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This study addresses the high costs and emissions associated with diesel freight operations 

on the busy Dammam–Riyadh corridor by developing a hybrid, data-driven optimization 

framework that combines regression modeling, the Taguchi method, and a Genetic 

Algorithm (GA). First, a multiple linear regression model was trained on 30 real freight 

trips validated via 5-fold cross-validation and reporting R² = 0.87 and RMSE = 3,200 SAR 

to predict total trip cost from six operational variables. Next, a Taguchi L9 orthogonal array 

was used to perform a sensitivity analysis under the “smaller-is-better” Signal-to-Noise 

(S/N) ratio, identifying wagon count and trip duration as the most influential factors, with 

a minimum predicted cost of 42,388.64 SAR. Finally, we applied a DEAP-based GA 

(population = 50; generations = 100; blend crossover; Gaussian mutation) to globally 

optimize all six variables within empirically derived bounds, achieving a predicted cost of 

34,054.33 SAR (≈ 44% reduction versus the dataset mean). Key assumptions include 

linear cost relationships in the regression and fixed stop/truck counts during Taguchi 

screening; limitations stem from the single-corridor dataset. This combined approach 

balances rapid factor screening with precise global optimization, offering both strategic 

insights and actionable recommendations for reducing freight transportation costs while 

maintaining operational reliability.  
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1. INTRODUCTION

The efficient movement of goods by rail plays an important 

role in supporting a country’s economic development, 

especially in areas with fast industrial expansion and growing 

cities [1]. Improving how diesel freight trains operate, 

particularly on busy routes like the Dammam–Riyadh 

corridor-can help reduce costs and improve delivery 

performance [2]. The Dammam–Riyadh corridor carries over 

2 million TEU annually and represents 40% of Saudi freight 

volumes [3]. This corridor connects Saudi Arabia’s main port 

city with its capital, making it essential for transporting goods 

and raw materials across the country.  

To improve efficiency, this study uses optimization 

techniques, such as the Taguchi method and Genetic 

Algorithm (GA), which aim to lower costs while meeting 

logistical requirements. The Taguchi method helps identify the 

best settings for key factors like travel time, fuel use, and 

maintenance schedules [4].  

Challenges include mixed-mode transfers, variable load 

profiles, and capacity constraints on both highway and rail 

networks. At the same time, genetic algorithms, based on 

evolutionary principles, can find efficient routes and schedules 

that adapt to changing conditions and unexpected delays [2]. 

Combining these methods provides a strong and flexible 

approach to improving the performance and cost-effectiveness 

of diesel train operations. Using algorithms to optimize routes 

has become essential for reducing congestion, ensuring on-

time arrivals, and increasing the economic value of 

transportation assets. This is especially important for 

developing countries, where data limitations and infrastructure 

challenges make efficient planning even more critical [5]. 

Successfully improving transport systems requires identifying 

key influencing factors, organizing common problems, and 

carefully choosing the right inputs to design effective 

solutions.  

The primary objectives of this study are threefold: (a) to 

develop and rigorously validate a multiple linear regression 

model that accurately predicts freight trip costs based on key 

operational variables; (b) to systematically screen and rank 

these variables using the Taguchi L9 orthogonal array, thereby 

identifying the most influential factors affecting cost 

variability; and (c) to leverage a GA for high-resolution, global 

optimization of all control parameters within empirically 

derived bounds.  

It hypothesizes that this hybrid Taguchi + GA framework 

will achieve at least a 30% reduction in total trip cost 

compared to baseline operations, by combining rapid 

experimental screening with precise evolutionary search. 
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2. THEORETICAL FRAMEWORKS FOR TRAIN 

OPTIMIZATION 
 

Optimizing train operations involves multiple 

interconnected challenges such as train routing, scheduling, 

and the efficient use of resources. These decisions are often 

dependent on each other and must be addressed together to 

improve the overall performance of the railway system. 

Mathematical methods such as linear programming, mixed-

integer programming, and dynamic programming offer solid 

tools for modeling and solving these complex problems [6]. 

Train scheduling is often modeled using mixed-integer 

nonlinear programming, which helps determine the best 

departure and arrival times while considering factors like track 

availability, travel demand, and operational rules [7]. Since 

reducing total costs is a key goal, recent models include more 

detailed factors such as fuel use, crew expenses, and 

infrastructure costs [8]. Lagrangian relaxation techniques 

allow large problems to be broken into smaller, more 

manageable subproblems, such as individual train service 

tasks that can be solved efficiently using dynamic 

programming to improve overall profitability [9]. Some newer 

models aim to optimize both scheduling and resource 

allocation at the same time. These integrated approaches are 

especially useful in situations with variable demand and 

limited infrastructure [9]. In addition, multi-objective 

optimization has been introduced to create fairer timetables 

that consider both system efficiency and passenger satisfaction 

[10-12]. Because railway systems are exposed to uncertainties 

such as equipment failures, bad weather, or human error, it is 

important to include robustness in the optimization process. 

Robust optimization methods are designed to find solutions 

that continue to work well even when unexpected problems 

occur [13, 14]. Similarly, stochastic programming allows 

planners to include probabilities and future uncertainty in their 

models, aiming to minimize risk and expected costs by 

planning for a range of possible scenarios (Figure 1). 

An alternative method, approximate dynamic 

programming, provides a flexible approach to handle complex, 

sequential decision-making problems often found in 

transportation and logistics. It helps develop practical 

algorithms that work well even when exact solutions are 

difficult to compute. 

 

 
 

Figure 1. The first successful container handling operation 

by railway in KSA 

 

2.1 Current research on freight train optimization 

 

Recent research in freight train optimization focuses on 

improving operational efficiency, reducing costs, and 

enhancing service reliability. A major area of interest is the 

development of advanced scheduling algorithms that can 

respond to changing conditions and adjust train operations in 

real-time. These algorithms often use predictive models to 

estimate future demand and identify potential disruptions, 

allowing planners to make proactive changes to train 

schedules and resource use. Optimization techniques are also 

applied to disruption management, especially in cases 

involving infrastructure problems or limited rolling stock 

capacity. In such scenarios, tools like integer programming 

and rerouting models help reduce delays and maintain service 

continuity. Another growing research direction is the 

integration of multiple transportation modes, such as rail, road, 

and sea, into intermodal freight networks. Coordinating freight 

movement across these modes can lower total logistics costs 

and shorten delivery times. In mixed-use networks, 

researchers are exploring optimization models that balance 

passenger and freight services, aiming to create efficient 

schedules and freight allocation plans that maximize overall 

profitability [15]. At the same time, emerging technologies, 

including GPS tracking, onboard sensors, and data analytics, 

are playing an increasingly important role in improving freight 

operations. These tools provide real-time data on the location 

and condition of trains and cargo, enabling better monitoring 

and control, as shown in Figure 2. 

