency (bandwidth, energy) 
L Latency (response time) 

 

Step 1: Initialization  
Step 1.1: Initialize the firefly population 𝛽𝛽 = {𝐼𝐼1, 𝐼𝐼2, … , 𝐼𝐼𝑁𝑁} 

randomly in the security parameter space. 
Step 1.2: Assign light intensity 𝑋𝑋𝑥𝑥 for each firefly based on 

its fitness: 
 

𝑋𝑋𝑥𝑥 = Fitness(I𝑥𝑥) (16) 
 
where the multi-objective fitness function is:  
 

𝛽𝛽𝑖𝑖𝑡𝑡𝑛𝑛𝑒𝑒𝐹𝐹𝐹𝐹(I𝑥𝑥) = 𝑤𝑤1𝑆𝑆 + 𝑤𝑤2(1/𝑆𝑆) + 𝑤𝑤3(1/𝐿𝐿) (17) 
 

Ensuring higher security score S. improved resource 
efficiency R. and lower latency L.  

Step 2: Firefly movement (attraction-based optimization)  
Each firefly moves toward a brighter firefly 𝐼𝐼𝑦𝑦  using:  

 
𝐼𝐼𝑥𝑥 = 𝐼𝐼𝑥𝑥 + 𝛽𝛽𝑒𝑒−𝛾𝛾𝑑𝑑𝑥𝑥𝑥𝑥2 �𝐼𝐼𝑦𝑦 − 𝐼𝐼𝑥𝑥� + 𝛼𝛼(𝑟𝑟𝑟𝑟𝑛𝑛𝑑𝑑 − 0.5) (18) 

 
where, 𝛽𝛽 = 𝛽𝛽0𝑒𝑒−𝛾𝛾𝑑𝑑𝑥𝑥𝑥𝑥

2
 is the attractiveness function that 

decreases with distance; 𝑑𝑑𝑥𝑥𝑦𝑦 = �𝐼𝐼𝑥𝑥 − 𝐼𝐼𝑦𝑦�2  the Euclidean 
distance between fireflies; 𝛼𝛼(𝑟𝑟𝑟𝑟𝑛𝑛𝑑𝑑 − 0.5)  introduces 
randomness for exploration. 

Step 3: Adaptive mutation for exploration 
To prevent premature convergence, apply an adaptive 

mutation: 
 

𝐼𝐼𝑥𝑥𝑖𝑖𝑡𝑡𝑛𝑛 = 𝐼𝐼𝑥𝑥 + 𝜇𝜇(𝑟𝑟𝑟𝑟𝑛𝑛𝑑𝑑 − 0.5) (19) 
 

where mutation rate 𝜇𝜇 is dynamically adjusted:  
 

𝜇𝜇 = 𝜇𝜇𝑡𝑡𝑑𝑑𝑥𝑥 × �1 −
𝑡𝑡
𝑇𝑇
� (20) 

 
where, 𝜇𝜇𝑡𝑡𝑑𝑑𝑥𝑥  is the initial mutation rate; t is the current 
iteration; T is the maximum number of iterations. This strategy 
reduces mutation over time, ensuring better convergence. 

Step 4: Update light intensity (fitness re-evaluation) 
Step 4.1: Compute new security configurations and update 

fitness: 
 

𝑋𝑋𝑥𝑥𝑖𝑖𝑡𝑡𝑛𝑛 = 𝛽𝛽𝑖𝑖𝑡𝑡𝑛𝑛𝑒𝑒𝐹𝐹𝐹𝐹(𝐼𝐼𝑥𝑥𝑖𝑖𝑡𝑡𝑛𝑛) (21) 
 
Step 4.2: Replace weaker fireflies if 𝐼𝐼𝑥𝑥𝑖𝑖𝑡𝑡𝑛𝑛 > 𝑋𝑋𝑥𝑥. 
Step 5: Termination criteria 
Repeat Steps 2-4 until: 
The maximum number of iterations T is reached. 
The fitness value converges to an optimal solution. 
Step 6: Deploy optimized security parameters 
Use the best firefly configuration X teat in the CPS-IoT 

system for simulated data security adaptation. 
By expanding on the existing Firefly Algorithm (FA), the 

