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Road damage surveys in Indonesia are still conducted manually through visual inspections 

based on the Surface Distress Index (SDI) method. Consequently, the process often 

requires extended completion times and yields results that lack objectivity due to heavy 

reliance on the surveyor's experience. As a result, road repairs frequently do not correspond 

accurately to the actual damage conditions. Road deterioration intensifies during the rainy 

season, when water accumulates in potholes, accelerating their erosion and expansion. To 

facilitate more objective damage assessment, particularly for potholes, a tool employing 

an image sensor capable of distinguishing between water-filled and dry potholes is 

necessary. This study utilized an image processing model based on a convolutional neural 

network employing MobileNet SSD V2. In detecting water-filled potholes, the system 

achieved a precision of 0.95, a recall of 0.514, and an F1 score of 0.667. Furthermore, 

performance testing across various vehicle speeds indicated that the optimal speed for the 

edge device system was an average of 15 km/h, at which the system maintained a precision 

of 0.95, a recall of 0.514, and an F1 score of 0.667. 
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1. INTRODUCTION

Road infrastructure is a critical component of the well-being 

of the Indonesian people, serving as an essential element in 

their daily lives. Effective road networks contribute to regional 

development in economic growth [1], which also has an 

impact on social, and cultural dimensions, promoting balanced 

progress throughout Indonesia. Despite these goals, many 

roads are in poor condition, with concerns such as potholes and 

cracks. This not only causes physical harm to road users but 

also poses a major threat to their lives, especially for two-

wheeled users [2]. In Indonesia, potholes are one of the main 

causes of motorcycle accidents. Riders often lose control when 

trying to avoid a pothole suddenly, especially at high speeds 

or in poor lighting conditions [3]. Some of national and 

province road in Indonesia have been categorized in very poor 

and fair damaged [4-6]. Potholes, a typical type of road 

damage, can have serious ramifications especially in safety 

terms, depending on their depth and width [7]. Potholes 

frequently become flooded with water, especially during the 

rainy season, and this can last for hours after the rain has 

stopped [8]. Water causes road deterioration by eroding the 

soil and asphalt aggregate in the foundation layer, decrease in 

strength, expanding existing potholes and perhaps developing 

new ones if not corrected [9]. 

Road damage assessment for road repairs in Indonesia is 

currently conducted manually through visual inspection, using 

the Surface Distress Index (SDI) and Pavement Condition 

Index (PCI) methods [10]. However, it takes a long time 

between the survey, planning, and real road maintenance. 

Indonesia employs four Hawkeye road-survey vehicles [11]. 

This vehicle system is useful for a variety of surveys and 

inspections, but the price is not affordable. As a result, it 

cannot adequately analyze Indonesia's total road conditions. In 

addition to utilizing the Hawkeye tool, road damage 

assessment can be conducted through manual visual 

inspection using the Surface Distress Index (SDI) method. 

This method involves measuring the width of cracks, the area 

of cracks, the number of potholes, and the extent of rutting 

[12]. Based on previous research, it has been observed that 

during the rainy season, road damage accelerates significantly 

due to the presence of subsurface water. This subsurface water 

is often visually indicated by puddles at damaged locations, 

particularly in the case of potholes. To ensure an objective 

assessment of road damage, it is necessary to employ an image 

sensor tool capable of identifying the types of road damage, 

especially distinguishing between dry potholes and those filled 

with water. 

A variety of studies have been conducted to explore the 

identification and categorization of road damage utilizing 

image processing, laser technology, and accelerometers. Kiran 

Kumar, for example, did research on water-filled potholes 
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using a laser and a camera. The principle includes the laser 

suffering light refraction when focused toward the road. A 

camera then records the resulting light refraction [13]. Rani et 

al. conducted another investigation with the goal of designing 

an ADAS (Advanced Driver Assistance System) to improve 

safety factor on road by detecting anomalies such as potholes 

and speed bumps. They used the Jetson Nano with the 

MobileNet SSD V2 and achieved detection accuracy of 60-

70% at 20 frames per image [14]. Garcillanosa et al. [15] 

investigate the reporting and detection of potholes using image 

processing, the Raspberry Pi, and additional gear installed on 

an automobile, such as a camera module and GPS system. The 

detection system scans photos to exclude other objects such as 

sidewalks and pedestrians, with a focus on recognizing 

potholes with parameter size and color of object using Canny 

Edge Detection. With a total processing time of 0.9967 

seconds, the average detection accuracy attained is 93.72%. 

