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In recent years, the electricity consumption in residential sector has witnessed a significant 

increase due to the population growth on one hand and the widespread adoption of 

electrical appliances on the other hand. Hence, finding solutions to decrease electricity 

consumption has become a matter of great interest for researchers. To address this 

challenge, we propose a Quantum Cognitive IoT (QCIoT) Framework that integrates 

quantum deep learning with edge computing to optimize energy use in smart homes. Our 

key innovation is a hybrid Quantum Long Short-Term Memory (QLSTM) model, which 

enhances traditional LSTM networks by leveraging quantum circuits for improved time-

series forecasting. Specifically, QLSTM employs parameterized quantum gates to process 

temporal dependencies more efficiently, enabling higher accuracy than classical 

approaches. We evaluate quantum-enhanced LSTMs (QLSTMs) against classical LSTM 

baselines on multivariate time-series forecasting. Experimental results demonstrate that 

QLSTMs significantly outperform classical counterparts, with the multivariate QLSTM 

(MQLSTM) achieving a 25.8% reduction in RMSE and improving explanatory power by 

78.3%. While QLSTMs exhibit slightly slower convergence, they deliver superior 

generalization, evidenced by lower test loss and stable training dynamics. These 

advantages stem from quantum parallelism, entanglement and optimized state 

representation, which enable superior handling of noisy, high-dimensional smart home 

data. By integrating quantum-enhanced forecasting with edge-based IoT systems, our 

framework offers a scalable solution for real-time energy management in smart homes. 

This work bridges quantum computing and smart infrastructure, demonstrating practical 

benefits for sustainability and energy savings. 
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1. INTRODUCTION

Household electricity consumption constitutes a significant 

portion of total energy usage across various countries. In 

Algeria, the residential sector was the largest consumer of 

electricity, accounting for 38% of the final electricity 

consumption in 2023 [1]. Similarly, in the European Union, 

households represented 25.8% of final energy consumption in 

2022 [2]. thus, the adoption of solutions to minimize electric 

power consumption has attached significant research interest. 

The rapid adoption of Internet of Things (IoT) technologies 

has revolutionized the concept of smart homes, enabling real-

time monitoring and control of energy consumption through 

interconnected devices such as sensors, smart meters, and 

actuators [3]. 

Phung et al. [4] presented an IoT-based dependable control 

system for managing solar energy in microgrids. Advanced 

systems like the one proposed by Sampaio et al. [5] utilize 

autonomic management and context-awareness to 

dynamically optimize energy consumption, demonstrating the 

versatility and effectiveness of IoT in energy management. 

Furthermore, Dutta et al. [6] developed a system utilizing Wi-

Fi smart plugs and MQTT protocol for real-time monitoring 

and control of electricity consumption in buildings. In the 

realm of smart homes, Salma et al. [7] combined IoT and 

blockchain technologies to create a secure framework for 

controlling light consumption in smart city buildings. Recently 

Saadawi et al. [8] implemented an IoT-based energy 

management system employing the Harmony Search 

Optimization Technique to optimize energy usage, Integrating 

renewable energy sources. 

While these works have improved the efficiency of energy 

management systems, they face several limitations. Classical 

IoT-based solutions often struggle with scalability, latency, 

and the inability to adapt effectively in real-time to dynamic 

environments with heterogeneous data sources [9]. 

To address these challenges, Recurrent Neural Networks 

(RNNs) and Long Short-Term Memory (LSTM) networks 

have been applied to energy prediction tasks [10, 11]. Among 

these, encoder-decoder architectures have gained attention for 

their ability to capture long-range dependencies and are well-

suited for sequence-to-sequence modeling in energy 

forecasting [12].  
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Classical machine/deep learning models, though powerful, 

require large volumes of training data, and their performance 

degrades significantly in the presence of noise and non-

stationary patterns, which are common in energy consumption 

time series. These models also exhibit limited ability to 

capture long-term dependencies in complex sequences, often 

leading to suboptimal forecasting accuracy. 

The integration of machine/deep learning with IoT has 

given rise to the Cognitive Internet of Things (CIoT) paradigm. 

CIoT frameworks have improved adaptability and decision-

making in energy systems by incorporating intelligent 

algorithms. For example, Liu et al. [13] presented a green 

CIoT system that integrates energy harvesting with joint 

optimization strategies to balance spectrum sensing and 

energy harvesting tasks effectively, an AI-based load 

optimization model within CIoT networks was developed to 

enhance energy efficiency through intelligent algorithms. 

Similarly, Kalinga et al. [14] implemented a CIoT framework 

utilizing linear regression models to monitor and control 

energy consumption of various devices, achieving notable 

savings. Rahmani and Arefi [15] presented a self-organizing 

CIoT framework employing learning automata to adaptively 

manage transmission power, resulting in improved energy 

efficiency. However, these systems still struggle to generalize 

in data-scarce environments, and cannot efficiently explore 

complex solution spaces due to the inherent limitations of 

classical processors. 

To overcome these barriers, quantum machine learning 

(QML) has emerged as a promising direction. QML models 

exploit the principles of quantum parallelism and 

entanglement, enabling richer data representations in high-

dimensional Hilbert spaces [16]. Hybrid models such as the 

Quantum LSTM (QLSTM) integrate parameterized quantum 

circuits within classical LSTM layers, offering superior 

expressiveness and robustness to noise [17]. 

Recent advancements in quantum machine learning have 

shown promise in improving energy consumption forecasting. 

Sagingalieva et al. [18] developed hybrid quantum neural 

networks that significantly improved photovoltaic power 

forecasting accuracy. Nutakki et al. [19] proposed Quantum 

Support Vector Machines (QSVMs) to enhance load 

forecasting in Home Energy Management Systems (HEMS), 

demonstrating superior accuracy in handling complex 

consumption patterns. Similarly, hybrid quantum neural 

networks have been applied to photovoltaic power forecasting, 

achieving significant improvements in prediction accuracy, 

especially in data-scarce scenarios. In the realm of energy 

efficiency, Quantum Reinforcement Learning (QRL) has been 

explored for optimizing energy usage in various applications. 

