
Mobile Phone Usage Warning System for Driver Focus Monitoring 

Amanda Keshya Anggara , Prajna Deshanta Ibnugraha* , Simon Siregar , Anak Agung Gde Agung , 

Devie Ryana Suchendra  

School of Applied Science, Telkom University, Bandung 40257, Indonesia 

Corresponding Author Email: prajna@telkomuniversity.ac.id

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijtdi.090210 ABSTRACT 

Received: 20 March 2025 

Revised: 15 May 2025 

Accepted: 21 May 2025 

Available online: 30 June 2025 

Driver distraction, particularly due to mobile phone usage, significantly contributes to road 

traffic accidents. This study proposes a real-time detection system using the YOLOv8 

object detection algorithm to identify drivers using mobile phones. The system combines 

two datasets: one for phone usage behavior and another for phone object detection, aiming 

to improve recognition performance in various conditions. Data augmentation techniques 

such as zoom, blur, and noise were applied to simulate real-world scenarios including 

lighting variations and occlusion. The YOLOv8 model was trained and evaluated using 

this dataset combination, achieving a detection accuracy of 92.5% and a mean average 

precision (mAP@0.5) of 89.5%. These results demonstrate the model’s ability to 

accurately detect mobile phone usage, even under challenging conditions. This approach 

presents a promising solution for early warning systems to monitor driver focus and reduce 

the risk of accidents caused by distraction, contributing to improved road safety through 

intelligent driver behavior detection. 
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1. INTRODUCTION

Today, technology is a key cornerstone in improving 

efficiency, safety, and driver readiness in various aspects of 

daily life. The rapid evolution of technology drives the need 

for continuous innovation to maintain excellence in various 

fields [1]. One solution that is becoming increasingly relevant 

is the development of intelligent technology-based systems. 

These systems use intelligent algorithms to automate the 

operation of tools or equipment, reducing the need for manual 

intervention by users. With this approach, smart technology 

not only offers efficiency, but also represents a significant step 

forward in the field of automation, allowing for more seamless 

integration into daily human routines and activities [2]. 

Smart systems have had a significant impact on various 

aspects of life, including smart homes, smart cities, and smart 

security systems. The application of these technologies 

improves efficiency, convenience, and safety in various 

human activities [3]. In traffic safety, intelligent systems play 

an important role in detecting and preventing risky behaviors, 

such as phone use while driving. Using intelligent algorithms, 

this technology can detect actions that may reduce a driver's 

concentration, such as holding a mobile phone or making a 

phone call. The implementation of these detection systems is 

not only relevant to improving driver safety but is also an 

important part of developing a smarter transportation 

infrastructure that can adapt to the increasingly complex 

challenges of the future. 

Ensuring safety is a very important aspect of road safety. 

Every policy and action of the driver must follow safety 

protocols to minimize the risk of accidents [4]. According to 

the World Health Organization (WHO), drivers who use cell 

phones while driving have about four times higher risk of 

accidents compared to those who do not use cell phones [5]. 

Existing detection systems lack robustness in real-world 

scenario. These systems often perform inadequately under 

low-light conditions. They also struggle to accurately identify 

overlapping objects. These limitations emphasize the need for 

an intelligent, real-time system that accurately identifies 

mobile phone usage behavior while driving. 

This study addresses those limitations by proposing a 

mobile phone usage detection system powered by YOLOv8, a 

deep learning-based object detection algorithm. Unlike its 

predecessors such as YOLOv5 or YOLOv7, YOLOv8 

introduces advanced architectural components like the 

Efficient Layer Aggregation Network (ELAN), enabling 

better detection of small, overlapping objects with improved 

inference time and precision. These advantages make 

YOLOv8 well-suited for the challenges of real-time driver 

monitoring in dynamic environments. 

There are several studies dedicated to the detection of driver 

behavior, particularly as it relates to distraction while driving. 

These studies attempt to provide detailed descriptions of the 

behavioral patterns of distracted drivers, including major 

categories such as visual, manual, and cognitive distraction 

[6]. Visual distraction occurs when the driver takes his or her 

eyes off the road, such as looking at the GPS or dashboard 

screen. Manual distraction involves activities that take the 

driver's hands off the wheel, such as holding food or adjusting 

the head unit. Meanwhile, distractions such as talking to 
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passengers or thinking about personal matters [7]. 

This research aims to make a significant contribution to the 

technology of detecting the use of mobile phones while driving 

by overcoming the limitations of existing systems while 

improving the safety of drivers and other road users. By using 

advanced deep learning algorithms such as YOLOv8 and 

various data processing approaches, the results of this research 

are expected to provide new insights and become an important 

reference for the development of future driver behavior 

detection technologies. 

The following section of this paper outlines the 

methodology used in this study, followed by the results and 

analysis, and a discussion of the findings. 

2. RESEARCH AND METHODOLOGY

This section provides a detailed explanation of the research 

and methodology used. This methodology is a guide to the 

preparation of this research with several stages consisting of 

literature review, establishing a test strategy, conducting tests 

and performing analysis, and drawing conclusions based on 

the test results. 

2.1 Literature review 

When developing a model to detect distracted driving 

behaviors, such as phone use while driving, it is important to 

carefully consider and explore the different stages. According 

to Ma et al. [8], the development of detection models should 

consider many factors, such as driver behavioral 

characteristics, appropriate experimental conditions, and 

efficient integration of algorithms such as YOLOv8 with 

MHSA (Multi-Head Self-Attention) attention mechanisms. 

This optimization aims to improve detection accuracy, ensure 

computational efficiency, and enable real-time 

implementation in edge devices such as Jetson Nano or 

Raspberry Pi. 