Lee et al. reported their research on detecting road surface 

damage using a smartphone’s camera for capturing the image 

and a smartphone’s accelerometer sensor in 2021 [16]. The 

research incorporates two methods for detecting road damage: 

image processing and vibration-based approaches. They use 

the Fully Connected Network technique to build a model with 

six layers, with the goal of reducing the computing effort on 

smartphones. The performance is relatively low when 

compared between real conditions and detection results. 

CNN is one type of deep neural network that is commonly 

used to analyze an image, but the weakness of this method is 

the need for large computing power [17]. With the concept of 

portable and real-time surveys, a device is needed that is small 

enough to be carried anywhere but has the required computing 

power. Therefore, a combination of Raspberry Pi and Coral 

USB Accelerator is used. Raspberry is a System on a Module 

(SoM) which is one of the computing modules that is very 

often used in the fields of robotics and artificial intelligence. 

Because of its small size and low power requirements, 

Raspberry Pi is often used for machine learning purposes in 

embedded systems [18, 19]. The use of Edge TPU Coral USB 

Accelerator can significantly accelerate the inference process 

of Machine Learning models, but not all types of image 

detection models can be supported and truly utilize the 

capabilities of the device. One of the Machine Learning 

models that has been proven to work and is recommended by 

device developers is MobileNet SSD V2, where this model is 

a combination of MobileNet V2 and SSD [20]. MobileNet V2 

uses a depthwise convolution layer that is added to the 

previous Expansion layer which is used for feature extraction 

[21]. SSD is a real-time object detection framework that 

utilizes a single feed-forward convolutional neural network 

(CNN) to predict bounding boxes and their corresponding 

object class probabilities. Unlike YOLO which makes 

predictions using one feature map, SSD uses several feature 

maps with different sizes [22]. Therefore, in this study, a 

system was created regarding the process of detecting the 

location of potholes using CNN based on Edge TPU using 

Jetson Nano with the MobileNet SSD V2 model which is 

expected to be able to detect the location of potholes and 

display their position on the website specifically water-filled 

potholes. In addition, a portable and easy-to-use device was 

also obtained for mobile use. The design of a pothole detection 

device has practical utility and is suitable for community 

implementation. The results of this study are expected to 

accelerate the dissemination of information to relevant 

authorities, thereby facilitating timely repair actions. 

2. CONVOLUTIONAL NEURAL NETWORK FOR

WATER-FILLED POTHOLES DETECTION

2.1 Dataset description 

The dataset of road damage photographs used consists of 

images of roadways with water-filled potholes and dry 

potholes. The dataset is derived from Google sources, 

FixMystreet website, the Roboflow website and captured 

manually from Indonesian roads. The datasets taken and 

captured were selected from Indonesia, which were manually 

taken in East Java with all images taken during the day 

between 10 am and 1 pm. For datasets of dry potholes, it was 

carried out in the dry season, while for datasets of water-filled 

potholes it was carried out in the rainy season after the rain had 

stopped. There is a total of 4,756 photos used as a dataset. The 

dataset includes photos from various angles and lighting 

conditions, as well as photographs with varying hole sizes. 

Prior to processing, the photos are made to have the same 

640×640 pixels size and format file type using the JPG format. 

There is a total of 4,756 photos used as a dataset, with the split 

of the dataset for training 70% (3,329 photos), for validation 

15% (713 photos) and for testing 15% (714 photos). Figure 1 

shows an example of the water-filled pothole dataset. The 

distribution of the dataset label is shown in Table 1. 

Figure 1. Overview of dataset 

Table 1. Dataset label distribution 

Label Dataset Object Amount Percentage 

L00 Dry pothole 2378 50% 

L01 Water-filled pothole 2378 50% 

Total 4756 100% 

2.2 Convolutional neural network model 

CNN is a deep neural network that is often used for visual 

analysis. Neural networks are made up of multiple layers, each 

of which contains neurons with varying weights and biases 

that may be trained [23]. The TensorFlow Object identification 

aplication interface, is used in the modeling technique to 

facilitate prepocesing, training, and implementation of object 

identification models [24]. For this study, pre-trained model 

used for reduction in training time and stability performance 

because the model has been trained to detect many usual 

objects in real life [25]. In this paper, CNN and TensorFlow-

based models named MobileNet SSD V2 used for vehicle 

detection on edge device Jetson Nano. 