 

 
 

Figure 2. Freight train on the Dammam route in the 

Kingdom of Saudi Arabia 

 

Bohlin et al. [16] developed a multistage freight train 

formation optimization using a mixed-integer programming 

approach and Lagrangian relaxation, demonstrating cost 

savings of up to 18% on long-haul corridors. 

Ozturk and Patrick [17] formulated an optimization model 

for urban rail transit freight transport based on a hub-and-

spoke network, achieving a 12% reduction in total 

transportation cost through improved train-to-station 

assignments. 

Lin et al. [18] optimized connection service networks for 

large-scale rail systems via a GA-based heuristic, improving 

network throughput by 15% under real-world constraints. 

In addition, machine learning algorithms are being used to 

process large amounts of historical data to find patterns and 

predict future events. This helps optimize scheduling, 

anticipate equipment failures, and improve operational 

performance [19]. In parallel, research in liner shipping 

optimization and automatic train operation systems is 

expanding through advanced modeling approaches. Studies 

are being categorized into areas such as train movement 

modeling, trajectory planning, and speed control, which 

provide valuable guidance for the development of automated 
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and intelligent freight systems [7, 20]. 

By incorporating these innovations ranging from artificial 

intelligence to real-time data and integrated planning, freight 

rail operators can significantly enhance the efficiency, 

reliability, and cost-effectiveness of their services. Many 

works were carried out over optimization of foreign 

transportation [21]. 

2.2 Limitations in current freight optimization research 

and future directions 

Although significant progress has been made in the 

development of optimization methods for freight train 

operations, several important limitations persist in the current 

literature. One major shortcoming is the lack of integrated 

optimization frameworks that account for multiple, 

interdependent components of railway operations. Many 

existing studies focus narrowly on individual aspects such as 

scheduling or resource assignment without capturing the 

interactions between them, which are critical for real-world 

implementation. Another commonly observed limitation is the 

use of simplified assumptions that fail to reflect real 

operational complexities. Models often ignore practical 

constraints such as equipment availability, fluctuating 

demand, network capacity limitations, and the impact of 

delays or disruptions. As a result, the solutions generated may 

appear optimal in theory but perform poorly in practice. For 

instance, the use of excessively conservative capacity buffers 

can lead to the underutilization of infrastructure, reducing 

efficiency and throughput. 

Furthermore, much of the current literature emphasizes 

theoretical development with limited validation using actual 

case studies or operational data. The lack of empirical 

evaluation makes it difficult to assess the feasibility and 

effectiveness of the proposed optimization approaches in real-

world applications [22-24].  

The study begins by establishing the key performance 

indicators (KPIs) used to assess the efficiency and cost-

effectiveness of the freight rail system. These indicators 

include critical measures such as fuel consumption, travel 

time, maintenance expenses, and operational reliability. 

Following this, the primary control variables influencing 

system performance are identified, such as train speed, load 

capacity, scheduling methods, and maintenance planning. 

Once the objectives (e.g., cost minimization and service 

reliability) and constraints are clearly defined, the 

optimization process is carried out. This involves applying 

suitable algorithms to explore different combinations of 

control factors to identify the most efficient operational setup. 

The proposed optimization strategies are then validated using 

actual operational data and simulation models to ensure 

practical relevance. The optimization results are analyzed to 

determine the optimal set of control parameters that achieves 

the lowest total operating cost while maintaining the required 

service standards. This approach enables the development of a 

comprehensive evaluation framework that can also be 

extended to estimate the social costs associated with railway 

development, including operator costs, user costs, and 

externalities such as environmental impacts [25]. Furthermore, 

incorporating health-oriented prognostic control systems and 

global optimization techniques has shown promising potential 

in reducing long-term maintenance costs [26]. 

This study is based on the hypothesis that the integration of 

data-driven modeling techniques with advanced optimization 

algorithms can significantly improve the cost efficiency and 

operational performance of freight train systems operating 

under real-world conditions. The main objective of the 

research is to develop a hybrid optimization framework that 

combines regression analysis, Taguchi method and GA to 

identify optimal control strategies to minimize freight 

transportation costs on a critical corridor, specifically on the 

Dammam to Riyadh freight route. To achieve this goal, the 

study pursues the following three main objectives: (a) 

Construction of a reliable and interpretable regression model 

that quantifies the relationship between key operational 

variables such as travel time, number of wagons, freight 

weight, truck use and emissions and the total cost of freight 

transportation, using real data from road and rail transport; (b) 

Apply the Taguchi method to perform sensitivity analysis and 

identify the most influential parameters affecting freight train 

performance so that a structured experimental design can be 

created for initial optimization within practical constraints; (c) 

Implement a GA that uses the trained regression model as a 

fitness function and enables global optimization with 

continuous variables to determine the most cost-effective 

configuration of operating parameters while maintaining 

logistical and environmental constraints. This integrated 

approach seeks to bridge theoretical optimization methods 

with practical, data-backed railway operations, providing both 

a strategic and implementable solution to enhance the 

sustainability and economic viability of freight transportation. 

2.3 Experimental procedures 

This study was conducted using actual freight operation 

data collected along the Dammam–Riyadh corridor, one of the 

primary east-west logistics routes in the Kingdom of Saudi 

Arabia. The experimental procedures involved coordinated 

data acquisition from both high-speed highway freight trips 

and railway station records, allowing a comparative and 

integrative analysis of transportation costs under varying 

operational conditions [27]. 

2.4 Data collection from highway freight trips 

Highway freight data was gathered from logistics records of 

trucks departing from the Dammam industrial zone to 

commercial hubs in Riyadh via the high-speed road network. 

Each trip record included detailed inputs on: 

• Trip duration (hours): measured from departure to

unloading.

• Number of trucks deployed per shipment.

• Total cargo weight (tons).

• Number of intermediate stops, including weigh

stations, rest points, or offload locations.

• Fuel consumption and estimated CO₂ emissions,

obtained from vehicle telematics.

• Trip cost, calculated based on fuel use, labor, tolls, and

operational overhead.

Standardized templates were used for logging trip 

information, and multiple trips were monitored over a period 

of four weeks to ensure variability in cargo type, load size, and 

traffic conditions. 

All trip records were obtained from the Saudi Railways 

logistics database and the Ministry of Transport archives. In 

total, 30 complete records spanning one month were used. 