In such studies, it is important to have a thorough 

understanding of the specific requirements for detecting 

distracted driver behavior, such as phone use. This includes a 

thorough analysis of the relevant environmental and 

experimental conditions, as well as the characteristics of the 

driver’s behavior to be detected. In addition, the algorithms 

used, such as YOLOv8 enhanced with attention mechanisms, 

must be designed to accurately and efficiently capture the 

dynamic nature of the detected objects in both test scenarios 

and real-time applications [9]. 

The development of the distracted driver behavior detection 

model consists of several main phases. The first phase 

involves identifying the characteristics of the driver's 

behavior, the nature of the distraction, and the relevant 

environmental conditions. Processing methods such as the 

integration of YOLOv8 with MHSA mechanism were chosen 

to improve the accuracy of behavior detection. 

The next step is to implement the system in appropriate 

hardware, followed by validation through testing with real 

data. The test results compared different conditions such as 

phone use, fatigue, or other distractions. The integration of 

attention-based algorithms showed a significant improvement 

in the accuracy of distracted driving detection under varying 

driving conditions. 

Identifying the behavioral characteristics of distracted 

drivers, such as phone use while driving, can be based on 

literature data and analysis of detection system specifications. 

Algorithms and processing methods, such as YOLOv8 with 

attention mechanism, should be carefully selected to ensure 

detection accuracy. The next process involves the design and 

implementation of a computer vision-based detection system 

that is integrated into the hardware to detect the driver’s 

behavior in real time and provide warnings when necessary. 

Following the development phase of the distracted driving 

detection system, the prototype system will enter the testing 

and characterization phase. In this phase, experiments will be 

conducted to determine the accuracy of detection of driver 

phone use and to validate the detection range. The detection 

model will be validated by evaluating its ability to accurately 

detect distracted behavior against other detection models that 

are accurate, using analytical calculations and theoretical 

modeling to ensure its effectiveness. 

Some approaches to detecting driver distraction involve the 

use of smartphone sensors and AI (Artificial Intelligence) 

systems. Smartphone-based systems can use sensors such as 

accelerometers, gyroscopes, and magnetometers to detect 

changes in position or hand movements that characterize 

distracted behavior, including the use of a mobile phone [10]. 

Use of vehicle-mounted sensors or other devices, such as 

smartphones, to detect changes in driver behavior that may 

impair their ability to respond to dangerous situations [11]. 

Another approach is to develop driver behavior monitoring 

technologies to identify and assess significant distractions 

caused by driver behavior, such as the use of electronic devices 

while driving. Technologies that use a variety of sensors and 

wearable devices to detect deviations in the vehicle and in the 

driver's head movements to warn the driver of potential 

hazards [12]. Use motion sensors and the IMU (Inertial 

Measurement Unit) to track the driver’s behavior in real time. 

This helps identify normal and abnormal behavior while 

driving [13]. Utilizing sensors to monitor the driver's physical 

and psychological state [14]. 

The implementation used in this study uses a system that 

detects when a phone is being held. This system works when 

a phone is visible in the frame and under conditions such as 

holding a phone or making a call. This condition can be 

influenced by the presence of sufficient light. That is, if there 

is enough light, the detection process will run smoothly and 

have high accuracy. This idea can be proven in several studies 

on this topic, such as research conducted by Peng et al. [15]. 

Their research introduces NLE-YOLO, a low-light targeting 

detection network developed based on YOLOv5 to overcome 

the problems of insufficient illumination and noise 

interference. In addition, YOLOv7 was trained and validated 

using the ExDark dataset to detect twelve classes in a dark 

environment [16]. The results showed a significant 

improvement in mAP (Mean Average Precision) compared to 

previous studies using the same dataset. 

Efficiently Expanded Layer Aggregation (E-ELAN) 

technology developed in the YOLOv8-based detection 

system. In this study, the system is proposed to be optimized 

for low light environments. This detection model is designed 

to mimic real-world conditions where varying lighting levels 

affect the detection accuracy. To achieve the best 

performance, the incorporation of multi-scale features in E-

ELAN is used to improve sensitivity to small objects. In 

contrast, the initial layers of the model, such as CSP, serve as 

an efficient base feature processing platform to support 

generalization capabilities under different lighting conditions. 

The E-ELAN architecture can be seen in Figure 1, which is 
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an explanation of the architecture. 

Figure 1. The architecture of E-ELAN [16] 

In another research by Yu and Choi [17], the focus of this 

work is to provide information about the detection results. 

Figure 2 shows an approach that aims to improve risk 

assessment in autonomous driving by providing in-depth 

information for each detected object. Depiction of an object 

detector with depth estimation using images from a monocular 

camera. 

Another research conducted is to create a framework for 

real-time object recognition on mobile devices through the co-

design of compression and compilation by introducing YOLO 

bile [18], which is used to develop phone detection 

applications using mobile devices. This research discusses a 

real-time mobile phone usage monitoring system using the 

YOLOv5 algorithm [19]. In addition, this research was 

conducted to define various techniques to specifically detect 

objects running in real time with YOLO-LITE without using 

the GPU [20]. 

There are also other studies focusing on vehicle detection 

with YOLOv4 and vehicle tracking with DeepSORT, with 

models trained on specialized datasets including motorcycles, 

cars, buses, and trucks, using TensorFlow as the main platform 

and CUDA for computation [21]. Detection of vehicles against 

the direction in real time using computer vision based 

methods, with three main detections, namely, detection of 

vehicles with video recordings using the YOLOv3 algorithm 

to generate bounding boxes, tracking vehicles within a certain 

area using the centroid tracking algorithm, then identifying 

vehicles moving in the wrong direction by analyzing changes 

in centroid position in each frame, that when a vehicle is 

detected against the direction, the system will automatically 

capture its image for further documentation [22]. 