MobileNet SSD V2 is object detection model that contains 

267 layers and 15 million parameters [26], providing inference 

in real-time using only edge device computing processes such 

as smartphones and Jetson Nano mini-computer. MobileNet 

SSD V2 actually consists of two models. The first one is the 
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basic MobileNet V2 network with the SSD layer added. 

MobileNet is basically used as a backbone for the image 

classification process where the layer converts image pixels 

into features that describe the image [27]. Then the SSD layer 

is in charge of detecting the desired object by creating an 

object bounding box in an image [28]. As an illustration, the 

MobileNet SSD V2 structure can be seen in Figure 2 [29]. 

 

 
 

 

Figure 2. Structure of model MobileNet SSD V2 

 

2.3 Edge device implementation 

 

The implementation of edge device processing, as opposed 

to centralised server processing, is designed to enable real-

time system responsiveness when integrated with the 

government monitoring framework. This approach ensures 

that road defects that occur on a given day can be detected 

immediately on that day. The centralised processing at 

government offices using servers can get a higher probability 

of processing queues, causing delays in analysing raw data 

from roads [30]. 

For this application, the Nvidia Jetson Nano with 4GB 

RAM was chosen as the leading device due to its compact 

form factor, efficient power consumption compatible with 

vehicle electrical systems using a cigarette lighter adapter, and 

its ability to effectively perform AI calculations [31]. In the 

system setup, the Jetson Nano is installed inside the vehicle, 

while the camera is mounted on the hood of the car, facing the 

road as shown in Figure 3. 

 

 
 

Figure 3. Device implementation on vehicle 

 

2.4 Testing scenario for optimized training model 

 

To achieve optimal performance in detecting water-filled 

potholes on the road, it is essential to perform fine-tuning of 

the model configuration during training. The optimization 

process involves adjusting several hyperparameters to identify 

the best combination that maximizes detection accuracy while 

minimizing loss. In this study, the batch size and optimizer 

were varied across different configurations to optimize the 

training model. Batch size refers to the number of training 

samples—in this case, images—processed together in a single 

iteration before updating the model's weight parameters [32]. 

Batch sizes of 2, 4, 8, and 10 were tested. Training processes 

with batch sizes greater than 10 were terminated due to 

computational limitations. The optimizer is used during neural 

network training to adjust the model's weights and biases in 

order to minimize the loss function. This study employed two 

optimizers: Momentum optimizer and Adam optimizer [33]. A 

comprehensive overview of the testing scenarios for the 

optimized training model is presented in Table 2. 

 

Table 2. Config and optimized training model scenario 

 
Variables Testing Scenario 

Model MobileNet SSD V2 

Num_classes 2 

Num_steps 25,000 

Learning_rate (lr) 0.001 

Optimizer Momentum Optimizer Adam Optimizer 

Batch_size 2 4 8 10 

 

 

3. EXPERIMENTAL RESULT AND DISCUSSION 

 

3.1 Result of training model 

 

Before the model was implemented in edge device Jetson 

Nano. The model had to be trained and optimized using dataset 

that had been prepared. Model trained with the scenario like 

Table 2. To see the optimal and correct training results can be 

seen from several parameters. The first parameter is the total 

loss function. Total loss is divided into two training and 

validation. The smaller the training total loss the better which 

means the model learns to recognise objects better, but it must 

be balanced with a small validation total loss and not far from 

the training total loss [34]. Because the total loss validation 

indicates that in the training process when the model has 

recognised the object well and added a new object image 

dataset, the model can recognise it well, meaning that the total 

Input 

300x 

300x3 

Point Wise Convolution 
1x1  

Relu6 

Depth Wise Convolution 
3x3  

And Relu6 

Point Wise Convolution 
1x1  

Relu6 
Add 

Conv1 to conv5 blocks 

Conv4 

Conv7 

Conv8 

Conv9 

Conv10 

Conv11 

 
 
 
 
 
 

Detection 
Result 

Integration 

 
 
 
 
 
 

Non 
Maximum 

Suppression 

 
 
 
 
 

Output 
Object 

Detection 
With 

Bounding  
Box 

 
38x38 
X512  

19x19 
X1024 

 
19x19 

x1024  
 

  

SSD Extra-feature layers MobileNet V2 

10x111x512 5x5x255 3x3x255 

1x1x255 

417



loss validation value still can follow the decrease in total loss 

training. If the opposite happens, it means that the model has 

memorised datasets and cannot recognise new datasets, it also 

called overfitting [35]. 