Data cleaning included removal of records with missing cost 

components (< 3%) and winsorization of outliers beyond the 
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1st and 99th percentiles to mitigate data entry errors. Units 

were standardized (tons, hours, kilograms), and consistency 

checks ensured alignment between road and rail datasets. 

2.5 Data collection from train freight operations 

Parallel data was collected from the Dammam railway 

freight terminal, tracking shipments to Riyadh's main rail 

freight station. The data included: 

• Trip time based on scheduled departure and actual

arrival.

• Number of wagons per train.

• Total cargo weight loaded, measured at origin.

• Number of planned and unplanned stops during the trip.

• Operational emissions estimates, based on locomotive

fuel burn logs.

• Trip cost, provided through SAR (Saudi Riyal)

accounting sheets for crew, fuel, and maintenance.

The railway data was obtained with permission from the 

Saudi railway company (SAR) through structured access to 

their logistics control system and validated against invoice 

logs and dispatch schedules. All data entries were aligned to 

ensure consistency in units and timeframes with the road 

transport data. 

2.6 Data integrity and normalization 

Before analysis, both datasets were cleaned and normalized. 

Units were standardized (e.g., weight in metric tons, time in 

hours, emissions in kilograms), and incomplete or outlier 

records were excluded to ensure model reliability. The merged 

dataset consisted of 30 complete trip records, equally 

distributed between truck and rail modes. The experimental 

procedures were summarized in Figure 3. 

Figure 3. Experimental procedure flowchart 

3. OPTIMIZATION MODELS

3.1 Netic algorithm-based cost optimization model 

To achieve optimal cost efficiency in freight transport 

operations, GA was employed as a global optimization 

method. The GA was selected due to its robustness in handling 

non-linear, multi-variable problems with continuous 

constraints, which are common in transportation systems. The 

algorithm operates by mimicking the process of natural 

selection: candidate solutions are encoded as individuals 

(vectors of decision variables), and evolutionary operators, 

selection, crossover, and mutation, are iteratively applied to 

evolve the population toward better solutions [20]. 

In this study, the GA was coupled with a trained linear 

regression model that served as the cost prediction function. 

The regression model predicted the trip cost as a function of 

six input variables, which is called a trained regression model 

[28]:  

𝐶𝑜𝑠𝑡𝑃𝑟𝑒𝑑 = 𝛽0 + ∑ 𝛽𝑖  . 𝑥𝑖

6

𝑖=1

(1) 

where, 𝑥𝑖  to 𝑥6  represent the variables: trip time (hrs),

wagons, trip weight (tons), stops, trucks and emissions (kg). 

The GA objective was to minimize 𝐶𝑜𝑠𝑡𝑃𝑟𝑒𝑑, subject to real-

world bounds for each variable derived from empirical data. 

GA for optimization and regression for cost evaluation has 

proven highly effective in transportation applications, as 

similarly demonstrated by references [29-31] and in recent 

freight logistics studies [31]. The optimization was carried out 

using the Python package [32].  

Each individual in the population is a candidate solution: 

𝜒(𝑗) = [𝑥1, 𝑥2, … … . . , 𝑥𝑛
𝑗
] (2) 

where, 𝑗 𝜖 [1, 𝑃] is indexed for individuals in population, and 

𝜒(𝑗) is bounded decision variable form real-world data.

The fitness function for each individual 𝜒(𝑗)  can be

calculated as follows [33]:  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑗 = 𝑓(𝜒(𝑗)) = 𝑦̂(𝑗) (3) 

The lower value is better (since it aims to minimize trip 

cost), see Appendix A, to read the complete Python code 

written for GA optimization. To ensure feasible solutions, 

constrained were defined as listed in Table 1 [34]. 

Table 1. GA constrained 

Variable Minimum Maximum Note 

Trip time 

(hrs) 
12 16 

Trip duration in 

hours 

Wagons 50 90 
Number of wagons 

in the train 

Trip weight 

(Tons) 
3000 4500 

Total freight weight 

in tons 

Stops 5 6 
Number of 

intermediate stops 

Trucks 100 180 
Number of trucks 

used for transport 

Emissions 

(Kg) 
4000 8500 

CO₂ emissions in 

kilograms 

3.2 Taguchi optimization based cost optimization model 

To determine the optimal operating conditions that 

minimize freight transportation costs while maintaining 

service performance, the Taguchi method was applied. This 
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method was selected for its well-known benefits, including 

fast optimization, reduced experimental cost, improved quality 

of results, and reliable identification of influential factors. The 

current study focuses on optimizing freight train operations 

along the Dammam–Riyadh corridor, using real-world trip 

data including variables such as trip time, wagon count, and 

trip weight [35]. 

In addition to evaluating individual factor effects, the study 

also considered hybrid operational configurations, such as 

varying trip weights in combination with different wagon 

counts and durations. This design approach improves the 

robustness of experimental analysis and enables exploration of 

potential interactions among operational variables that affect 

trip cost and emissions. 

Three key control factors were selected: (i) Trip Duration, 

(ii) Number of Wagons, and (iii) Trip Weight, each assigned

three levels based on empirical data. A Taguchi L9 orthogonal

array was used to efficiently explore the design space,

requiring only 9 experiments instead of 27, which would be

needed in a full factorial design. Table 1 lists the factor levels,

and Table 2 shows the L9 array configuration used for this

optimization.

It validated the regression model using 5‐fold cross‐

validation to guard against overfitting. Performance metrics 

include R² = 0.87, RMSE = 3,200 SAR, and MAE = 2,450 

SAR, indicating strong predictive accuracy. The sample of 30 

trips covers a representative month of operations; confidence 

intervals for coefficient estimates remain within ±10 %, 

supporting model robustness. 

The “smaller-is-better” Signal-to-Noise (S/N) ratio was 

chosen, as the primary objective was to minimize total trip 

cost, which is considered a critical performance indicator. The 

Taguchi method helped to identify the optimal combination of 

trip parameters that reduces costs while maintaining 

reliability, making it an effective tool for data-driven decision-

making in freight transport systems. 

The S/N ratio can be calculated using the following 

equation: 

𝑆

𝑁
= −10 log10 (

1

𝑛
∑

1

𝑦𝑖
2

𝑛

𝑖=1

) (4) 

where, 𝑦𝑖  is the response (e.g., trip cost), and n is the number

of repetitions. 

The analysis of variance (ANOVA) was extracted to 

measure each control factor effect on the trip cost by 

determining the contribution % for each factor.  

The following statistical significance equations are usually 

used to determine the ANOVA factors of Taguchi 

optimizations; they consider the key functions. 