These approaches leverage quantum algorithms to learn 

optimal policies for energy management tasks [20]. 

In this paper, we propose a novel Quantum Cognitive 

Internet of Things (QCIoT) framework for smart home energy 

forecasting, which integrates IoT data acquisition, deep 

learning, and quantum computing. Our main technical 

contributions are as follows: 

(1) We design a Quantum LSTM Encoder-Decoder

architecture that leverages quantum circuits to enhance

sequence modeling, improving the system's ability to learn

long-term dependencies and generalize in noisy or low-

data regimes.

(2) We demonstrate how quantum parallelism can

significantly improve the computational efficiency of the 

forecasting model in dynamic smart home environments.  

(3) Through extensive experiments on real-world energy

consumption data, we show that our QCIoT framework

outperforms classical LSTM and deep learning models in

terms of accuracy, energy savings, and adaptability,

especially under noisy and data-limited conditions.

2. PROPOSED FRAMEWORK

Our proposed Quantum Cognitive Internet of Things 

(QCIoT) framework is designed to optimize energy 

consumption in smart homes by the integration of IoT, deep 

learning and quantum computing. As illustrated in Figure 1, 

this framework comprises three synergistic layers, each 

designed to address specific challenges in consumption 

forecasting and decision-making. 

Figure 1. Architecture of the proposed quantum cognitive iot 

(QCIoT) framework 

The architecture integrates IoT layer, quantum layer, and 

decision making layer to achieve efficient energy management. 

At the heart of this framework is the Quantum LSTM 

(QLSTM), a novel model that we define, train, test and deploy 

for energy prediction. Below, we describe the architecture and 

workflow of the framework, emphasizing the role of the 

QLSTM model. 

2.1 IoT layer 

 Efficient data collection and preprocessing are critical for 

IoT-based energy systems. Gubbi et al. [21] highlighted the 

importance of real-time monitoring and control in IoT 

networks. 

The IoT Layer serves as the foundation of the framework, 

enabling real-time data collection from smart home devices 

such as sensors, smart meters, and smart appliances. These 

devices monitor energy consumption, environmental 

conditions (e.g., temperature, humidity), and user behavior. 

The collected data is transmitted to a central micro-controller 

for preprocessing, where it is cleaned, normalized, and 

prepared for transmission into the quantum layer. 
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2.2 Quantum layer 

The Quantum Layer is the core of the framework, where the 

Quantum Encoder Decoder LSTM (QLSTM) model is defined, 

trained, and used for energy prediction. The QLSTM model 

combines the temporal modeling capabilities of classical 

LSTMs with the computational advantages of quantum 

computing, enabling more efficient and accurate energy 

optimization. 

2.2.1 Model definition 

The QLSTM model is a hybrid architecture that integrates 

quantum computing principles into a classical LSTM network. 

While the LSTM component captures temporal dependencies 

in the energy consumption data, the quantum component 

enhances the model's ability to perform optimization tasks. We 

use parametrized quantum circuit to accelerate the training and 

inference processes. The QLSTM model consists of: 

Input Layer. Receives preprocessed data from the IoT Layer. 

Quantum Gates. Performs quantum computations to 

accelerate optimization. 

LSTM Cells. Captures temporal dependencies in the data. 

Output Layer. Generates energy consumption predictions. 

Recent work by Biamonte et al. [22] and Dunjko and 

Briegel [23] has demonstrated the potential of quantum 

computing for machine learning tasks. Building on these 

insights, we define the QLSTM model as a quantum-enhanced 

variant of the classical LSTM, with additional quantum gates 

and circuits integrated into the architecture. 

2.2.2 Model deployment 

The QLSTM model is deployed to predict energy 

consumption in real time. The model takes preprocessed data 

from the IoT Layer as input and generates energy usage 

forecasts, which are passed to the Decision-Making Layer for 

optimization. 

2.3 Decision-Making Layer 

The Decision-Making Layer is responsible for optimizing 

energy usage based on the predictions from the QLSTM model. 

Our framework uses a rule-based or heuristic approach to 

make decisions. For example: 

- If the QLSTM model predicts a peak in energy demand,

the system can reduce the usage of non-essential devices (e.g., 

delaying the operation of a dishwasher or washing machine). 

- If the model predicts low energy demand, the system can

prioritize the use of energy-intensive devices to take advantage 

of lower costs. 

This simplified decision-making process is efficient and 

easy to implement, making it well-suited for real-time energy 

management in smart homes. The decisions are directly based 

on the QLSTM model's predictions, ensuring that the system 

responds dynamically to changes in energy demand. 

2.4 Integration and workflow 

The integration of the IoT, Quantum, and Decision-Making 

Layers enables the framework to operate as a cohesive system. 

The workflow can be summarized as follows: 

(1) The IoT Layer collects real-time consumption data from

smart home devices.

(2) The data is preprocessed and transmitted to the Quantum

Layer.

(3) The QLSTM model predicts energy consumption patterns

based on the input data.

(4) The Decision-Making Layer uses these predictions to

optimize energy usage across smart home devices.

(5) The optimized energy usage schedule is implemented

through the IoT Layer(actuators), controlling devices such

as thermostats, lights, and smart appliances.

2.5 Advantages of the framework 

The QCIoT framework offers several advantages over 

traditional energy management systems: 

(1) Scalability: The use of quantum computing enables the

framework to handle large-scale IoT systems efficiently.

(2) Real-time prediction: The QLSTM model provides

accurate energy consumption forecasts in real time.

(3) Simplicity: The Decision-Making Layer uses a

straightforward rule-based approach, making the system

easy to implement and maintain.

(4) Energy efficiency: By optimizing energy usage, the

framework reduces energy consumption and costs while

maintaining user comfort.

2.6 Deployment and real-world applications 

The proposed Quantum Cognitive IoT (QCIoT) framework 

is designed for seamless integration into existing smart home 

infrastructures. Below, we discuss its real-world applicability, 

deployment challenges, and potential solutions. 

2.6.1 Application scenarios 

Dynamic Load Management. During peak electricity 

pricing (e.g., 6–9 PM), the framework: 

- IoT layer: Monitors real-time consumption via smart

meters.