For the Momentum optimizer case in Figure 4, the observed 

divergence between decreasing training loss and increasing 

validation loss after 15,000 training steps clearly indicates 

overfitting. In comparison with Figure 5 using Adam 

Optimizer shows that the total loss validation can still follow 

the total loss training until the number of steps reaches 25,000. 

Figure 4. Comparison results of total loss in training and 

validation using Momentum optimizer 

Figure 5. Comparison results of total loss in training and 

validation using Adam optimizer 

The second parameter to determine the good result of 

training is performance metrics. Based on the confusion 

matrix, the performance metrics test result used three variables 

in Eqs. (1)-(3). 

True Positive
Precision = 

True Positive + False Positive
(1) 

True Positive
Recall = 

True Positive + False Negative
(2) 

Precision Recall
F1 Score = 2 

Precision + Recall


 (3) 

Precision denotes the degree of accuracy between actual 

data and predicted data results produced by model. In other 

words, the proportion of detected data that is actually correct 

is measured. Recall describes the success of the model in 

retrieving information. In other words, the proportion of actual 

correct data that is detected is measured. The F1 score 

describes a metric combination of precision and recall. The 

formula uses the harmonic mean of recall and precision [36]. 

It is particularly useful in scenarios involving imbalanced 

datasets, where the distribution of classes is uneven. The 

formula itself provides a balanced metric between false 

positive and false negative. The metric accuracy is not utilized 

for model evaluation because it needs calculation of true 

negatives, which are not defined in object detection. For 

detecting objects in real life, the system focuses on identifying 

and localizing coordinate of objects within images, and there 

is no practical way to count the number of possible locations 

where no object is detected. 

As a result, metrics such as precision, recall, and F1 score 

are preferred, as they do not depend on true negatives and 

provide a more meaningful assessment of model performance 

in detecting and localizing objects. For MobileNet SSD V2, 

after training automatically shows the performance metrics 

with the mean Average Precision (mAP), Average Recall (AR) 

and F1 score using Intersection over Union (IoU) at 0.5. IoU 

is the value used to compare the ground truth to the expected 

overlap bounding box. Table 3 shows the result model 

optimized with the selected scenario. 

Table 3. Result model optimized selected scenarios 

Optimizer 

Config 

Batch 

Size 

Total Loss 
Performance 

Metrics 

Training Validation mAP AR 
F1 

Score 

Momentum 

Optimizer 

lr=0.001 

2 0.542 0.697 0.642 0.477 0.547 

4 0.362 0.767 0.673 0.467 0.551 

8 0.359 0.772 0.661 0.472 0.55 

10 0.341 0.786 0.654 0.471 0.548 

Adam 

Optimizer 

lr=0.001 

2 0.4 0.647 0.617 0.488 0.348 

4 0.679 0.628 0.68 0.508 0.582 

8 0.415 0.7 0.667 0.484 0.561 

10 0.345 0.732 0.675 0.471 0.554 

Table 3 shows the result of selected scenario which is the 

optimizer and batch size. Out of 8 scenario in training model 

process, the highest F1 score occured in configuration using 

Adam Optimizer with learning rate 0.001, and the batch size 

using 4. The mAP obtained in 0.68, Average Recall (AR) in 

0.508, and F1 score obtained in 0.582. When compared with 

previous research of road damage detection from Hernanda et 

al. [37], with the same model obtained the result of precision 

(mAP) in 0.0869, recall (AR) in 0.241 and F1 score not 

mentioned in the result. Despite the different sizes of datasets 

used and the label of road damage which is in that research 

including crack, the higher value of precision and recall 

obtained in this research. 