Total sum of squares (SST): 

𝑆𝑆𝑇 = ∑(𝑦𝑖 − 𝑦̅)2

𝑛

𝑖=1

(5) 

And sum of squares for factor A: 

𝑆𝑆𝐴 = ∑ 𝑛𝑗(𝑦𝑖̅ − 𝑦̅)2

𝑙𝐴

𝑗=1

(6) 

The residual or error can be determined by the following: 

𝑆𝐸 = 𝑆𝑆𝑇 − 𝑆𝑆𝐴 − 𝑆𝑆𝐵 − ⋯ (7) 

Then the F-ratio, which compares variations and decides 

whether a factor has a significant effect on the result, can be 

calculated by the following equation: 

𝐹 =
𝑀𝑆𝑓𝑎𝑐𝑡𝑜𝑟

𝑀𝑆𝑒𝑟𝑟𝑜𝑟

(8) 

Compare the calculated F-ratio to the critical value from the 

F-distribution table at a significant level (typically 0.05).

To assess whether a factor has a statistically significant

effect, the calculated F-ratio is compared with the critical 

value from the F-distribution table at a chosen significance 

level, typically α = 0.05. Alternatively, the decision can be 

made based on the associated p-value: 

If p ≤ 0.05, the factor is considered to have a statistically 

significant effect on the response variable (e.g., trip cost). 

If p > 0.05, the factor is considered to have no significant 

effect. 

In this context: 

• p represents the probability of observing the test

statistic under the null hypothesis,

• ȳ is the overall meaning of the response,

• ȳᵢ is the mean response at level j of the factor,

• nⱼ is the number of repetitions at level j,

• MS is the mean square, calculated as the ratio of the

sum of squares (SS) to its corresponding degrees of

freedom (DOF).

This analysis helps determine which control factors 

significantly influence the outcome and should therefore be 

prioritized in the optimization process. 

Table 2. Taguchi L9 orthogonal array 

Experiment 
Factor A 

(e.g., Time) 

Factor B (e.g., 

Wagons) 

Factor C 

(e.g., Weight) 

1 1 1 1 

2 1 2 2 

3 1 3 3 

4 2 1 2 

5 2 2 3 

6 2 3 1 

7 3 1 3 

8 3 2 1 

9 3 3 2 

4. RESULTS AND DISCUSSION

4.1 Statistical descriptions 

The collected experimental data comprises 30 daily freight 

trips between Dammam and Riyadh, incorporating both 

highway and rail modes. The dataset captures key operational 

variables including trip duration, cost, wagon count, trip 

weight, number of stops, truck count, and associated carbon 

emissions. The trip cost ranged from 40,137 SAR to 79,106 

SAR, with an average of 60,657.60 SAR. This variation 

correlates strongly with wagon count and trip weight, which 

showed Pearson correlation coefficients of approximately 0.78 

and 0.74 with cost, respectively. In contrast, trip duration and 

number of stops had relatively weaker correlations, indicating 

a more indirect influence on expenses as listed in Table 3.  

Our finding that wagon count exerts the strongest influence 
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on trip cost aligns with Bohlin et al. [16], who reported that 

multistage formation decisions depend heavily on load 

composition to achieve up to 18% cost savings.

 

Table 3. Summary statistics for key operational and environmental metrics across 30 freight trips 

 
Metric Trip Time Trip Cost No. of Wagons Trip Weight Stops Emissions Trucks 

Count 30 30 30 30 30 30 30 

Mean 14.5 60,657.6 71.8 3536.3 5.57 6157.8 141.6 

Std Dev 0.51 11,228.0 11.43 350.9 0.50 1249.1 24.24 

Min 14.0 40,137.0 52.0 3103.0 5.0 4222.0 100.0 

25% Percentile 14.0 53,202.5 64.25 3219.8 5.0 4872.8 119.3 

Median (50%) 14.5 60,969.0 71.0 3492.5 6.0 6608.0 143.5 

75% Percentile 15.0 70,037.3 82.0 3853.3 6.0 6966.8 160.0 

Max 15.0 79,106.0 90.0 4291.0 6.0 8387.0 178.0 

 

 
 

Figure 4. Pair plot of freight trip operational variables 

 

Notably, trips with higher wagon utilization and heavier 

payloads tended to exhibit lower cost per ton, highlighting the 

importance of capacity maximization. Conversely, emissions 

ranged widely from 4,222 kg to 8,387 kg, suggesting 

variability in operational efficiency or fuel type. A moderate 

positive correlation was observed between emissions and trip 
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cost, reinforcing the trade-off between environmental and 

economic performance. This analysis supports the decision to 

use regression and optimization models for further cost 

reduction. The descriptive statistics and correlation matrix 

informed both the model features and constraint definitions in 

the Taguchi and GA-based optimization frameworks. The 

recoded table provides a statistical summary of the main 

variables in the dataset. Each metric shows the count (n = 30), 

mean, standard deviation, minimum, maximum, and quartiles. 

Notably, the average trip cost is 60,657 SAR with a substantial 

standard deviation of 11,228 SAR, indicating cost variability. 

The mean number of wagons (71.8) and mean trip weight 

(3,536 tons) align with mid-scale operations. Emissions 

average at 6157 kg, with a range from 4,222 to 8387 kg, 

showing a significant carbon footprint variation. The number 

of stops is tightly clustered between 5 and 6, while truck count 

also shows considerable variation. These statistics validate the 

diversity and operational complexity of the dataset and justify 

the use of both regression and optimization models. 

The pair plot shown in Figure 4 provides a comprehensive 

scatter matrix showing how each pair of variables relates to 

each other, including their distributions. The diagonal plots 

show that travel cost, weight and emissions are right-skewed, 

meaning that variability increases with value. The plots of 

travel cost vs. weight and travel cost vs. wagons clearly show 

a linear upward trend, confirming their positive relationship. 

In contrast, travel cost vs. travel time shows a relatively flatter, 

less linear relationship, suggesting that travel alone is not a 

primary cost driver. This visual comparison reinforces the 

findings from the heat map while allowing for a closer 

examination of non-linear or disparate patterns. 

The correlation heatmap in Figure 5 illustrates the pairwise 

relationships between all variables involved in the analysis. 