- Quantum layer: Forecasts demand spikes using QLSTM.

- Decision layer: Shifts high-load appliances (e.g., EV

charging) to off-peak hours to reduce costs.

Fault Detection & Anomaly Alerts. Detects abnormal

appliance behavior (e.g., fridge compressor failure). 

- QLSTM identifies deviations from expected consumption

patterns.

- Decision layer triggers maintenance alerts, preventing

energy waste.

Renewable Energy Optimization. Homes with solar panels

use the framework to: 

- Align battery storage with solar generation forecasts.

- Reduce grid dependence.

2.6.2 Technical challenges and mitigation strategies 

Table 1 shows Technical Challenges to deploy our proposed 

framework in real-world smart home environments. 

Table 1. Technical challenges and solutions 

Challenge Solution 

Heterogeneous device 

protocols 

Edge middleware (e.g., Home 

Assistant) for protocol unification. 

Hardware noise on real 

quantum devices (IBMQ, 

Rigetti) 

Employ error mitigation 

techniques 

User comfort vs. energy 

savings trade-offs 

Multi-objective reinforcement 

learning (MORL) with 

personalized user preferences. 
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3. METHODOLOGY

This study proposes a Quantum Cognitive IoT Framework 

for optimizing residential energy consumption through 

intelligent forecasting and decision-making. The methodology 

integrates hybrid quantum-classical machine learning with IoT 

infrastructure, comprising five systematic key phases: (1) data 

acquisition and preprocessing, (2) hybrid Quantum Long 

Short-Term Memory (QLSTM) model design, (3) classical 

baseline implementation, (4) training and optimization, and (5) 

evaluation metrics used to demonstrate the effectiveness of our 

proposed model. 

3.1 Data collection and preprocessing 

3.1.1 Dataset 

The UCI Household Power Consumption Dataset [24] was 

selected for its high-resolution recordings of energy usage (1-

minute intervals) from a single household over four years 

(2006–2010). The dataset includes: 

(1) Global_active_power: Total household power 

consumption (kW). 

(2) Sub-metering: Granular measurements for appliances

(e.g., kitchen, heating…).

(3) Voltage, Global_intensity, and reactive power

measurements.

3.1.2 Preprocessing pipeline 

Our preprocessing pipeline employed rigorous techniques 

to ensure data quality and model compatibility:  

Data cleaning.  Gaps (marked as "?") were replaced with 

NaN, then addressed through temporal imputation. 

Recognizing the strong diurnal patterns in residential energy 

use, we implemented a day-lag filling approach. 

Resampling and aggregation (daily granularity). To balance 

computational efficiency with temporal resolution, minute-

level observations were aggregated to daily totals through 

summation. This transformation: Reduces high-frequency 

noise, maintains meaningful consumption patterns and enables 

longer forecast horizons. 

Normalization and windowing. The processed dataset was 

enhanced through: 

-Min-Max normalization to [-1, 1] range,

-Creation of Temporal Windowing (7-days input/output

windows) for sequence prediction, 

-Stratified temporal splitting (70% training, 15% validation,

15% test) 

Feature Selection. Our study initially utilizes the 

Global_active_power variable from the UCI dataset, then we 

expanded our investigation to multivariate prediction, 

incorporating additional relevant features to capture more 

complex interdependencies in the energy consumption 

patterns. 

3.2 Hybrid quantum-classical model design 

In our work, we propose a hybrid quantum-classical 

sequence-to-sequence model designed to predict short-term 

power consumption based on past energy usage. The model is 

structured using an encoder-decoder architecture, with both 

modules leveraging a custom-built Quantum-enhanced 

Long Short-Term Memory cell (QLSTMCell). The design 

seamlessly integrates classical neural operations with 

parameterized quantum circuits (PQCs), allowing us to 

investigate potential benefits of quantum computation in 

sequential learning tasks. 

3.2.1 Parameterized quantum circuits 

Figure 2. Architecture of the parameterized quantum circuit 

Figure 2 show the parametrized quantum circuit used to 

implement our quantum neural network layer (encoder and 

decoder) for our QLSTM. The circuit is composed of 4 qubits, 

initialized to 0>, and is divided into three main stages: 

Quantum data encoding layer. We Use angle embedding to 

map classical input data xRn to quantum state |ψ(x)⟩ through 

Rx rotations. Each feature xi is mapped to a rotation angle θi = 

πxi, see Eq. (1). 

|𝜓(𝑥)⟩ =  ⨂ 𝑅𝑋(𝜃𝑖) |0⟩
{⊗𝑛}𝑛

𝑖=1 , 𝑅𝑋(𝜃𝑖) = 𝑒
−𝑖𝜃𝑋/2 (1) 

Each RX(θi) rotates ∣0⟩ around the X-axis by θi, placing the 

qubit at (π/2,θi) in spherical coordinates (latitude π/2, 

longitude θi). 

Variational Quantum Circuit (Ansatz). The trainable circuit 

consists of: 

- Single-Qubit Rotations (RX-RY-RZ): Each qubit i in the

circuit undergoes three rotations as shown in Eq. (2) and

Eq. (3).

𝑈𝑖(𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖) =  ⨂𝑅𝑋(𝛼𝑖) 𝑅𝑌(𝛽𝑖)𝑅𝑍(𝛾𝑖)

𝑛−1

𝑖=0

(2) 

where, 

𝑅𝑋(𝛼) = 𝑒
−𝑖𝛼𝑋/2, 𝑅𝑦(𝛽) = 𝑒

−𝑖𝛽𝑌/2, 𝑅𝑧(𝛾) = 𝑒
−𝑖𝛾𝑍/2 (3) 

- Entanglement via CNOT: that link the qubits in a closed

linear entangling pattern designed to maximize

entanglement. Each CNOT gate “CNOTi,j’’ is a 2-qubit

unitary operation with the form depicted in Eq. (4):

𝑈𝑒𝑛𝑡 =∏ 𝐶𝑁𝑂𝑇𝑖 ,(𝑖+1)𝑚𝑜𝑑 𝑛
𝑛−1

𝑖=0
(4) 

The full unitary for the variational part of our proposed 

circuit is presented in the Eq. (5). 