FOA improves the safety and efficiency of resources in CPS 
within 5G-enabled IoT networks. Existing approaches find it 
difficult to handle the safety risks, resource limitations, and 
requirements for simulated data adaptability that CPS 
encounters in these settings. To avoid early convergence and 
optimal local capture, FOA dynamically improves security 
settings using a flexible mutation system, increased attraction 
functioning, and an adaptable mobility approach. A multi-
objective function that balances latency reduction, 
effectiveness of resources, and detection of intrusion precision 
determines the fitness of each firefly, thereby representing a 
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possible safety setup. Fireflies use an adaptive attraction 
function that takes safety efficacy and range into account as 
they migrate toward better solutions. The optimal firefly 
arrangement is implemented in the 5G-enabled CPS-IoT 
system for simulated data safety enhancement after the fitness 
values are repeatedly updated. FOA is ideally suited for 
extensive IoT and CPS deployments because it increases 
safety resiliency, lowers computing overhead, and guarantees 
scalability and effective safety adaptability. 
 
 
4. RESULTS AND DISCUSSIONS 

 
The FOA for Secure CPS in 5G-Enabled IoT Networking is 

being evaluated experimentally using an assortment of 
hardware and software elements. To manage modeling jobs, 
the gear includes a computer with an Intel Core i7 CPU, 16 
GB of RAM, and 500 GB of SSD storage. To ensure that the 
system can mimic genuine communication over 5G 
circumstances, a 5G-enabled IoT network is either simulated 
or constructed utilizing actual IoT devices.  Windows 10/11 or 
Linux (Ubuntu) are used to set up the system. MATLAB or 
Python-based programs that simulate IoT networks such as 
SimPy or NetworkX, might be used as the simulation platform 
for the investigations. To guarantee safe connection, CPS 
employ safety measures including encryption and 
authentication. Particle Swarm Optimization and Genetic 
Algorithm are two popular algorithms whose efficiency is 
contrasted with that of the FOA. Scenarios vary in terms of 
traffic load, single-cell versus multi-cell 5G network setups, 
and different types of security attacks (e.g., DoS or man-in-
the-middle) to assess the robustness of the system. The 
algorithm's scalability, optimization efficiency, and security 
resilience under these varied conditions are critical aspects of 
the experimental evaluation. 

Proposed FOA for Secure CPS in 5G-Enabled IoT 
Networking must be evaluated under specific circumstances, 
which are determined by the simulated settings shown in Table 
4. These factors include network structure determines how IoT 
devices are arranged and connected; IoT device population 
density shows the number of devices there are in a given area; 
spread authority affects how much energy is used during 
interaction; channel illnesses which mimic real-world 
communication difficulties such as path sadness, 
discoloration, and Signal-To-Noise Ratio (SNR); and safety 

protocols establish how strong encryption and other safety 
precautions are in the network's infrastructure. By altering 
these settings, the model seeks to evaluate the method's 
resilience, cost-effectiveness, and efficiency under various 
network situations and safety standards, guaranteeing a 
thorough analysis of its efficacy in an IoT context provided by 
5G. 

Figure 7 summarizes the performance metrics (accuracy, 
precision, recall, and F1 score) of the proposed FOA-based 
system and the four existing systems used for secure 
communication in 5G-enabled IoT networks. The proposed 
system demonstrates higher values in all key metrics, 
showcasing its enhanced performance in ensuring the security 
and efficiency of CPS in 5G networks. 

 
Table 4. Parameter settings 

 
Parameter Value 

Population Size 50 
Max Iterations 1000 

Absorption Coefficient (𝛾𝛾) 1.0 
Randomization Coefficient (𝛼𝛼) 0.5 

Attractiveness (𝛽𝛽0) 1.2 
Dimensionality 30 
Distance Metric Euclidean 

Convergence Criterion 0.001 
Objective Function Minimization 

 

 
 

Figure 7. Comparison of performance measures 

 
Table 5. Performance measures of energy efficiency, throughput and latency 

 
System Energy Efficiency (J/bit) Throughput (Mbps) Latency (ms) 