Each colored cell represents the Pearson correlation 

coefficient between two characteristics and ranges from -1 

(strongly negative) to +1 (strongly positive). Travel costs 

show a strong positive correlation with the weight of the 

journey, the number of wagons, and the number of trucks, 

indicating that heavier and larger journeys tend to cause higher 

costs. Emissions also correlate moderately with trip weight 

and number of wagons, which is to be expected as a heavier 

load leads to higher fuel consumption and therefore higher 

emissions. Interestingly, journey time and intermediate stops 

correlate less strongly, suggesting that their contribution to 

costs is less direct. This figure provides an overview of which 

variables have the strongest influence on travel costs. 

 

 
 

Figure 5. Correlation heatmap of freight operational variables 

 

 
 

Figure 6. Linear regression plot: Actual vs. predicted trip cost 
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Figure 7. Linear relationship between emissions and trip cost 

 

The graph in Figure 6 shows the relationship between actual 

and predicted trip costs from the regression model. Ideally, if 

the predictions are perfect, all points lie exactly on the red 

dashed diagonal. Here, most of the values are close to the 

diagonal, which indicates a good fit of the model. However, 

there are slight deviations, especially in the region with the 

highest costs, which could be due to the interactions between 

weight, emissions and number of trucks. This figure confirms 

the reliability of the model and that it captures the main cost-

driving patterns with good accuracy.  

This scatter plot illustrates the relationship between carbon 

emissions (kg) and trip costs, as shown in Figure 7. The curve 

shows a generally positive linear trend, confirming that higher 

emissions are associated with higher trip costs. This 

relationship is logical, as higher emissions correlate with 

higher fuel consumption, longer or heavier trips, and higher 

vehicle usage. Some outliers indicate operational 

inefficiencies where high emissions are not associated with 

proportionally higher costs. These could be areas that require 

operational review or optimization. 

Together, these four illustrations provide a consistent and 

informative presentation. The correlation diagram and the pair 

diagram show that the travel costs react most strongly to the 

weight of the journey, the number of wagons and the number 

of trucks. The regression power plot confirms that these 

relationships lead to reliable cost predictions. Finally, the 

relationship between emissions and costs provides a tangible 

link to sustainability, underscoring that cost optimization 

should also consider environmental performance. Thus, the 

data supports a multifactorial optimization approach that 

balances cost, weight, logistics and emissions. 

 

4.2 GA optimization results 

 

To determine the most cost-efficient operational 

configuration for freight transport, a GA was implemented to 

minimize the expected total cost of the trip (in SAR). Six 

critical operating parameters were considered in the 

optimization: Trip duration (trip time in hours), number of 

wagons, total trip weight (in tons), number of stops, number of 

trucks and CO₂ emissions (in kilograms). The GA was 

executed under practical conditions derived from real data 

ranges to ensure realistic and feasible solutions. The 

optimization converged to a solution where the predicted trip 

cost was 34,054.33 SAR, which is a significant reduction from 

the dataset mean of 60,657.6 SAR. 

Lin et al. [18] demonstrated a 15% throughput improvement 

using a GA in a large‐scale rail network; similarly, our GA 

reduced predicted trip cost by 44%, underscoring the method’s 

power for continuous, large‐scale freight optimization. 

 

Table 4. Optimal input values and associated predicted cost 

obtained using the GA 

 

Parameter 
Optimized 

Value 

Constraint 

Range 

Trip duration (hrs) 16.00 [12, 16] 

Number of wagons 89.99 [50, 90] 

Total trip weight 

(tons) 
4472.75 [3000, 4500] 

Number of stops 5.04 [5, 6] 

Number of trucks 100.45 [100, 180] 

Emissions (kg) 8495.80 [4000, 8500] 

Predicted cost (SAR) 34,054.33 — 

 

A detailed summary of the GA-optimized input variables 

can be found in Table 4. The results show that maximizing 

capacity utilization and minimizing operational complexity 

led to optimal cost savings. In particular, the number of 

railcars (89.99) and total weight (4,472.75 tons) approached 

the upper allowable limits, supporting the hypothesis that 

consolidated operations with high capacity are more cost-

efficient. In contrast, the number of trucks (100.45) and the 

number of stops (5.04) were close to the lower limits, 

suggesting that leaner delivery patterns with fewer stops and 

less truck usage can significantly reduce costs. However, the 

optimized scenario also resulted in high emissions (8,495.80 

kg), indicating a possible trade-off between operating costs 

and environmental sustainability. This GA result underlines a 

strategy of load consolidation: maximizing the load (wagons 

+ weight) and minimizing unnecessary operations (stops, 

trucks) leads to a significant cost reduction. This result 

highlights the need for future work to incorporate multi-

criteria optimization frameworks that balance costs, emissions 

and delivery constraints [36]. 

 

4.3 Taguchi-based optimization and sensitivity analysis 

 

To complement the methodology, a Taguchi experimental 

design was applied with an orthogonal L9 array aimed at 

minimizing predicted trip costs. The study focused on three 
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operational variables: Trip duration (Trip length in hours), 

number of cars, and trip weight (Trip weight in tons), each of 

which was evaluated at three levels. Other factors, such as the 

number of stops, the number of trucks and emissions, were 

held constant at mean values to isolate the effects of the 

primary parameters. Ozturk and Patrick [17] observed that 

intermediate hub loads minimize urban rail freight costs, 

echoing our Taguchi results, which show that medium trip 

weights yield the lowest variability and cost. 

Table 5 shows the actual test configurations and their 

respective predicted trip costs, which were determined using 

the trained regression model. The lowest predicted cost of 

SAR 42,388.64 was incurred in Experiment 9, which 

corresponds to the highest number of wagons (90), average 

trip weight (3,750 tons), and maximum trip time (16 hours). 

This indicates that longer trips with high-capacity utilization 

(i.e., more wagons) lead to cost savings even if the trip weight 

does not reach the maximum level, as the fixed costs are better 

amortized. 

To further explore the influence of these parameters, Figure 

8 illustrates the S/N ratios under the "lower-the-better" 

assumption for cost. The S/N analysis confirms the following 

trends: 

• Wagons exert the strongest influence: Level 3 (90 

wagons) yields the highest S/N ratio, indicating that 

maximizing wagon count significantly reduces cost 

variability and improves robustness. 

• Trip time shows a linear improvement in S/N ratio 

from Level 1 to Level 3, suggesting operational 

advantages with longer durations, potentially linked 

to smoother logistics or lower fuel consumption 

during optimized speeds. 

• Trip weight, while intuitively a driver of cost, shows 

a non-monotonic trend. The best performance occurs 

at the medium level (3,750 tons), indicating a balance 

point between load efficiency and vehicle strain. 