𝑈𝑐𝑖𝑟𝑐𝑢𝑖𝑡 =

(

[∏ 𝐶𝑁𝑂𝑇𝑖 ,(𝑖+1)𝑚𝑜𝑑 𝑛
𝑛−1

𝑖=0
]

. [⨂𝑅𝑍(𝛾𝑖) 𝑅𝑌(𝛽𝑖)𝑅𝑋(𝛼𝑖)

𝑛−1

𝑖=0

]
)

(5) 
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Each qubit is both a control and a target in the entanglement 

structure, allowing strong correlations. 

Pauli-z measurements. The measurements produce classical 

output data, which can then be used in our quantum-classical 

hybrid model (make prediction). Eq. (6) shows the final state 

measured via Pauli-Z operators on m output qubits: 

𝑦𝑡 = 𝑊 ∗ ⟨𝜓(𝑥𝑡)|𝑍
⊗𝑚|𝜓(𝑥𝑡)⟩ + 𝑏, Z = (

1 0
0 −1

) (6) 

3.2.2 Quantum LSTM cell (QLSTMCell) 

At the core of both the encoder and decoder is a modified 

LSTM cell where the traditional gates (forget, input, 

candidate/update, and output) are replaced by parameterized 

quantum circuits. Each gate follows the same hybrid pattern: 

(1) First, classical input vectors (from the current input and

previous hidden state) are projected through fully

connected layers to match the dimension of the quantum

circuit.

(2) The resulting vectors are summed and passed into the

dedicated Parameterized/Variational Quantum Circuit

(VQC).

(3) The quantum circuit outputs the expectation values of

Pauli-Z measurements on all qubits, which are then

processed by a classical linear layer.

(4) Finally, classical nonlinearities (sigmoid or tanh) are

applied to produce gate activations.

Figure 3. Architecture of the QLSTMCell [25] 

This structure allows each gate to learn nonlinear 

transformations in a hybrid quantum-classical parameter space. 

Figure 3 illustrates the QLSTM Cell’s architecture. 

The dynamics of information propagation within a 

Quantum LSTM cell are governed by the following 

mathematical expressions: 

- Forget Gate: ft= σ(⟨Z⟩f)
- Input Gate: it = σ(⟨Z⟩I)
- Candidate gate: c̃t = tanh(⟨Z⟩c)
- Cell State Update: ct = ft. ct−1+it. c̃t
- Output Gate: ot = σ(⟨Z⟩o)
- Hidden State Update: ht = ot. tanh(ct)

3.2.3 Encoder module 

The encoder receives a univariate or multivariate time series 

sequence of shape [batch_size, sequence_length, input_size]. 

It processes the input sequentially, time step by time step, 

using a single shared QLSTM cell. The encoder maintains and 

updates two internal states, the hidden state h(t) and the cell 

state c(t), initialized to zero. At the end of the input sequence, 

the final hidden and cell states are passed to the decoder as a 

summary of the input history. Figure 4 is a detailed schematic 

description that illustrate the architecture of our hybrid 

quantum encoder. 

Figure 4. Architecture of the encoder 

3.2.4 Decoder module 

The decoder is designed to autoregressively generate a 

sequence of future values, given the encoded states. It reuses 

the QLSTM architecture. At each step, the decoder updates its 
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hidden state using the quantum cell and generates the next 

prediction via a classical linear layer applied to the hidden 

state. This output becomes the input for the next time step. The 

decoder iterates for a fixed number of steps equal to the 

prediction horizon (7 days in our work), and the outputs are 

concatenated into a final prediction vector of shape 

[batch_size, sequence_length, input_size]. Figure 5 illustrates 

the architecture of our hybrid quantum decoder.  

Figure 5. Architecture of the decoder 

3.3 Comparative baseline 

We compare our proposed QLSTM model with a classical 

LSTM model that use an identical architecture to the QLSTM 

model but with classical LSTM cells. 

3.4 Model training and hyperparameters 

To evaluate quantum enhancements of our proposed model, 

we compared it against a classical encoder-decoder LSTM. To 

ensure a fair Comparison between the classical LSTM and 

QLSTM we use the same training hyperparameters. This 

controlled comparison isolates the effects of quantum 

components. 

3.4.1 Model architecture hyper parameters 

Number of lstm layers. We use the same number of layers  

(1 layer for the encoder and decoder). 

Hidden Units per Layer. We use the same number of hidden 

units (64 hidden units for each model). 

Input Sequence Length. We use the same sequence length 

(7 time steps for input/output sequence length). 

3.4.2 Training hyperparameters 

Optimization. Adam optimizer with learning rate Lr = 0.01. 

Batch Size. We use the same batch size (batch size =32). 

Number of Epochs. We use the same number of epochs 

(num_epochs =100 Epochs). 

Loss Function. MSE Loss Function. 

3.4.3 Regularization hyperparameters 

Early Stopping. Employed early stopping with patience=5 

to prevent overfitting. 

3.4.4 Quantum-Specific hyperparameters 

Number of Qubits. This is a new hyperparameter specific to 

the QLSTM. (n-qubits=4). 

Quantum Circuit Depth. The depth of the quantum circuit 

can impact performance (n-Layers=1).  

The choice of using 4 qubits and a single-layer depth in the 

parameterized quantum circuit was not arbitrary, but rather the 

result of a series of systematic experiments. 

3.5 Evaluation metrics 

Performance assessment incorporates multiple quantitative 

metrics as shown in Table 2. 

Table 2. Evaluation metrics 

Metric Formula 

RMSE 𝑹𝑴𝑺𝑬 = √
𝟏

𝑵
∑ (𝒚𝒊 − ŷ𝒊)

𝟐𝑵
𝒊=𝟏

MSE 𝑴𝑺𝑬 =
𝟏

𝑵
∑ (𝒚𝒊 − ŷ𝒊)

𝟐𝑵
𝒊=𝟏

MAE 𝑴𝑨𝑬 =
𝟏

𝑵
∑ |𝒚𝒊 − ŷ𝒊|
𝑵
𝒊=𝟏

R-squared (R²) 𝑹𝟐 = 𝟏 − (
∑(𝒚𝒊− ŷ𝒊)

𝟐

∑(𝒚𝒊− ȳ )
𝟐
) 

Convergence Speed Epochmin=argmin (ValLossepoch) 

Training Stability σtrain=STD (TrainLossepoch) 

Validation Stability σval=STD (ValLossepoch) 

Generalization Mean μval=Mean (ValLossepoch) 

Generalization Median Medianval=Median (ValLossepoch) 

3.6 Implementation 

The experiments were conducted on the Anaconda3 which 

provides an environment for classical and quantum computing. 