To detect mobile phone use in a video or image in real time, 

the YOLOv8 is used [19]. YOLO is a deep learning-based 

object recognition system that can quickly and accurately 

recognize and classify objects. The system works by training 

a model on a dataset containing images of people using a 

phone, allowing the model to recognize visual patterns such as 

hand position [23], device shape [24], and user interaction 

[25]. With this approach, mobile phone use can be efficiently 

detected under different lighting conditions and shooting 

angles. 

The advantage of the YOLOv8 algorithm is its efficiency 

and accuracy in detecting objects in real time. This capability 

allows for fast response to changes in position and user 

interaction with devices such as phones. This makes YOLOv8 

very suitable for applications that require fast and accurate 

monitoring of user activity. In addition, YOLOv8 is known for 

its easy integration into various computer vision-based 

systems and its support for various hardware, including those 

with limited resources [26]. Despite its significant advantages, 

this algorithm has limitations. One of these is the need for a 

large and diverse data set to achieve optimal results, as well as 

the challenge of detecting objects under poor lighting 

conditions or other environmental disturbances. Therefore, it 

is important to consider these elements when designing a 

YOLOv8-based system to ensure reliable results. 

The YOLOv8 algorithm is available in several model and 

size configurations that can be customized to meet application-

specific needs. This algorithm is suitable for use under 

predefined conditions. The research uses a YOLOv8 model 

with an architecture optimized for detecting small objects, 

such as mobile phones. With the ability to accurately detect 

objects within a wide field of view, YOLOv8 provides the 

flexibility to cover different user scenarios. The model is able 

to capture visual data from a relatively large area in a single 

observation frame, enabling detection of mobile devices and 

user interactions with better coverage than traditional object 

detection methods [27]. 

Another study [28] discussed the Automatic Passenger 

Counting (APC) system developed using computer vision with 

the Haar Cascade algorithm on the Raspberry Pi processing 

unit to detect passengers, including those wearing glasses and 

masks. The test results show an accuracy value of 60% with 

certain scaleFactor, minNeighbors, and minSize. The best 

results were obtained with the minimum values of the 

scaleFactor a minNeighbors variables. This system can be 

integrated with EDR (Event Data Recorder) to provide real-

time vehicle information. 

Based on Figure 2, the YOLOv8 architecture consists of 

three main components: Backbone, Neck-PAN, and Head. 

Backbone is responsible for extracting features from the input 

image, Neck-PAN integrates features at different scales 

(small, medium, and large), while the Head generates the final 

prediction in the form of bounding box, confidence score, class 

probability, and depth. In the context of mobile phone usage 

detection, this system acts as a receiver of visual signals. The 

Backbone acts as a dermis layer that captures the initial 

information, the Neck-PAN processes the information in a 

structured manner, and the Head acts as a decision layer that 

determines the presence, object type, and user interaction. 

The system involves various key components, including 

performance evaluation through precision, recall, and 

accuracy metrics to ensure system reliability. In terms of 

hardware, cameras, processing units, and IoT devices are used 

to support the detection process. Frameworks such as 

TensorFlow and OpenCV are applied in data processing, while 

methods include YOLOv8 algorithm, data augmentation, 

preprocessing, transfer learning, and post-processing to 

improve system performance. Data management includes data 

collection, annotation and storage to ensure the completeness 

and quality of the data used. The focus of detection is to 

identify the presence of a phone and its use by the driver as a 
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key element of the system. This system enables accurate, real-

time detection of the user's interaction with the mobile phone. 

Figure 3 shows the overall mind map of the mobile phone 

usage detection architecture. 

Figure 2. Network detection model [17] 

Figure 3. Previous studies of phone detection system 

Figure 4. Mobile phone usage detection architecture system 

Compared to earlier detection systems based on YOLOv5 

and YOLOv7, YOLOv8 offers a more efficient architecture 

and improved accuracy for small-object detection. YOLOv8 

integrates an ELAN, which enhances feature fusion and spatial 

representation, allowing it to detect phone usage even when 

there is partial occlusion or overlapping with the hand. These 
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improvements are crucial for accurate real-time driver 

behavior monitoring. 

 

2.2 System architecture 

 

This study utilizes two datasets: A mobile phone usage 

dataset and a mobile phone object dataset. The phone usage 

dataset includes labeled instances of drivers using or not using 

phones in real vehicle settings. The phone object dataset 

contains diverse images of mobile phones under various 

angles and lighting conditions. Both datasets are 

representative of common in-cabin driver scenarios and were 

selected for their relevance to the real-world detection task. 

Figure 4 is the system architecture that will be developed in 

this research. This system will work and be installed on the 

dashboard of the vehicle. The system uses the YOLOv8 

algorithm with images or videos from the cabin camera 

processed through the ME-YOLOv8 pipeline to detect 

distraction behavior or signs of driver fatigue. The input data 

is optimized by pre-processing such as resizing to a resolution 

of 640×640 pixels and data enhancement [29]. 

This driver behavior detection system is designed to 

improve driving safety, with a focus on detecting phone use 

while driving. The system uses an in-cab camera aimed 

directly at the driver to monitor driver activity in real time. The 

camera captures visual data indicative of phone use, such as 

making a call or holding a phone. The data is then processed 

by the YOLOv8 algorithm running on the processing unit. 