 

4.4 ANOVA-based factor significance and comparative 

analysis 

 

To quantitatively assess the influence of each control factor 

within the Taguchi experimental design, a one-way Analysis 

of Variance (ANOVA) was performed on the predicted trip 

cost values. The factors evaluated included categorical 

representations of trip time (A_level), number of wagons 

(B_level), and trip weight (C_level), as defined by the levels 

in the L9 orthogonal array. The ANOVA results are 

summarized in Table 6.  

The results show that all three factors are statistically 

significant at the 95% confidence level, with p-values much 

smaller than 0.05. Specifically, the trip time (C(A_level)) 

exhibited the greatest influence on trip cost, contributing a sum 

of squares of approximately 1.28 × 10⁹, followed by wagon 

count (C(B_level)) with 3.47 × 10⁸, and trip weight 

(C(C_level)) with 3.69 × 10⁷. Notably, the extremely high F-

values and near-zero p-values confirm the robustness of the 

regression model and the meaningful impact of each factor. 

The residual variance is negligible (2.29 × 10⁻²⁰), further 

reinforcing the model's explanatory power within the 

experimental design. 

This refined analysis further validates that increasing the 

number of wagons and allowing longer trip durations are 

critical levers for cost efficiency in rail freight operations. The 

non-linear behavior of trip weight indicates that there may be 

an optimal loading point beyond which marginal cost 

increases, possibly due to mechanical inefficiencies or 

regulation limits. 

 

Table 5. Taguchi L9 orthogonal array results and predicted trip costs 

 
Experiment Trip Time (hrs) Wagons Trip Weight (tons) Predicted Cost (SAR) S/N Ratio (dB) 

1 12.0 50 3000 89,316.74 -49.51 

2 12.0 70 3750 79,231.06 -48.99 

3 12.0 90 4500 69,145.39 -48.40 

4 14.0 50 3750 72,219.52 -48.59 

5 14.0 70 4500 62,133.84 -47.93 

6 14.0 90 3000 59,485.86 -47.74 

7 16.0 50 4500 55,122.30 -47.41 

8 16.0 70 3000 52,474.31 -47.20 

9 16.0 90 3750 42,388.64 -46.27 

 

 
 

Figure 8. S/N ratio plot for Taguchi optimization 
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Table 6. ANOVA results for the Taguchi L9 design (dependent variable: predicted cost) 

Source Sum of Squares df F-value p-value

C(A_level) 1.28 × 10⁹ 2 5.59 × 10²⁸ 1.79 × 10⁻²⁹ 

C(B_level) 3.47 × 10⁸ 2 1.51 × 10²⁸ 6.60 × 10⁻²⁹ 

C(C_level) 3.69 × 10⁷ 2 1.61 × 10²⁷ 6.22 × 10⁻²⁸ 

Residual 2.29 × 10⁻²⁰ 2 — — 

While the Taguchi method uncovered meaningful factor 

trends and ranked influence levels, its discrete nature limits the 

resolution of optimization, particularly in high-precision cost 

functions [37]. This supports the earlier finding that GA 

remains superior for high-dimensional, continuous 

optimization, though Taguchi excels in early-stage 

experimental screening and robust analysis. 

4.5 Comparative evaluation: GA vs. Taguchi method 

Both the GA and the Taguchi method have been used to 

minimize trip costs. However, they differ fundamentally in 

their methodology, precision and quality of results. The GA 

led to a globally optimized solution with a predicted minimum 

cost of 34,054.33 SAR, clearly outperforming the Taguchi 

approach, which achieved a best-case cost of 42,388.64 SAR. 

The strength of GA lies in its ability to explore high-

dimensional, continuous input spaces and to fine-tune 

combinations of variables beyond the limits of discrete levels. 

It adapts iteratively through mutation and selection, allowing 

it to discover nonlinear interactions and exploit subtle trade-

offs, such as maximizing trip weight while minimizing truck 

count, as shown in Figure 9. 

In contrast, the Taguchi method, while not achieving the 

same numerical minimum, offered critical insight into factor 

sensitivity and robustness [38]. It required far fewer 

simulations (just nine experiments) and identified that wagon 

count and trip time are dominant drivers of cost. The ANOVA 

results corroborated this, showing statistical significance and 

high explanatory variance attributed to these two factors. 

Moreover, the Taguchi method effectively revealed that 

middle-range trip weights may be optimal under high wagon 

counts, a non-intuitive result valuable for strategic planning, 

as shown in Figure 9. 

Figure 9. Comparison of optimization results: GA vs. 

Taguchi method 

In summary, GA is superior for optimization accuracy and 

solution refinement, particularly where input variables are 

continuous and complex [39]. Taguchi excels as a screening 

and diagnostic tool, especially useful when resources limit the 

number of experiments or when robustness to variability is a 

priority. Used in combination, these methods provide a 

powerful token for both strategic and operational decision-

making in freight cost optimization. 

5. CONCLUSIONS

It presents a hybrid framework combining linear regression, 

Taguchi design, and a GA to reduce freight train costs on the 

Dammam–Riyadh corridor. The regression model—validated 

by 5-fold cross-validation (R² = 0.87, RMSE = 3,200 SAR)—

effectively predicts trip cost. Taguchi screening identified 

wagon count and trip duration as dominant factors, achieving 

a minimum cost of 42,388 SAR. Subsequent GA optimization 

(population = 50, generations = 100) yielded 34,054 SAR, a 

44% reduction versus the mean. Implications: Prioritize higher 

wagon utilization and fewer stops/truck transfers for cost 

savings. The Taguchi + GA workflow offers rapid factor 

screening followed by precise optimization, adaptable to other 

corridors.  

This study is subject to certain limitations, namely the 

reliance on a single-corridor dataset, the assumption of fixed 

stops and truck numbers in the Taguchi method, and the use of 

a single-objective GA.  

Future research will extend to multi-objective cost–

emissions optimization, integrate real-time data for dynamic 

scheduling, and validate the approach on larger, multi-corridor 

datasets under uncertainty, further bridging statistical 

modeling with evolutionary algorithms for sustainable rail 

logistics. 

REFERENCES 

[1] Thompson, R.G., Zhang, L.L. (2018). Optimising courier

routes in central city areas. Transportation Research Part

C: Emerging Technologies, 93: 1-12.

https://doi.org/10.1016/j.trc.2018.05.016

[2] Wu, T.T. (2013). A route optimizing model and

algorithm for pickup and delivery problem with time

window. Applied Mechanics and Materials, 321: 2060-

2064.

https://doi.org/10.4028/www.scientific.net/AMM.321-

324.2060

[3] Saudi Railways. 

https://www.thetrueexpo.com/en/portfolio/saudi-rail/, 

accessed on Nov. 20-21, 2024. 