The classical LSTM and QLSTM models were implemented 

using PyTorch and PennyLane. Quantum simulations were 

performed using PennyLane’s “default.qubit” simulator 

(CPU). 

4. EXPERIMENTAL RESULTS

4.1 Performance comparison 

This section presents a comparative evaluation of four 

models: Univariate LSTM (univLSTM), Univariate Quantum 

LSTM (univQLSTM), Multivariate LSTM (multivLSTM), 

and Multivariate Quantum LSTM (multivQLSTM) based on 

multiple standard regression metrics, including root mean 

square error (RMSE), mean absolute error (MAE), R² score, 

convergence speed, Stability and generalization ability. The 

analysis is supplemented with visualizations depicting the 
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correspondence between true and predicted values, loss 

evolution during training and rmse variation per predicted 

sequence of 7 days. All experiments were conducted on the 

preprocessed UCI Household Power Consumption dataset 

under identical training conditions. 

 

4.2 Key findings 
 

The experimental results demonstrate a consistent 

improvement across all key metrics when replacing standard 

LSTM architectures with Quantum-enhanced LSTMs 

(QLSTMs). 

 

4.2.1 Enhanced accuracy 

As shown in Table 3, UnivQLSTM achieved a 25.4% 

reduction in RMSE and 19.0% reduction in MAE compared to 

UnivLSTM, while the MultivQLSTM achieved the best 

overall performance with the lowest RMSE (392.58) and MAE 

(295.03), representing 33.6% and 32.2% improvements over 

MultivLSTM, respectively. In the univariate setting, the 

QLSTM achieves a marginally lower test loss (MSE = 0.0291) 

compared to the traditional LSTM (MSE = 0.0296), 

suggesting a slight but measurable enhancement in modeling 

sequential dependencies. However, the most significant 

improvement emerges in the multivariate scenario, where the 

QLSTM (MSE = 0.0270) substantially outperforms its 

classical counterpart (MSE = 0.0362). This notable reduction 

in error, approximately 25.4% relative improvement, indicates 

that the QLSTM’s hybrid quantum-classical structure is 

particularly effective at capturing complex, high-dimensional 

temporal patterns. The comparative forecast results plots 

reinforce the quantitative results. A direct comparison of the 

true vs. predicted value plots clearly demonstrates the superior 

temporal modeling capabilities of quantum-enhanced LSTM 

models (Figure 6, Figure 7). The MultivQLSTM in particular 

achieves near-overlap with the actual series across the entire 

prediction window, closely following both gradual trends and 

sudden transitions. By contrast, classical LSTM models 

(Figure 8, Figure 9), especially in the multivariate case, tend 

to produce smoothed predictions that fail to capture volatility 

and result in large deviations during periods of abrupt change. 

These findings visually underscoring the value of quantum 

circuits in encoding complex temporal and inter-variable 

dependencies. 
 

 
 

Figure 6. Energy consumption prediction (UnivQLSTM) 

 

 
 

 Figure 7. Energy consumption prediction (MultivQLSTM) 
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Figure 8. Energy consumption prediction (UnivLSTM) 

 

 
 

Figure 9. Energy consumption prediction (MultivLSTM) 

 

  
 

Figure 10. Rmse variation per sequence (UnivQLSTM) 
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Figure 11. Rmse variation per sequence (MultivQLSTM) 

 

 
 

Figure 12. Rmse variation per sequence (UnivLSTM) 

 

 
 

Figure 13. Rmse variation per sequence (MultivLSTM) 
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Table 3. Predictive accuracy metrics 

 

Metric 
Univ 

LSTM 

Univ 

QLSTM 

Multiv 

LSTM 

Multiv 

QLSTM 

RMSE 529.6008 395.0070 590.8674 392.5802 

MAE 382.6524 309.8419 435.3688 295.0266 

Final Test Loss 

(MSE) 
0.0296 0.0291 0.0362 0.0270 

 

To further evaluate temporal robustness and reliability, we 

analysed the RMSE variation per predicted sequence (using 7-

day forecast blocks) for all models. 

This analysis provides insight into not only average 

prediction accuracy but also the consistency of each model 

across time. The RMSE variation per predicted sequence 

analysis highlights a clear advantage for quantum-enhanced 

models. Both univariate and multivariate QLSTM (Figure 10, 

Figure 11) maintain lower and more stable RMSE values 

across all rolling 7-day forecast blocks, with markedly fewer 

and less severe error spikes. In contrast, classical LSTM 

models (Figure 12, Figure 13), particularly in the multivariate 

configuration, suffer from frequent and pronounced bursts of 

high error, reflecting instability and sensitivity to changing 

data patterns. These results reinforce the quantum models’ 

superiority not only in average predictive accuracy but also in 

ensuring reliable performance across all time periods, an 

essential attribute for robust temporal forecasting in practical 

applications. 

 

4.2.2 Stronger predictive power 

Table 4 illustrate comparison of predictive power metric of 

both models. The negative R² values for the UnivLSTM and 

MultivLSTM models (-0.1249, -0.4002) indicate complete 

failure to capture data trends (i.e., poor correlation between 

predicted and actual values). In contrast, the quantum-

enhanced models achieve substantially better performance, 

with UnivQLSTM and MultivQLSTM yielding positive R² 

values of 0.3323 and 0.3819, respectively. This performance 

differential demonstrates that quantum LSTM architectures 

can effectively capture temporal dependencies and explain 

approximately 52-130% of the variance in the data, 

representing a significant improvement over their classical 

counterparts. 