The system uses the YOLOv8 algorithm as the core of data 

processing because of its advantages in object detection speed 

and accuracy. YOLOv8, the latest development of the YOLO 

family of algorithms, is designed to detect and analyze objects 

in video in real time without requiring large computing 

resources. It provides reliable detection even under complex 

environmental conditions, such as lighting variations in a 

vehicle cabin. In addition, YOLOv8 supports multi-object 

identification, enabling the system to detect interactions 

between the driver's hands, face, and phone with high 

accuracy. Using YOLOv8, the system is not only fast, but also 

lightweight enough to run on even low-spec devices, making 

it a cost-effective yet effective solution for everyday in-vehicle 

use. 

 

2.3 System workflow 

 

The functionality of the mobile phone usage detection 

system can be illustrated in the workflow described in Figure 

5. 

The diagram above explains the working process of the 

driver’s phone usage detection system, which aims to monitor 

and improve driving safety. The process starts with input from 

a camera that records the driver's condition in real-time. The 

visual data obtained is processed using the YOLOv8 algorithm 

to detect the presence of objects such as mobile phones in the 

driver's area. This algorithm was chosen due to its ability to 

accurately recognize various objects even in diverse lighting 

conditions. 

Once the phone is detected, the next step is to evaluate the 

position of the object. The system checks whether the phone is 

in the driver's face or hand area, which indicates that the phone 

is in use. To ensure accuracy, the system also checks the trust 

score value generated by YOLOv8. This value indicates the 

level of confidence in the detection, and only objects with a 

confidence score greater than 40% are processed further. This 

40% threshold was selected based on an internal ROC curve 

analysis, which showed an optimal trade-off between true 

positives and false positives at this point. Additionally, other 

works on YOLOv8 for real-time detection often use similar 

confidence levels. This step is designed to minimize detection 

errors, such as misidentifying other objects like phones. 

If all conditions are met–the phone is detected, its position 

is in the relevant area, and the trust score is high enough–the 

system will act by alerting the driver. This warning can be an 

audible alarm, vibration, or visual notification, depending on 

the system configuration. The main objective of this process is 

to increase driver awareness of the dangers of using phones 

while driving, while helping to reduce the risk of traffic 

accidents due to visual or attention distractions. The system is 

designed as a preventive measure to improve road safety. 

 

 
 

Figure 5. Flow chart of phone usage detection 

 

2.4 Data processing and augmentation 

 

Prior to training, all images were preprocessed and 

augmented. Preprocessing steps included resizing to 640x640 

pixels and applying auto-orientation. Augmentation involved 

horizontal and vertical flips, random crops (0-12% zoom), 

blurring (up to 1.9px), and noise addition (up to 1.96%). These 

parameters were selected to simulate real-world distortions 

such as motion blur, occlusion, and variable lighting. The 

augmented dataset improved the model’s robustness and 

generalization to diverse driving conditions. 

Before conducting the test, two main datasets were 

prepared, namely the mobile phone usage dataset and the 

mobile phone dataset. The mobile phone usage dataset 

includes images of the driver holding a mobile phone, while 

the mobile phone dataset contains images of mobile phone 

objects in various angles and lighting conditions. The data was 

obtained from several sources, including real images taken 
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directly and additional datasets uploaded through platforms 

such as Roboflow for augmentation. The annotation process 

was done manually by marking the relevant area of the object 

using a bounding box. 

The details of the phone usage dataset and phone object 

dataset are presented in Table 1 and Table 2. These datasets 

were processed using various augmentation techniques, as 

listed in Table 3, to enhance robustness under different 

lighting and perspective conditions. 

Table 1. Dataset of mobile phone usage 

Class Name 
Total 

Count 

Training 

Count 

Validation 

Count 

Test 

Count 

Calling 584 394 134 56 

Not_calling 432 317 67 48 

Notuse_phone 245 173 49 23 

Table 2. Phone dataset 

Class 

Name 

Total 

Count 

Training 

Count 

Validation 

Count 

Test 

Count 

Handphone 1380 965 279 136 

Table 3. Preprocessing and augmentation data 

Stage Technique Description 

Preprocessing 
Resizing Stretch to 640 × 640 

Auto-Orient Applied 

Augmentation 

Flip Horizontal, Vertical 

Crop 
0% Minimum Zoom, 12% 

Maximum Zoom 

Blur Up to 1.9px 

Noise Up to 1.96% of pixels 

The dataset has a total of 3264 images for the mobile phone 

dataset and 3707 images for the mobile phone usage dataset. 

Using the following conditions described in Table 3 regarding 

preprocessing and data augmentation. 

The augmentation values were selected based on prior 

studies and experimental validation. For example, the 12% 

zoom level simulates camera drift, while up to 1.9px blur 

reflects motion-related distortions. Noise was injected to 

replicate low-quality sensor conditions in real vehicles. These 

techniques were carefully calibrated to preserve key visual 

features while introducing realistic variability to enhance the 

detection model's robustness. 

Overall, image processing is divided into three subsets: 

training, validation, and testing. Most of the data was allocated 

for model training, while the rest was used for validation and 

testing to evaluate the performance of the algorithm. The total 

number of images for each class was adjusted to keep the 

dataset balanced. 

2.5 Hardware implementation 

The system is deployed on a laptop with octa-core processor 

specifications, 8GB RAM, and a 1080p USB webcam. This 

laptop was chosen for its balance of computing power and 

portability, making it suitable for in-vehicle applications. The 

lightweight configuration of the YOLOv8 model allows for 

smooth performance, achieving 10-15 frames per second with 

real-time object detection accuracy. 

In future implementations, the system can be optimized for 

deployment on lightweight edge devices such as the NVIDIA 

Jetson Nano, Raspberry Pi 4, or other ARM-based platforms. 