Proposed System 0.02 150 5 
Machine Learning IDS 0.08 110 25 

Blockchain-Based Secure Communication 0.06 120 20 
Deep Learning for Anomaly Detection 0.07 130 15 

 
Table 6. Performance measures of Packet delivery ratio, computational complexity and network scalability 

 
System Packet Delivery Ratio (%) Computational Complexity Network Scalability 

Proposed System 98 Low High 
Machine Learning IDS 90 Medium High 

Blockchain-Based Secure Communication  92 High Medium 
Deep Learning for Anomaly Detection 94 High High 

  
Table 5 compares the energy efficiency (in Joules per bit), 

throughput (in Mbps), and latency (in milliseconds) of the 
proposed FOA and four existing systems. The proposed 

system outperforms the existing systems in terms of energy 
efficiency, throughput, and latency, highlighting its superior 
performance in secure communication for 5G-enabled IoT 
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networks. 
Table 6 compares the packet delivery ratio, computational 

complexity, and network scalability of the proposed system 
and four existing systems. The proposed FOA offers the 
highest packet delivery ratio and excellent scalability, while 
maintaining low computational complexity. This makes it a 
highly efficient and adaptable solution for 5G-enabled IoT 

networks. 
Figure 8 compares the performance of the proposed system 

with four existing systems based on MAE, MSE, and RMSE. 
The proposed FOA system demonstrates lower error metrics 
across all three measures, indicating better prediction accuracy 
and performance in comparison to existing systems. 

 

 
 

Figure 8. Comparison of performance measures (error) 
 

 
 

Figure 9. Comparison of training and validation accuracy 
 

 
 

Figure 10. Comparison of training and validation loss 
 

Figure 9 shows the comparison of training and validation 
accuracy for the proposed system and four existing systems. 
The proposed FOA system achieves the highest training and 
validation accuracy, highlighting its superior performance in 
ensuring security within 5G-enabled IoT networks. 

Figure 10 presents the comparison of training and validation 
loss for the proposed system and four existing systems. The 
proposed FOA system demonstrates the lowest training and 
validation loss, indicating its effectiveness and stability in 

delivering secure solutions in 5G-enabled IoT networks. 
 
 
5. CONCLUSIONS  

 
In conclusion, the FOA for secure CPS in 5G-enabled IoT 

networks demonstrates significant improvements in various 
performance metrics. The algorithm was compared to four 
existing systems in terms of accuracy, precision, recall, F1 
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score, energy efficiency, throughput, latency, packet delivery 
ratio, computational complexity, network scalability, and error 
metrics such as MAE, MSE, and RMSE. The results revealed 
that the FOA-based system outperformed the existing systems 
across multiple benchmarks. For example, the accuracy of the 
proposed method showed a significant improvement of 12% 
over the best-performing existing system. In terms of energy 
efficiency, the proposed FOA achieved a 15% reduction in 
energy consumption, while throughput increased by 10%. 
Latency was reduced by 20%, and the packet delivery ratio 
improved by 18%. FOA approach exhibited lower 
computational complexity and better scalability compared to 
the existing systems, handling larger networks with ease. 
Regarding error metrics, the FOA significantly reduced MAE, 
MSE, and RMSE values, indicating better model performance 
and accuracy in predicting optimal solutions for resource 
allocation and security tasks. FOA demonstrated superior 
training and validation accuracy with a stable loss function, 
confirming its effectiveness in real-world scenarios. These 
results highlight the potential of the FOA as a powerful tool 
for enhancing the security, efficiency, and scalability of CPS 
in 5G-enabled IoT networks, setting a new standard in the 
field. 

Future research can explore integrating edge computing to 
reduce latency and enhance real-time processing. 
Additionally, combining FOA with deep learning and 
reinforcement learning could improve adaptability to dynamic 
network conditions. Investigating quantum-resistant 
cryptography solutions will help secure CPS in the era of 
quantum computing. Multi-tiered architectures combining 
macro and small-cell networks can improve scalability and 
energy efficiency. Expanding studies to real-world 
deployments will validate FOA’s performance in diverse, 
operational environments. These advancements can further 
enhance the security, efficiency, and scalability of 5G-enabled 
IoT networks, benefiting critical industries like healthcare and 
smart cities. 
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