 

Table 4. predictive power metric 

 
Metric Univ 

LSTM 

Univ 

QLSTM 

Multiv 

LSTM 

Multiv 

QLSTM 

R² -0.1249 0.3323 -0.4002 0.3819 

 

 

 
 

Figure 14. Train vs validation loss (MultivLSTM) 

 

 
 

Figure 15. Train vs validation loss (MultivQLSTM) 
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4.2.3 Improved stability 

As shown in Table 5 the quantum models demonstrated 

lower standard deviations in training and validation loss (e.g., 

UnivQLSTM: 0.0078 train loss STD, 0.0036 val loss STD), 

indicating more stable learning behavior.  

 

Table 5. Stability of learning metrics 

 

Metric 
Univ 

LSTM 

Univ 

QLSTM 

Multiv 

LSTM 

Multiv 

QLSTM 

Train Loss 

STD 
0.009487 0.007822 0.013700 0.008108 

Val Loss 

STD 
0.007407 0.003628 0.006635 0.006463 

 

4.2.4 Convergence speed 

As shown in Figure 14 and Figure 15 the classical 

MultivLSTM converged fastest (epoch 31), while the 

MultivQLSTM took longer (epoch 100), suggesting that 

quantum-inspired training may require more iterations for 

optimization (see Table 6).  

 

Table 6. Convergence speed metric 

 

Metric 
Univ 

LSTM 

Univ 

QLSTM 

Multiv 

LSTM 

Multiv 

QLSTM 

Convergence 

Speed 
epoch49 epoch81 epoch 31 epoch 100 

 

4.2.5 Generalization performance 

As illustrated in Table 7 the quantum variants 

(UnivQLSTM, MultivQLSTM) exhibited superior 

generalization to unseen data, as shown by lower 

generalization median and mean values compared to classical 

LSTMs. 

 

Table 7. Generalization performance metrics 

 

Metric 
Univ 

LSTM 

Univ 

QLSTM 

Multiv 

LSTM 

Multiv 

QLSTM 

Generalization 

Mean 
0.038339 0.036590 0.043796 0.038157 

Generalization 

Median 
0.037027 0.035090 0.040966 0.036636 

 

 

5. DISCUSSION 

 

The experimental results demonstrate the advantages of 

integrating quantum computing principles into deep learning 

models for time series forecasting of smart home energy 

consumption. This section explores the theoretical 

underpinnings of these performances, focusing on how 

quantum computing principles, such as superposition, 

entanglement, and quantum parallelism, enhance the capacity 

of LSTMs to capture complex temporal dependencies. 

 

5.1 Quantum parallelism and enhanced feature 

representation 

 

Classical LSTMs process sequential data through 

deterministic weight updates, which can struggle with high-

dimensional or noisy time-series data due to limited 

representational capacity. In contrast, QLSTMs leverage 

quantum parallelism, enabling them to explore multiple states 

simultaneously during training. This property allows QLSTMs 

to: 

(1) Efficiently encode temporal patterns in a high-dimensional 

Hilbert space, capturing nonlinear relationships that 

classical LSTMs may miss. 

(2) Mitigate the curse of dimensionality in multivariate 

settings (as seen in MultivQLSTM’s superior RMSE of 

392.58 vs. MultivLSTM’s 590.87), where quantum state 

superposition helps model interactions between variables 

more effectively. 

The improved R² scores of QLSTMs (UnivQLSTM: 0.3323, 

MultivQLSTM: 0.3819 vs. negative values for classical 

LSTMs) suggest that quantum enhancements provide a better 

fit to the underlying data distribution, likely due to richer 

feature embeddings. 

 

5.2 Entanglement and long-term dependency learning 

 

A key challenge in classical LSTMs is their reliance on 

gating mechanisms (input, forget, and output gates) to manage 

long-term dependencies, which can fail when gradients vanish 

or explode. Quantum entanglement, a phenomenon where 

qubits remain correlated even when separated, offers a 

theoretical advantage: 

(1) Entangled quantum gates in QLSTMs may strengthen 

memory retention across time steps, explaining their lower 

validation loss STD (UnivQLSTM: 0.0036 vs. UnivLSTM: 

0.0074). 

(2) This aligns with the smoother convergence observed in 

QLSTMs, where entanglement could stabilize gradient 

flow during backpropagation. 

 

5.3 Quantum noise resistance and generalization 

 

Classical LSTMs are sensitive to noise and overfitting, as 

evidenced by the higher train/val loss STD of MultivLSTM 

(0.0137/0.0066) compared to MultivQLSTM (0.0081/0.0065). 

Quantum models inherently exploit noise resilience through: 

(1) Probabilistic state measurements, which may act as a 

natural regularizer, reducing overfitting. 

(2) Quantum interference effects, which can cancel out 

spurious correlations in training data, leading to better 

generalization (lower generalization mean/median in 

QLSTMs; Table 7). 

 

5.4 Convergence dynamics: Quality vs. speed trade-off 

 

While QLSTMs required more epochs to converge 

(UnivQLSTM: epoch 81; MultivQLSTM: epoch 100) than 

classical LSTMs (MultivLSTM: epoch 31), their final 

performance was superior. Slower convergence often yields 

globally optimal solutions. Theoretically, this suggests: 

(1) Quantum optimization explores the loss landscape more 

thoroughly, avoiding shallow local minima that trap 

classical models. 

(2) The lower final test loss of MultivQLSTM (0.0270 vs. 

MultivLSTM’s 0.0362) supports this hypothesis. 

 

5.5 Implications 

 

These results highlight the potential of quantum deep 

learning for energy forecasting tasks. By leveraging the 

computational richness of quantum circuits, the QLSTM 

model is able to capture more nuanced temporal relationships, 
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leading to more accurate and efficient predictions. This has 

practical implications for smart home energy management 

systems, enabling more adaptive and data-driven control 

strategies. 

 

5.6 Limitations and future work 

 

While the results are promising, they are constrained by the 

use of quantum simulation rather than real quantum hardware. 

Current quantum processors still face limitations such as 

decoherence (loss of quantum state stability) and gate errors 

(imperfect operations), which degrade QLSTM performance. 