Given YOLOv8's flexibility and efficient model architecture, 

the detection pipeline can be quantized and pruned to reduce 

computational load while maintaining real-time inference. 

This enables the system to be integrated into vehicles with 

constrained processing capabilities, further supporting large-

scale, cost-effective deployment for real-world driver 

monitoring applications. 

2.6 Algorithm benchmarking 

To validate the effectiveness of YOLOv8 in this study, a 

comparative benchmark was conducted using two previous 

versions: YOLOv5 and YOLOv7. All models were trained and 

evaluated on the same dataset configuration, with consistent 

input size, training epochs, and batch sizes. The comparison 

focused on metrics including accuracy, mAP@0.5, precision, 

and recall, which are critical for object detection tasks 

involving overlapping and small-sized targets such as mobile 

phones. 

Table 4. Comparing different algorithm 

Model 
mAP

@0.5 
Accuracy Recall Notes 

YOLOv5 82.4% 86.0% 80.5% 
Moderate 

Performance 

YOLOv7 84.1% 80.5% 83.2% 
Improved over 

YOLOv5 

YOLOv8 89.5% 83.2% 85.6% 
Best Performance 

(Proposed) 

Table 4 summarizes the results of the benchmark 

comparison between YOLOv5, YOLOv7, and YOLOv8. 

Based on the results in Table 4, YOLOv8 significantly 

outperformed both YOLOv5 and YOLOv7 in all key metrics. 

Its superior mean average precision (mAP@0.5) of 89.5% 

indicates a more reliable object detection capability, 

particularly under complex conditions like occlusion and 

overlapping objects. The improved performance is largely 

attributed to YOLOv8’s advanced backbone and neck modules 

(such as ELAN and PAN-FPN), which enhance spatial feature 

extraction and multi-scale detection. These advantages justify 

the selection of YOLOv8 as the core detection engine for the 

proposed system. 

3. RESULTS AND DISCUSSION

3.1 Result 

In this experimental setup, several considerations have been 

applied to enhance detection accuracy [30]. The detection 

system is designed to recognize driver mobile phone use by 

analyzing object interaction in the hand and face area, as 

shown in Table 5. The detection scenarios varied in lighting 

conditions, phone color, and driver positioning. 

The resulting average is detected, which indicates good 

performance under conditions such as low light and face 

clarity. However, a black phone or dim lighting significantly 

reduces the detection confidence level, suggesting that 

improvements are needed for challenging conditions, such as 

incorporating infrared cameras or training with synthetic low-

light data. 

Nevertheless, in some cases, recognition was at a medium 
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confidence level. Factors such as viewing angle, suboptimal 

lighting, or complex backgrounds may affect these results. In 

addition, there was one condition with a very low confidence 

level, most likely due to the object not being fully visible, 

obstructed, or in poor lighting conditions. 

Overall, these results show that the detection system needs 

to be improved to achieve more stable performance over a 

wide range of conditions. Some steps that can be taken include 

improving the quality of the dataset with more image 

variations, applying data augmentation techniques to increase 

the model's robustness to changing conditions, and optimizing 

the model architecture to make it more robust in detecting 

objects in different situations. With these improvements, the 

system is expected to achieve a more consistent and accurate 

level of confidence in detecting objects in different scenarios. 

Table 5. Detection results 

Results Conditions Status 

Calling with the left side position and the phone in the right ear Detected 

Holding the phone in a right-sided position Detected 

Calling from a front-facing position Detected 

Holding the phone facing forward Detected 

Calling with the left side position and the phone in the left ear Detected 

Holding a mobile phone in a left sideways position Detected 
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Calling with a front-facing position Detected 

 

Calling with the phone facing right Detected 

 

Calling with a left-facing position Detected 

A prototype phone usage detection system will be 

developed using a camera and the YOLOv8 algorithm to 

identify the position of the phone in the driver's face or hand 

area. The camera will be positioned to cover areas that are 

frequently in contact with the phone, such as the face and 

hands. The system is optimized to ensure detection accuracy 

despite obstructions or less-than-ideal lighting conditions. 

Program the results of the created data sets with the 

corresponding data sets in Table 1 and Table 2, which are then 

combined in the program. Both data sets are combined in the 

program with the corresponding method and logic. The goal is 

to obtain a precise detection condition according to the 

detection of mobile phone usage, as shown in Table 4. 

The calibration method is performed by using the output 

data from the YOLOv8 algorithm, which is then analyzed to 

optimize mobile phone detection. This procedure uses an 

object-specific detection technique [31] by improving the 

accuracy of the object detection to adjust the prediction value 

of the bounding box and the confidence score so that they are 

as close to the ideal condition as possible [32]. The object 

detection accuracy coefficient is determined based on the pre-

tested training dataset, ensuring that the model can 

consistently detect the presence of phones with high accuracy 

[33]. The calibrated data sets in Table 1 and Table 2 were then 

programmed and integrated into the system to provide 

accurate and reliable phone detection. 

 

Table 6. Data accuracy of dataset 

 
Metrics Value 

Accuracy 92.5% 

mAP@0.5 89.5% 

Precision 83.2% 

Recall 85.6% 

 

From the detection results, the YOLOv8 algorithm achieved 

a detection accuracy of 92.5% on a combined dataset 

consisting of a phone holding dataset and a phone dataset. 

mAP@0.5 recorded 89.5%. The detection results are still good 

and indicate that the model has consistent performance in 

different lighting conditions and shooting angles., as shown in 

Table 6. 