[4] Tolba, M., Rezk, H., Diab, A.A.Z., Al-Dhaifallah, M.

(2018). A novel robust methodology based salp swarm

algorithm for allocation and capacity of renewable

distributed generators on distribution grids. Energies, 11:

2556. https://doi.org/10.3390/en11102556

[5] Shahrier, M., Hasnat, A. (2021). Route optimization

issues and initiatives in Bangladesh: The context of

regional significance. Transportation Engineering, 4:

100054. https://doi.org/10.1016/j.treng.2021.100054

[6] Badr, M., Sayed, M.M.A., Aref, A.E.R., Salah, A.

380



 

(2018). New model for material transportation to 

improve efficiency of production line. International 

Journal of Science and Qualitative Analysis, 4(2): 60-64. 

https://doi.org/10.11648/j.ijsqa.20180402.14 

[7] Yin, J.T., Tang, T., Yang, L.X., Xun, J., Huang, Y.R., 

Gao, Z.Y. (2017). Research and development of 

automatic train operation for railway transportation 

systems: A survey. Transportation Research Part C: 

Emerging Technologies, 85: 548-572. 

https://doi.org/10.1016/j.trc.2017.09.009 

[8] Feng, T., Tao, S.Y., Li, Z.Y. (2020). Optimal operation 

scheme with short-turn, express, and local services in an 

urban rail transit line. Journal of Advanced 

Transportation, 2020: 5830593. 

https://doi.org/10.1155/2020/5830593 

[9] Meng, L.Y., Zhou, X.S. (2019). An integrated train 

service plan optimization model with variable demand: 

A team-based scheduling approach with dual cost 

information in a layered network. Transportation 

Research Part B: Methodological, 125: 1-28. 

https://doi.org/10.1016/j.trb.2019.02.017 

[10] Pavlides, A., Chow, A.H. (2018). Multi-objective 

optimization of train timetable with consideration of 

customer satisfaction. Transportation Research Record, 

2672(8): 255-265. 

https://doi.org/10.1177/0361198118777629 

[11] Chow, A.H., Pavlides, A. (2018). Cost functions and 

multi-objective timetabling of mixed train services. 

Transportation Research Part A: Policy and Practice, 

113: 335-356. https://doi.org/10.1016/j.tra.2018.04.027 

[12] Ei-Aini, H.A., Mohamed, K., Mohammed, Y.H. (2010). 

Effect of mold types and cooling rate on mechanical 

properties of Al alloy 6061 within ceramic additives. In 

the 2nd International Conference on Energy Engineering 

ICEE-2, Aswan, Egypt, pp. 27-29. 

[13] Narayanaswami, S., Rangaraj, N. (2011). Scheduling and 

rescheduling of railway operations: A review and 

expository analysis. Technology Operation 

Management, 2: 102-122. 

https://doi.org/10.1007/s13727-012-0006-x  

[14] Abdellah, M.Y., Alfattani, R., Alnaser, I.A., Abdel-

Jaber, G. (2021). Stress distribution and fracture 

toughness of underground reinforced plastic pipe 

composite. Polymers, 13(13): 2194. 

https://doi.org/10.3390/polym13132194 

[15] Li, Z.J., Shalaby, A., Roorda, M.J., Mao, B.H. (2021). 

Urban rail service design for collaborative passenger and 

freight transport. Transportation Research Part E: 

Logistics and Transportation Review, 147: 102205. 

https://doi.org/10.1016/j.tre.2020.102205 

[16] Bohlin, M., Gestrelius, S., Dahms, F., Mihalák, M., Flier, 

H. (2015). Optimization methods for multistage freight 

train formation. Transportation Science, 50: 823-840. 

https://doi.org/10.1287/trsc.2014.0580 

[17] Ozturk, O., Patrick, J. (2018). An optimization model for 

freight transport using urban rail transit. European 

Journal of Operational Research, 267(3): 1110-1121. 

https://doi.org/10.1016/j.ejor.2017.12.010 

[18] Lin, B.L., Wang, Z.M., Ji, L.J., Tian, Y.M., Zhou, G.Q. 

(2012). Optimizing the freight train connection service 

network of a large-scale rail system. Transportation 

Research Part B: Methodological, 46: 649-667. 

https://doi.org/10.1016/j.trb.2011.12.003 

[19] Rosca, C.M., Stancu, A., Gortoescu, I.A. (2025). 

Advanced sensor integration and AI architectures for 

next-generation traffic navigation. Applied Sciences, 15: 

4301. https:// doi.org/10.3390/app15084301  

[20] Rao, R.S., Kumar, C.G., Prakasham, R.S., Hobbs, P.J. 

(2008). The Taguchi methodology as a statistical tool for 

biotechnological applications: A critical appraisal. 

Biotechnology Journal: Healthcare Nutrition 

Technology, 3(4): 510-523. 

https://doi.org/10.1002/biot.200700201 

[21] Powell, W.B., Simao, H.P., Bouzaiene-Ayari, B. (2012). 

Approximate dynamic programming in transportation 

and logistics: A unified framework. EURO Journal on 

Transportation and Logistics, 1(3): 237-284. 

https://doi.org/10.1007/s13676-012-0015-8 

[22] Akyuz, E., Cicek, K., Celik, M. (2019). A comparative 

research of machine learning impact to future of 

maritime transportation. Procedia Computer Science, 

158: 275-280. 

https://doi.org/10.1016/j.procs.2019.09.052 

[23]  Brouer, B.D., Karsten, C.V., Pisinger, D. (2017). 

Optimization in liner shipping. 4OR, 15: 1-35. 

https://doi.org/10.1007/s10288-017-0342-6 

[24] Naumann, A., Hertlein, F., Dörr, L., Thoma, S., Furmans, 

K. (2023). Literature review: Computer vision 

applications in transportation logistics and warehousing. 

arXiv preprint arXiv:2304.06009. 

https://doi.org/10.48550/arXiv.2304.06009 

[25] Almujibah, H., Preston, J. (2019). The total social costs 

of constructing and operating a high-speed rail line using 

a case study of the Riyadh-Dammam corridor, Saudi 

Arabia. Frontiers in Built Environment, 5: 79. 

https://doi.org/10.3389/fbuil.2019.00079 

[26] Niu, G., Jiang, J.J. (2017). Prognostic control-enhanced 

maintenance optimization for multi-component systems. 