These issues limit circuit depth and scalability. Possible 

solutions include error mitigation techniques (e.g., dynamical 

decoupling), hybrid quantum-classical architectures to reduce 

circuit complexity, and fault-tolerant designs leveraging 

quantum error correction. Advances in qubit coherence times 

and high-fidelity gates are critical for practical deployment. 

Future work will focus on: 

 

5.6.1 Deployment on real quantum hardware 

The present study relied on quantum simulations due to the 

current limitations of available quantum devices. Future work 

should involve testing the QLSTM architecture on real 

quantum hardware to evaluate the model’s resilience to noise, 

gate fidelity issues, and decoherence effects. 

 

5.6.2 Ansatz optimization  

While the proposed hybrid quantum-classical LSTM model 

has demonstrated improved performance in terms of RMSE 

and other evaluation metrics, the current quantum circuit 

architecture may not represent the optimal configuration. 

Future research should explore alternative quantum circuit 

designs, including variations in the number of qubits, depth, 

and types of parameterized gates. Additionally, testing 

different circuit layer configurations could reveal architectures 

that are better suited for learning temporal patterns in energy 

consumption data. Such exploration would not only enhance 

the predictive capability of the model but also contribute to a 

deeper understanding of the interplay between quantum circuit 

complexity and learning performance in hybrid frameworks. 

 

5.6.3 Extension to multihousehold datasets 

Our experiments were conducted on a single-household 

dataset. A lo6gical next step is to scale the model to handle 

larger, multivariate datasets that reflect the diversity and 

heterogeneity of energy usage across different households and 

regions. 

 

5.6.4 Exploration of alternative quantum circuits 

Further investigation into the design and optimization of 

variational quantum circuits may reveal circuit architectures 

better suited to sequential data. Techniques such as quantum 

convolution and quantum attention mechanisms could be 

explored in future implementations. 

 

5.6.5 Real-time integration and edge deployment 

With the growing ubiquity of edge devices and IoT 

frameworks, integrating QLSTM models into real-time 

systems for dynamic load forecasting and energy management 

presents a valuable research trajectory. This will require 

careful consideration of computational efficiency and latency 

in edge environments. 

 

5.6.6 Robustness and interpretability studies 

As quantum models gain traction, ensuring their robustness 

to data anomalies and their interpretability from a decision-

making standpoint becomes increasingly important. 

Investigating explainability methods tailored to hybrid 

quantum-classical models would be a valuable contribution. 

 

 

6. CONCLUSION 

 

Our study explored the integration of quantum deep 

learning into the time series forecasting of energy 

consumption in smart homes, with a particular focus on a 

hybrid quantum encoder-decoder LSTM model implemented 

using the PennyLane framework. By leveraging the UCI 

Individual Household Electric Power Consumption dataset, 

we conducted a comparative evaluation between the proposed 

quantum models and a conventional LSTM architectures. 

The findings clearly demonstrate that the quantum-

enhanced models not only deliver improved predictive 

accuracy, as evidenced by lower RMSE and MAE, but also 

exhibits more efficient training dynamics and stronger 

generalization to unseen data. Most notably, the QLSTM 

(UnivQLSTM and MultivQLSTM) produced forecasts that 

more closely aligned with the actual energy consumption 

patterns. 

These results not only validate the potential of variational 

quantum circuits for modeling complex consumption 

dynamics but also highlight their inherent efficiency in 

optimization processes. The quantum deep learning model, 

even in its simulated form, offers a meaningful step forward in 

addressing the complexity and real-time demands of smart 

home energy management. By incorporating quantum 

computational elements, the model effectively captures non-

linear temporal dependencies that may otherwise be 

underrepresented in traditional frameworks. 

The limitations identified in this work, particularly 

regarding computational overhead, present clear pathways for 

future research. As quantum hardware continues to advance, 

the implementation of these models on physical quantum 

processors represents the most immediate research priority. 

Subsequent investigations should focus on developing hybrid 

architectures that maintain quantum advantages while 

improving computational tractability, as well as rigorous 

testing across diverse household energy profiles. The 

methodological framework developed here provides a 

foundation for exploring quantum machine learning 

applications in related temporal prediction domains. 

This research contributes to the growing body of evidence 

supporting practical quantum advantage in machine learning 

applications. By successfully applying quantum-enhanced 

models to a concrete sustainability challenge, we have 

demonstrated that near-term quantum technologies can 

address real-world problems despite current hardware 

limitations. 

 

 

REFERENCES  

 

[1] Enerdata. (2025). Algeria Energy Information. Available 

from: https://www.enerdata.net/estore/energy-

market/algeria/. 

[2] eurostat. (2025). Energy consumption in households. 

Availabless from: https://ec.europa.eu/eurostat/statistics-

1076



 

explained/index.php?title=Energy_consumption_in_hou

seholds. 

[3] Atzori, L., Iera, A., Morabito, G. (2010). The internet of 

things: A survey. Computer networks, 54(15): 2787-

2805. https://doi.org/10.1016/j.comnet.2010.05.010 

[4] Phung, M.D., De La Villefromoy, M., Ha, Q. (2017). 

Management of solar energy in microgrids using IoT-

based dependable control. In 2017 20th International 

Conference on Electrical Machines and Systems 

(ICEMS), Sydney, NSW, Australia, pp. 1-6. 

https://doi.org/10.1109/ICEMS.2017.8056441 

[5] Sampaio, H.V., Koch, F., Westphall, C.B., Boing, 

R.D.N., Cruz, R.N.S. (2021). Autonomic management of 

power consumption with IOT and fog computing. arXiv 

preprint arXiv:2105.03009. 

https://doi.org/10.48550/arXiv.2105.03009 

[6] Dutta, P.K., El-kenawy, S.M., Ali, G., Dhoska, K. 

(2023). An Energy consumption monitoring and control 

system in buildings using internet of things. Babylonian 

Journal of Internet of Things, 2023: 38-47. 

https://doi.org/10.58496/BJIoT/2023/006 

[7] Elgabri, S.R., Hassanein, M.S., El-Sawy, A.A., Taha, A. 

(2023). REAL-time energy consumption framework-

based IOT sensors with blockchain. Journal of Southwest 

Jiaotong University, 58(4): 10. 

https://doi.org/10.35741/issn.0258-2724.58.4.46 

[8] Saadawi, E.M., Abohamama, A.S., Alrahmawy, M.F. 