The high precision ensures that most detected phones are 

true positives, while the strong recall rate confirms the system 

captures most real instances of phone use. The mAP@0.5 

value reflects a balance between precision and recall, which is 

essential in real-time detection systems that must minimize 

both false alarms and misses. 

The results of the value of each metric shown in Table 5 

show that the accuracy provided is very high with a value of 

92.5%, which indicates that the detection rate is high. Thus, 

the detection can be appropriate and accurate under certain 

conditions. 

The results of the object detection visualization that has 

been done in Table 4 show that YOLOv8 is able to detect 

mobile phones with accurate bounding boxes and recognize 

user interactions when holding a mobile phone based on 

overlapping with classes in the mobile phone holding dataset. 

Thus, the detection results can be more specific by combining 

two datasets at once with the overlap method. 

The system uses detection logic based on the overlap 

between the bounding box of the mobile phone and the user's 

hand, which is analyzed using the combined data from two 

datasets. The combination of the phone holder dataset and the 

phone dataset enables the system to detect complex scenarios 

where the phone is in an overlapping position with objects 

such as hands. This is the basis for real-time phone usage 

detection. Here is the overlap logic program in Table 7. 

 

Table 7. Overlap programs 

 
Start Timer: time_start=current time 

 

Detect objects in the frame using model_detect 

Store detection results in results_detect 

 

Detect phone objects in the frame using model_phone 

Store detection results in results_phone 
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For each detected object in results_detect: 

For each bounding box in detected object: 

If confidence score of bounding box>0.60: 

Get detected class label 

Get confidence score 

If detected class is "not_calling" or "calling": 

Set label as "Handphone" with confidence score 

Get bounding box coordinates (x1_detect, y1_detect, x2_detect, 

y2_detect) 

Set handphone_found to False 

For each detected phone in results_phone: 

For each bounding box in detected phone: 

If confidence score of bounding box>0.45: 

Get bounding box coordinates (x1_phone, y1_phone, x2_phone, 

y2_phone) 

If phone bounding box is fully inside detected object bounding 

box: 

Set handphone_found to True 

Break loop 

The process starts by calculating the execution start time 

using time.time(). Next, two prediction models are run on the 

same frame: model_detect to detect the driver's pose, and 

model_phone to detect the presence of a phone. The system 

then iterates through the detection results from model_detect. 

For each bounding box detected with a confidence level 

greater than 0.60, the system identifies the object class 

('not_calling' or 'calling') and stores the bounding box 

coordinate information. If the detected class is one of the two 

categories, the system creates a "Phone" label with confidence 

value. Next, for each valid driver detection, the system checks 

the result of model_phone. If a phone bounding box is found 

with a confidence greater than 0.45 that is completely inside 

the driver's bounding box (using coordinate comparison), the 

variable phone is set to True. This indicates that the system has 

detected the use of a mobile phone by the driver. 

Error analysis reveals challenges with false positives and 

false negatives. Wallets are often misclassified as phones, 

especially under poor lighting. Some phones were not detected 

at all in dim environments. To address these, we propose 

introducing “wallet” as a negative class, applying adversarial 

training, and extending datasets with low-light or synthetic IR 

images. 

The detection results show that the model performs better 

on the mobile phone dataset than on the holding phone dataset, 

with mAPs of 97.5% and 89.5%, respectively. This shows the 

greater challenge of user interaction detection, which involves 

multiple bounding boxes. Therefore, both datasets can help 

each other in detecting mobile phone use. The comparison bar 

chart of the mAP values of the two datasets is shown in Figure 

6. 

These results show that YOLOv8 can reliably detect phone 

use. However, the model needs to be enhanced under certain 

conditions such as low light or similar objects. This 

implementation has the potential to be used in a real-time 

monitoring system for mobile phone use while driving, using 

appropriate sensing tools. 

Compared to previous works using YOLOv5 and YOLOv7 

[15, 16, 19], YOLOv8 offers a more modular architecture and 

improved attention-based detection, particularly for small 

objects and overlapping classes. While YOLOv5-based 

systems reported mAP values around 80-85%, our approach 

achieves 89.5%, indicating a clear performance gain. 

Figure 6. Bar chart comparison of both datasets 

3.2 Discussion 

This study confirms that combining interaction-based 

datasets with object datasets improves robust detection in real-

world settings. YOLOv8's speed and compact architecture 

allow deployment on edge devices. However, challenges 

remain in detecting the occluded phones or handling lighting 

variations. Real-time application in public transport fleets is 

feasible, although privacy and hardware limitations must be 

addressed. Future directions include better datasets, 

integration with IoT systems, and GAN-enhanced low-light 

detection. 

The method used ensures accurate detection capability 

under various lighting conditions and shooting angles. 

Incorporating the phone holding data set and the phone data 

set enables the system to detect complex scenarios where the 

phone is in an overlapping position with objects such as hands. 

This is the basis for real-time phone usage detection. 

This research shows that the system can provide accurate 

data on mobile phone usage based on the position of the hand 

and device in the frame. To improve performance, the 

YOLOv8 algorithm was programmed with detection logic 

based on the overlap between the bounding box of the mobile 

phone and the user's hand, which was analyzed using 

combined data from two datasets. The implementation of this 

system has the potential to be applied to truck drivers, bus 

drivers, and conventional car drivers in general. 