Reliability Engineering & System Safety, 168: 218-226. 

https://doi.org/10.1016/j.ress.2017.04.011 

[27] Araghi, M.E.T., Tavakkoli-Moghaddam, R., Jolai, F., 

Molana, S.M.H. (2021). A green multi-facilities open 

location-routing problem with planar facility locations 

and uncertain customer. Journal of Cleaner Production, 

282: 124343. 

https://doi.org/10.1016/j.jclepro.2020.124343 

[28] Linear regression in machine learning. 

https://www.geeksforgeeks.org/ml-linear-regression/, 

accessed on Jun. 3, 2025. 

[29] Holland, J.H. (1992). Adaptation in Natural and 

Artificial Systems: An Introductory Analysis with 

Applications to Biology, Control, and Artificial 

Intelligence. MIT Press.  

[30] Gen, M., Choi, J., Ida, K. (2000). Improved genetic 

algorithm for generalized transportation problem. 

Artificial Life and Robotics, 4: 96-102. 

https://doi.org/10.1007/BF02480863 

[31] Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. (2002). 

A fast and elitist multiobjective genetic algorithm: 

NSGA-II. IEEE Transactions on Evolutionary 

Computation, 6(2): 182-197. 

https://doi.org/10.1109/4235.996017 

[32] Sert, E., Hedayatifar, L., Rigg, R.A., Akhavan, A., 

Buchel, O., Saadi, D.E., Kar, A.A., Morales, A.J., Bar-

Yam, Y. (2020). Freight time and cost optimization in 

complex logistics networks. Complexity, 2020(1): 

2189275. https://doi.org/10.1155/2020/2189275 

[33] Link, W.A., Barker, R.J. (2010). Chapter 12 - Individual 

381



fitness. In Bayesian Inference: With Ecological 

Examples. London: Academic Press, pp. 271-286. 

https://doi.org/10.1016/B978-0-12-374854-6.00015-6 

[34] Orvosh, D., Davis, L. (1994). Using a genetic algorithm

to optimize problems with feasibility constraints. In

Proceedings of the First IEEE Conference on

Evolutionary Computation. IEEE World Congress on

Computational Intelligence, Orlando, FL, USA, pp. 548-

553. https://doi.org/10.1109/ICEC.1994.350001

[35] Ali, A.A., Abdellah, M.Y., Hassan, M.K., Mohamed,

S.T. (2018). Optimization of tensile strength of

reinforced rubber using Taguchi method. International

Journal of Scientific & Engineering Research, 9(6): 180-

186.

[36] Karmellos, M., Mavrotas, G. (2019). Multi-objective

optimization and comparison framework for the design

of Distributed Energy Systems. Energy Conversion and

Management, 180: 473-495.

https://doi.org/10.1016/j.enconman.2018.10.083

[37] Munos, R., Moore, A. (2002). Variable resolution

discretization in optimal control. Machine Learning, 49:

291-323. https://doi.org/10.1023/A:1017992615625

[38] Lee, K.H., Eom, I.S., Park, G.J., Lee, W.I. (1996).

Robust design for unconstrained optimization problems

using the Taguchi method. AIAA Journal, 34(5): 1059-

1063. https://doi.org/10.2514/3.13187

[39] Elsayed, S.M., Sarker, R.A., Essam, D.L. (2014). A new

genetic algorithm for solving optimization problems.

Engineering Applications of Artificial Intelligence, 27:

57-69. https://doi.org/10.1016/j.engappai.2013.09.013

APPENDIX 

Appendix A 

Python GA code  

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

from sklearn.linear_model import LinearRegression 

from deap import base, creator, tools, algorithms 

import random 

# === Define input boundaries === 

bounds = { 

    'Trip_Time_hrs': (12, 16), 'Wagons': (50, 90), 

'Trip_Weight_Tons': (3000, 4500), 'Stops': (5, 6), 

    'Trucks': (100, 180), 'Emissions_Kg': (4000, 8500)} 

# === Genetic Algorithm Setup === 

creator.create("FitnessMin", base.Fitness, weights=(-1.0,)) 

creator.create("Individual", list, 

fitness=creator.FitnessMin) 

toolbox = base.Toolbox() 

for var in features: 

    toolbox.register(f"attr_{var}", random.uniform, 

*bounds[var])

toolbox.register("individual", tools.initCycle, 

creator.Individual,

        tuple(getattr(toolbox, f"attr_{var}") for var in 

features), n=1) 

toolbox.register("population", tools.initRepeat, list, 

toolbox.individual) 

# === Evaluation function with constraints === 

def evaluate(individual): 

    values = dict(zip(features, individual)) 

    # Constraints check 

    for var in features: 

        if not (bounds[var][0] <= values[var] <= 

bounds[var][1]): 

   return 1e6, # Penalize 

    # Predict cost 

    input_data = np.array(individual).reshape(1, -1) 

    cost = model.predict(input_data)[0] 

    return cost, 

toolbox.register("evaluate", evaluate) 

toolbox.register("mate", tools.cxBlend, alpha=0.5) 

toolbox.register("mutate", tools.mutGaussian, mu=0, 

sigma=5, indpb=0.2) 

toolbox.register("select", tools.selTournament, 

tournsize=3) 

# === Run GA === 

pop = toolbox.population(n=50) 

hof = tools.HallOfFame(1) 

algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, 

ngen=100, 

     stats=tools.Statistics(lambda ind: 

ind.fitness.values), 

     halloffame=hof, verbose=True) 

# === Save best result === 

optimal_input = hof[0] 

optimal_cost = model.predict([optimal_input])[0] 

optimal_result = pd.DataFrame([optimal_input], 

columns=features) 

optimal_result['Predicted_Trip_Cost'] = optimal_cost 

# === Save files === 

df.to_excel("cleaned_trip_data.xlsx", index=False) 

optimal_result.to_excel("optimized_trip_result.xlsx", 

index=False) 

# === Write report === 

with open("GA_Optimization_Report.txt", "w") as report: 

    report.write("=== Genetic Algorithm Optimization 

Report ===\n\n") 

    report.write(">> Objective: Minimize Trip Cost 

(SAR)\n\n") 

    report.write(">> Optimal Input Values Found:\n") 

    for name, val in zip(features, optimal_input): 

        report.write(f" - {name}: {val:.2f}\n") 

    report.write(f"\n>> Predicted Optimal Trip Cost: 

{optimal_cost:.2f} SAR\n") 

    report.write("\n>> Applied Constraints:\n") 

    for k, v in bounds.items(): 

        report.write(f" - {k}: between {v[0]} and {v[1]}\n") 

    report.write("\nReport generated successfully.\n") 

print("Optimization completed. Report saved as 

'GA_Optimization_Report.txt'") 

382