(2022). IoT-based optimal energy management in smart 

homes using harmony search optimization technique. 

https://doi.org/10.21203/rs.3.rs-1817009/v1 

[9] Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, 

M., Ayyash, M. (2015). Internet of things: A survey on 

enabling technologies, protocols, and applications. IEEE 

Communications Surveys & Tutorials, 17(4): 2347-

2376. https://doi.org/10.1109/COMST.2015.2444095 

[10] Hochreiter, S., Schmidhuber, J. (1997). Long short-term 

memory. Neural Computation, 9(8): 1735-1780. 

https://doi.org/10.1162/neco.1997.9.8.1735 

[11] Gers, F.A., Schmidhuber, J., Cummins, F. (2000). 

Learning to forget: Continual prediction with LSTM. 

Neural Computation, 12(10): 2451-2471. 

https://doi.org/10.1162/089976600300015015 

[12] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, 

D., Bougares, F., Schwenk, H., Bengio, Y. (2014). 

Learning phrase representations using RNN encoder-

decoder for statistical machine translation. arXiv preprint 

arXiv:1406.1078. 

https://doi.org/10.48550/arXiv.1406.1078 

[13] Liu, X., Li, Y., Zhang, X., Lu, W., Xiong, M. (2020). 

Energy-efficient resource optimization in green 

Cognitive Internet of Things. Mobile Networks and 

Applications, 25: 2527-2535. 

https://doi.org/10.1007/s11036-020-01510-w 

[14] Kalinga, E.A., Bazila, S., Ibwe, K., Abdalla, A.T. (2023). 

Cognitive Internet of Things-based framework for 

efficient consumption of electrical energy in public 

higher learning institutions. Journal of Electrical Systems 

and Information Technology, 10(1): 19. 

https://doi.org/10.1186/s43067-023-00079-0 

[15] Rahmani, P., Arefi, M. (2024). Improvement of energy-

efficient resources for Cognitive Internet of Things using 

learning automata. Peer-to-Peer Networking and 

Applications, 17(1): 297-320. 

https://doi.org/10.1007/s12083-023-01565-y 

[16] Benedetti, M., Lloyd, E., Sack, S., Fiorentini, M. (2019). 

Parameterized quantum circuits as machine learning 

models. Quantum Science and Technology, 4(4): 

043001. https://doi.org/10.1088/2058-9565/ab4eb5 

[17] Schuld, M., Petruccione, F. (2021). Machine Learning 

with Quantum Computers, Berlin: Springer. pp. 163-169. 

https://doi.org/10.1007/978-3-030-83098-4 

[18] Sagingalieva, A., Komornyik, S., Senokosov, A., Joshi, 

A., Sedykh, A., Mansell, C., Melnikov, A. (2023). 

Photovoltaic power forecasting using quantum machine 

learning. arXiv preprint arXiv:2312.16379. 

https://doi.org/10.48550/arXiv.2312.16379 

[19] Nutakki, M., Koduru, S., Mandava, S. (2024). Quantum 

support vector machine for forecasting house energy 

consumption: a comparative study with deep learning 

models. Journal of Cloud Computing, 13(1): 105. 

https://doi.org/10.1186/s13677-024-00669-x 

[20] Andrés, E., Cuéllar, M.P., Navarro, G. (2022). On the use 

of quantum reinforcement learning in energy-efficiency 

scenarios. Energies, 15(16): 6034. 

https://doi.org/10.3390/en15166034 

[21] Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M. 

(2013). Internet of Things (IoT): A vision, architectural 

elements, and future directions. Future Generation 

Computer Systems, 29(7): 1645-1660. 

https://doi.org/10.1016/j.future.2013.01.010 

[22] Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., 

Wiebe, N., Lloyd, S. (2017). Quantum machine learning. 

Nature, 549(7671): 195-202. 

https://doi.org/10.1038/nature23474 

[23] Dunjko, V., Briegel, H.J. (2018). Machine learning & 

artificial intelligence in the quantum domain: A review 

of recent progress. Reports on Progress in Physics, 81(7): 

074001. https://doi.org/10.1088/1361-6633/aab406 

[24] Hebrail, G., Berard, A. (2012). Individual household 

electric power consumption data set. UCI Machine 

Learning Repository. Irvine, CA: University of 

California, School of Information and Computer. 

[25] Chen, S.Y.C., Yoo, S., Fang, Y.L.L. (2022). Quantum 

long short-term memory. In ICASSP 2022-2022 IEEE 

International Conference on Acoustics, Speech and 

Signal Processing (ICASSP), Singapore, pp. 8622-8626. 

https://doi.org/10.1109/ICASSP43922.2022.9747369 

 

 

NOMENCLATURE 

 

Mathematical Symbols 

𝒚𝒕  Actual energy consumption at time step t (kW) 

ŷ𝒕 Predicted energy consumption at time step t (kW) 

N Total number of predictions 

Xt 

⊗ 

Input power consumption at time t (kW) 

denotes the tensor product (Kronecker product) 

Abbreviations and Acronyms  

IoT Internet of Things 

CIoT Cognitive Internet of Things 

QCIoT Quantum Cognitive Internet of Things 

LSTM Long Short-Term Memory 

QLSTM Quantum Long Short-Term Memory 

RMSE Quantum Long Short-Term Memory 

MAE Mean Absolute Error 

MSE 

R² 

Mean Squared Error 

Coefficient of Determination 

QRL Quantum Reinforcement Learning 
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NaN Not a Number 

MQTT Message Queuing Telemetry Transport 

UCI University of California, Irvine (dataset source) 

Quantum-Specific Terms 

RY/RZ 

gates 

 Quantum rotation operators (Y/Z-axis) 

Φ trainable parameters for qubit i{αᵢ, βᵢ, γᵢ} 

n_qubits Number of qubits 

Pauli-Z Quantum observable for measurement 

n_layers Number of layers (depth of quantum circuit) 

CNOT Controlled-NOT entanglement gate 

∣xt⟩ Quantum-encoded input at time t 
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