For road damage surveys in Indonesia, one of the variables 

required in the survey is the number of potholes per 100 meters 

of road. For the application of real-world road damage surveys 

based on neural network automation technology, the precision 

value, recall value and especially the F1 score describe the 

detailed level accuracy of this technology in detecting the 

correct number of potholes. A precision of 0.68 implies that 

more than two-thirds of the detections are correct, a recall of 

0.508 implies that the model identifies more than half of the 

actual potholes, and the F1 score can be used as a summary of 
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the model's accuracy that a value of 0.582, means that the 

model when applied in the real world with the exactly number 

potholes and conditions as the training model dataset, the 

system model's accuracy is 58.2% in detecting potholes. 

 

3.2 System performance testing in detection object on road 

 

The system's detection performance where potholes are 

filled with water, is compared to its performance under dry 

conditions, where potholes on the same location in condition 

not filled with water. At the road site used for the research in 

Kertajaya Indah Street, Surabaya city, Indonesia, there were 

37 potholes of 300 metres road. Despite the limited sample 

size that may limit the generalizability of finding, the research 

was conducted under realistic field condition using edge 

device system in a car, with still ensure diversity of pothole 

condition including variation of dimension, depth and the 

presence of the water in the pothole. At the road site used for 

the study, there were 37 potholes. Considering the weather 

conditions and site characteristics, the tests were conducted by 

deliberately filling the potholes with water. After that, data 

was collected, and performance was evaluated using the 

confusion matrix parameters: True Positive (TP), False 

Positive (FP), and False Negative (FN). True Positive in this 

test represents the circumstance where there is a pothole and 

the projected bounding box is correct. A false positive occurs 

when the projected bounding box is erroneous or does not 

correspond to the actual object label. A false negative occurs 

when there is a pothole but no projected bounding box. 

Definition of this matrix can be represented in Figure 6. 

 

 
 

Figure 6. Matrix definition result 

 

Then calculate the precision, recall and F1 score value from 

the matrix. A higher precision suggests fewer incorrectly 

classified objects as potholes. Recall describes the system's 

capacity to detect a large number of actual potholes. Higher 

recall implies the system will overlook fewer potholes. The F1 

score is the fundamental metric for aessessing the system's 

accuracy, integrating precision and recall into a single score 

helpful for evaluating the precision-to-recall ratio. The testing 

procedure is computed for each Stationing (STA), a value used 

by road authorities to calculate the length of each 1 STA, 

which corresponds to 100 meters. This test covers a distance 

of 3 STA, or 300 meters with the speed of vehicle in 15 km/h. 

The first test, detecting dry potholes that the result shown in 

Table 4, then detecting water-filled potholes as comparison, 

the result shown in Table 5. 

Table 4. System performance of detecting dry potholes 

 

STA 
Num of 

Potholes 
TP FP FN Precision Recall 

F1 

Score 

1 4 2 1 2 0.667 0.50 0.571 

2 21 13 3 8 0.813 0.619 0.703 

3 12 5 2 7 0.714 0.417 0.526 

Total 37 20 6 17 0.769 0.541 0.635 

 

Table 5. System performance of detecting water-filled 

potholes 

 

STA 
Num of 

Potholes 
TP FP FN Precision Recall 

F1 

Score 

1 4 3 0 1 1 0.75 0.857 

2 21 11 0 10 1 0.524 0.688 

3 12 5 1 7 0.833 0.417 0.556 

Total 37 19 1 18 0.950 0.514 0.667 

 

From Table 4 and Table 5, in overall STA of 300 metres 

road, the system has a tendency to get a precision value greater 

than the recall value, this illustrates that the system can 

minimise the identification of the bounding box of holes that 

are not actually holes. F1 score STA 1 in Table 4 get a lower 

value compared to water-filled pothole in Table 5. This may 

be due to the position of the pothole captured by the camera 

which cannot capture the pothole well as shown in Figure 7. 

 

 
 

Figure 7. Comparison of the position potholes captured by 

the camera 

 

The overall STA, system gets the best performance when 

detecting water-filled pothole with value Precision 0.95, 

Recall 0.514 and F1 score 0.667. Based on the F1 score, it can 

be interpreted that system can detect and classify 0.667 or 

66.7% from the total potholes in that road. 