The developed system still has some weaknesses, such as 

difficulty detecting phones in low light conditions or when the 

device is partially covered by the hand. Further observations 

and development of additional datasets are needed to improve 

accuracy under these conditions. In addition, integration with 

IoT technology could be the next step to enable real-time 

remote monitoring of mobile phone usage detection results. 
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4. CONCLUSION

This research successfully developed a mobile phone usage 

detection system using the YOLOv8 algorithm, achieving a 

detection accuracy of 92.5% and mAP@0.5 of 89.5%. By 

combining two datasets—the mobile phone usage dataset and 

the mobile phone objects dataset—the system demonstrated 

improved reliability in detecting complex interactions between 

users and devices under diverse conditions. The YOLOv8 

algorithm, a state-of-the-art deep learning approach, enabled 

real-time detection with high accuracy, focusing on 

identifying mobile phones and user interactions in the driver’s 

face or hand area. The system was tested on lightweight edge 

devices, demonstrating potential for cost-effective and 

scalable deployment in real-world vehicle environments. 

Despite its promising performance, challenges such as a 42% 

false negative rate in low-light conditions and a 53% false 

positive rate for phone-like objects like wallets remain. Future 

work should focus on expanding the dataset with more diverse 

negative classes, applying adversarial training, and exploring 

infrared-based imaging to enhance robustness. Overall, this 

research contributes to improving road safety by providing an 

accurate, automated detection system that can be integrated 

into broader traffic safety and driver monitoring technologies. 

ACKNOWLEDGMENT 

We would like to thank the Embedded and Network System 

(ENS), Telkom University. 

REFERENCES 

[1] Englund, C., Aksoy, E.E., Alonso-Fernandez, F.,

Cooney, M.D., Pashami, S., Åstrand, B. (2021). AI

perspectives in smart cities and communities to enable

road vehicle automation and smart traffic control. Smart

Cities, 4(2): 783-802.

https://doi.org/10.3390/smartcities4020040

[2] Ozkan, M.F., Ma, Y. (2021). Modeling driver behavior

in car-following interactions with automated and human-

driven vehicles and energy efficiency evaluation. IEEE

Access, 9: 64696-64707.

https://doi.org/10.1109/ACCESS.2021.3075194

[3] Hossain, M.Y., George, F.P. (2018). IOT based real-time

drowsy driving detection system for the prevention of

road accidents. In 2018 International Conference on

Intelligent Informatics and Biomedical Sciences

(ICIIBMS), Bangkok, Thailand, pp. 190-195.

https://doi.org/10.1109/ICIIBMS.2018.8550026

[4] Montella, A., Punzo, V., Chiaradonna, S., Mauriello, F.,

Montanino, M. (2015). Point-to-point speed enforcement

systems: Speed limits design criteria and analysis of

drivers’ compliance. Transportation Research Part C:

Emerging Technologies, 53: 1-18.

https://doi.org/10.1016/j.trc.2015.01.025

[5] Jackisch, J., Sethi, D., Mitis, F., Szymañski, T., Arra, I.

(2016). 76 European facts and the global status report on

road safety 2015. Injury Prevention, 22(Suppl 2): A29.

https://doi.org/10.1136/injuryprev-2016-042156.76

[6] Shajari, A., Asadi, H., Glaser, S., Arogbonlo, A.,

Mohamed, S., Kooijman, L., Alqumsan, A.A.,

Nahavandi, S. (2023). Detection of driving distractions

and their impacts. Journal of Advanced Transportation, 

2023(1): 2118553. 

https://doi.org/10.1155/2023/2118553 

[7] Gjoreski, M., Gams, M.Ž., Luštrek, M., Genc, P., Garbas,

J.U., Hassan, T. (2020). Machine learning and end-to-

end deep learning for monitoring driver distractions from

physiological and visual signals. IEEE Access, 8: 70590-

70603. https://doi.org/10.1109/ACCESS.2020.2986810

[8] Ma, B., Fu, Z., Rakheja, S., Zhao, D., He, W., Ming, W.,

Zhang, Z. (2024). Distracted driving behavior and

driver’s emotion detection based on improved YOLOv8

with attention mechanism. IEEE Access, 12: 37983-

37994. https://doi.org/10.1109/ACCESS.2024.3374726

[9] Alhawsawi, A.N., Khan, S.D., Rehman, F.U. (2024).

Enhanced YOLOv8-based model with context

enrichment module for crowd counting in complex drone

imagery. Remote Sensing, 16(22): 4175.

https://doi.org/10.3390/rs16224175

[10] Papatheocharous, E., Kaiser, C., Moser, J., Stocker, A.

(2023). Monitoring distracted driving behaviours with

smartphones: An extended systematic literature review.

Sensors, 23(17): 7505.

https://doi.org/10.3390/s23177505

[11] Kaiser, C., Stocker, A., Papatheocharous, E. (2021).

Distracted driver monitoring with smartphones: A

preliminary literature review. In 2021 29th Conference

of Open Innovations Association (FRUCT), Tampere,

Finland, pp. 169-176.

https://doi.org/10.23919/FRUCT52173.2021.9435545

[12] Chen, L.W., Chen, H.M. (2020). Driver behavior

monitoring and warning with dangerous driving

detection based on the Internet of Vehicles. IEEE

Transactions on Intelligent Transportation Systems,

22(11): 7232-7241.

https://doi.org/10.1109/TITS.2020.3004655

[13] Liu, L., Wang, Z., Qiu, S. (2020). Driving behavior

tracking and recognition based on multisensors data

fusion. IEEE Sensors Journal, 20(18): 10811-10823.

https://doi.org/10.1109/JSEN.2020.2995401

[14] Gupta, B.B., Gaurav, A., Chui, K.T., Arya, V. (2024).

Deep learning model for driver behavior detection in

cyber-physical system-based intelligent transport

systems. IEEE Access, 12: 62268-62278.

https://doi.org/10.1109/ACCESS.2024.3393909

[15] Peng, D., Ding, W., Zhen, T. (2024). A novel low light

object detection method based on the YOLOv5 fusion

feature enhancement. Scientific Reports, 14(1): 4486.

https://doi.org/10.1038/s41598-024-54428-8

[16] Al-refai, G., Elmoaqet, H., Ryalat, M., Al-refai, M.

(2023). Object detection in low-Light environment using

YOLOv7. In Research Square.

https://doi.org/10.21203/rs.3.rs-3365905/v1

[17] Yu, J., Choi, H. (2021). YOLO MDE: Object detection

with monocular depth estimation. Electronics, 11(1): 76.

https://doi.org/10.3390/electronics11010076

[18] Cai, Y.X., Li, H.J., Yuan, G., Niu, W., Li, Y.Y., Tang,

X.L., Ren, B., Wang, Y.Z. (2020). YOLObile: Real-time

object detection on mobile devices via compression-

compilation co-design. arXiv preprint

arXiv:2009.05697.

https://doi.org/10.48550/arXiv.2009.05697

[19] Ejati, R.H.P., Mardhiyyah, R., Zulkhairi, Z., Istiqomah,

N., Prasetya, R.I.B. (2023). Real-time smartphone usage

surveillance system based on YOLOv5. IJID

334



(International Journal on Informatics for Development), 

11(2): 242-251. https://doi.org/10.14421/ijid.2022.3766 

[20] Pedoeem, J., Huang, R. (2018). YOLO-LITE: A real-

time object detection algorithm optimized for non-GPU

computers. arXiv preprint arXiv:1811.05588.

https://doi.org/10.48550/arXiv.1811.05588

[21] Zuraimi, M.A.B., Zaman, F.H.K. (2021). Vehicle

detection and tracking using YOLO and DeepSORT. In

2021 IEEE 11th IEEE Symposium on Computer

Applications & Industrial Electronics (ISCAIE), Penang,

Malaysia, pp. 23-29.

https://doi.org/10.1109/ISCAIE51753.2021.9431784

[22] Rahman, Z., Ami, A.M., Ullah, M.A. (2020). A real-time

wrong-way vehicle detection based on YOLO and

centroid tracking. In 2020 IEEE Region 10 Symposium

(TENSYMP), Dhaka, Bangladesh, pp. 916-920.

https://doi.org/10.1109/TENSYMP50017.2020.9230463

[23] Nguyen, H.C., Nguyen, T.H., Scherer, R., Le, V.H.

(2023). YOLO series for human hand action detection

and classification from egocentric videos. Sensors, 23(6):

3255. https://doi.org/10.3390/s23063255

[24] Glučina, M., Anđelić, N., Lorencin, I., Car, Z. (2023).

Detection and classification of printed circuit boards

using YOLO algorithm. Electronics, 12(3): 667.

https://doi.org/10.3390/electronics12030667

[25] Hasan, M.A. (2023). Facial human emotion recognition

by using YOLO faces detection algorithm. JOINCS

(Journal of Informatics, Network, and Computer

Science), 6(2): 32-38.

https://doi.org/10.21070/joincs.v6i2.1629

[26] Hussain, M. (2024). Yolov5, YOLOv8 and YOLOv10:

The go-to detectors for real-time vision. arXiv preprint

arXiv:2407.02988.

https://doi.org/10.48550/arXiv.2407.02988

[27] Sundaresan Geetha, A., Alif, M.A.R., Hussain, M.,

Allen, P. (2024). Comparative analysis of YOLOv8 and

YOLOv10 in vehicle detection: Performance metrics and 

model efficacy. Vehicles, 6(3): 1364-1382. 

https://doi.org/10.3390/vehicles6030065 

[28] Ibnugraha, P.D., Sani, M.I., Sari, M.I., Rizal, M.F.,

Hanifa, F.H., Kurniawan, A.P. (2023). Automatic

Passenger Counting (APC) for online Event Data

Recorder (EDR). In 2023 International Conference on

Artificial Intelligence, Blockchain, Cloud Computing,

and Data Analytics (ICoABCD), Denpasar, Indonesia,

pp. 89-93.

https://doi.org/10.1109/ICoABCD59879.2023.1039096

0

[29] Debsi, A., Ling, G., Al-Mahbashi, M., Al‐Soswa, M.,

Abdullah, A. (2024). Driver distraction and fatigue

detection in images using ME-YOLOv8 algorithm. IET

Intelligent Transport Systems, 18(10): 1910-1930.

https://doi.org/10.1049/itr2.12560

[30] Jamtsho, Y., Riyamongkol, P., Waranusast, R. (2021).

Real-time license plate detection for non-helmeted

motorcyclist using YOLO. ICT Express, 7(1): 104-109.

https://doi.org/10.1016/j.icte.2020.07.008

[31] Agrawal, P., Jain, G., Shukla, S., Gupta, S., Kothari, D.,

Jain, R., Malviya, N. (2022). Yolo algorithm

implementation for real time object detection and

tracking. In 2022 IEEE Students Conference on

Engineering and Systems (SCES), Prayagraj, India, pp.

1-6. https://doi.org/10.1109/SCES55490.2022.9887678

[32] He, Y., Peng, Y., Wei, C., Zheng, Y., Yang, C., Zou, T.

(2024). Automatic disease detection from strawberry leaf

based on improved YOLOv8. Plants, 13(18): 2556.

https://doi.org/10.3390/plants13182556

[33] Fang, W., Wang, L., Ren, P.M. (2019). Tinier-YOLO: A

real-time object detection method for constrained

environments. IEEE Access, 8: 1935-1944.

https://doi.org/10.1109/ACCESS.2019.2961959

335