 

3.3 System performance testing with vehicle speed function 

 

The system for classification of water-filled potholes was 

tested, with the changing variable of vehicle speed. The speed 

used was constant on 15 km/h, 25 km/h, and 30 km/h. The 

testing was done on the same road as previous test. 

 

Table 6. Testing result detection water-filled pothole with 

different vehicle speed 

 
Speed 

(km/h) 

Num of 

Potholes 
TP FP FN Precision Recall F1 Score 

15 

37 

19 1 18 0.95 0.514 0.667 

25 17 2 20 0.895 0.459 0.607 

30 16 2 21 0.889 0.432 0.582 

 

From Table 6, within a 300-meter road or 3 STA, the 

model's results vary with different vehicle speeds, impacting 

system performance. As the speed increases, the true positive 

value decreases, indicating a reduction in accurately detected 
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potholes, while the false negative value rises, signifying 

numerous undetected potholes. At speeds of 25 km/h and 30 

km/h, the false positive value increased compared to 15 km/h. 

After calculating precision and recall, it further strengthens the 

observation that the system is missing potholes, as the recall 

value is significantly lower than precision. Regarding the F1 

score, the lowest speed, 15 km/h, obtains the highest F1 score 

of 0.667. As the speed increases, the F1 score gradually 

decreases, reaching 0.582 at 30 km/h. 

The system performance decreased with increasing vehicle 

speed. First, increased vibrations in the vehicle occur when 

vehicle at a higher speed. This can blur the pothole objects, 

making them challenging for the system to detect. Second, the 

Jetson Nano implementing the SSD MobileNet V2 model 

processes frames during inference at an average of 3.5 frames 

per second (FPS), meaning the system processes 3 FPS. With 

increased speed, many frames will be skipped as the number 

of frames that can be processed decreases. Third, the impact 

of increasing vehicle speed, higher probability of over 

exposure or under exposure frame captured by the camera 

especially when lighting condition can be varied drastically 

like there are shadow from tree or building. The auto exposure 

camera doesn’t adapt fast enough in higher speed. 

Based on the system performance test with varying speeds, 

the optimal implementation of the system is observed at a real-

world speed of 15 km/h. To achieve good results at higher 

speeds, overall system performance improvement is required 

to increases the FPS produced by the device. Several solutions 

to mitigate issues at high speeds include using a stabilizer such 

as a gimbal on the camera to reduce motion blur, using a high 

dynamic range (HDR) camera to get details when the lighting 

is too bright or too dark, and utilizing the camera that can be 

adjusted adaptively for the exposure. 

 

 

4. CONCLUSIONS 

 

After conducting tests, analyzing data results, and 

implementing the system in this research, several conclusions 

have been drawn. The optimized model configuration is 

achieved with 25,000 steps, batch size 4, and learning rate 

0.001, resulting in the smallest validation loss 0.628 and the 

largest F1 score of 0.582. For the performance testing, the 

system effectively detects water-filled potholes compared to 

dry pothole. For dry potholes, the system achieves precision 

0.769, recall 0.541, and F1 score 0.635. When detecting water-

filled potholes, the system achieves values with precision 0.95, 

recall 0.514, and F1 score 0.667. Furthermore, performance 

testing concerning varying vehicle speeds indicates that the 

optimal speed for the edge device performance’s system is an 

average speed of 15 km/h. At this speed, the system 

demonstrates precision 0.95, recall 0.514, and F1 score 0.667. 

However, higher speeds necessitate a larger FPS, with this 

system obtaining an average of 3.5 FPS. Recommendations 

include obtaining test locations with a larger number of 

potholes and longer roads, improved edge device hardware 

using more powerful GPU like Nvidia Jetson Xavier, using 

higher resolution of camera and adding more than one camera 

to get wider and better capture of potholes. In addition to 

further research, existing systems can be combined with laser-

based systems such as Kumar's research [13] to improve the 

accuracy and validation of pothole types whether they are dry 

potholes or water-filled potholes. Another way that can be 

added to further research is to integrate the Lidar sensor into 

the existing system, when detected by the camera, the lidar 

sensor will collect precise profiling of pothole. 
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NOMENCLATURE 

AR Average Recall 

FN False Negative 

FP False Positive 

FPS Frame per Second 

lr Learning Rate 

mAP Mean Average Precision 

STA Stationing 

SSD Single Shot Multibox Detector 

TP True Positve 
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