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GENIE3 achieves best results in inferring Gene Regulatory Network (GRN) with DREAM4 

challenge data. Whereas, correlation coefficient derived from two-way analysis of variance 

(ANOVA) records best result for DREAM5 challenge data. Here we try to improve results of 

GENIE3 on time series gene expression data by using one-way ANOVA along time axis as a 

prior step to GENIE3. GENIE3 takes long time with huge number of genes so one-way 

ANOVA finds significant genes before execution of GENIE3. Integration between one-way 

ANOVA and GENIE3 is a hybrid algorithm entitled ANOVAG3. ANOVAG3 is applied 

only on time series gene expressions and takes less running time than GENIE3 with huge 

data. ANOVAG3 is compared with other algorithms which infer GRN by Area Under the 

Receiver Operating Characteristic Curve (AUROC) using DREAM5 challenge networks. 

Although ANOVAG3 is not dependent on perturbation data or transcription factors, it 

records comparable results for networks 1 and 3 and records best results for network 4 

(AUROC =0.5628) of DREAM5 challenge data. ANOVAG3 records better results in 

DREAM 5 networks 2, 3 and 4 (AUROC= 0.5190, 0.6458 and 0.5628) compared to GENIE3 

and PLSNET considering large scale time series data employed in this work. 
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1. INTRODUCTION

Bayesian Networks and Boolean Networks are used to 

infer GRN [1]. Stochastic Master Equations methods and 

Differential Equation (DE) methods are used in GRN 

inference which can be divided into Qualitative, Nonlinear, 

Piecewise-linear and partial. [2] Probabilistic Boolean 

Network Models and Neural network models were produced 

as Methods for inference of GRN. Relevance and Bayesian 

networks are used to infer structure of GRN but Dynamic 

Bayesian and Ordinary Differential Equation (ODE) 

networks are used to infer the dynamics of GRN [3]. There 

are traditional and non- traditional model for GRN inference 

as models based on Evolutionary algorithms [4]. DREAM 

competitions data used in comparing algorithms of GRN 

inference [5]. 

TSNI Algorithm used time series gene expression to infer 

GRN using ordinary differential equations. it increases 

number of samples by interpolation and reduce data 

dimension by principal component analysis to solve problem 

that number of samples almost is less than number of genes. 

After that, it solves the equation by singular value 

decomposition [6].Time series gene expression data only is 

used here in this work, whereas other methods used 

Knockout, Knockdown and perturbation data[7-9].Other 

algorithms can deal with time series and perturbation data as 

GENIE3[10], ENNET [11], NIMEFI[12], PLSNET 

algorithm [13]. GENIE3 decomposes GRN inference 

problem of N genes into N different regression problems and 

solves them by tree-based ensemble method. ENNET 

algorithm combines Gradient Boosting with regression and 

use machine learning model to select subset of edges for 

building GRN. NIMEFI algorithm solves N sub problems by 

Ensemble Elastic Net or Support Vector Regression (E-SVR). 

PLSNET algorithm uses Partial least squares (PLS) 

regression as feature selection method to solve N sub 

problems [13]. TIGRESS applies least angle regression with 

stability selection to infer GRN [14], Several information 

theoretic methods as MRNET [15], ARACNE [16] and CLR 

[17] are dependent on the mutual information. iRafNet is

improving of GENIE3 by adding heterogeneous data as gene

knock down and protein-protein interaction to random forest

algorithm [18]. RGPM also uses heterogeneous data to

identify transcriptional regulators [19]. BIGENIE uses

several biclustering methods to group date after that GENIE3

was applied to each group [20]. Non-linear correlation

coefficients derived from two-way ANOVA between

transcription factors TF and target genes TG are also used in

inferring GRN [21]. Three-way ANOVA is used to improve

the results of two-way ANOVA and to detect network's three

genes motifs and interactions between them as cascade chain

(CSC), dense overlapping regulon (DOR) or feed forward

loop (FFL) [22]. ADANET algorithm converts problem of

GRN inference to set of independent tasks and solves them

with AdaBoost ensemble classifier and uses structure of

models to discover relation between transcription factors and

regulatory genes [23]. Some of previous algorithm collected

and implemented in comparison study with DREAM4 data

(10 genes and 100 genes) [24].

In this work, we set a comparison between area under the 

receiver operating characteristic curve (AUROC) of 

DREAM5[25] of some algorithms (GENIE3, ENNET, 
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NIMEFI, PLSNET, TIGRESS, MRNET, ARACNE, CLR, 

iRafNet, RGBM, BiGENIE and correlation coefficient of 

two-way ANOVA) that were published and AUROC of 

ANOVAG3, GENIE3 and PLSNET which are applied on 

time series data extracted from DREAM5. Most of the 

published algorithms use all samples including time series, 

perturbation data and transcription factors.  

 

 

2. MATERIALS AND METHODS 

 

2.1 Data set 

 

DREAM5 provides data of each network in three files: 

chip feature, gene expression and transcription factor (TF) 

file. Gene expression file represents data in a matrix form of 

microarray chip (rows or samples) versus gene expression of 

each gene (columns). Chip feature file has information for 

each microarray chip. 

In this work, extracting time series data was done using 

time column of chip feature file. Table 1 represents networks 

of DREAM5; number of chips (samples) which were used in 

other algorithms, number of genes and number of chips 

(samples) of time series data used in this work. Bold numbers 

explain numbers of genes and samples which are used with 

ANOVAG3 algorithm. 

 

Table 1. DREAM5 data description 

 
Network Organism Number 

of 

samples 

Number of 

used time 

 series 

samples 

Number 

of genes 

Network1 In silico 805 463 1643 

Network2 S. aureus 160 30 2810 

Network3 E. coli 805 463 4511 

Network4 S. cerevisiae 536 298 5950 

 

2.2 One-way analysis of variance (ANOVA) 

 

One-way ANOVA grouped by time is performed to each 

gene. It returns the p-value for the null hypothesis whether 

the means of groups related to time are equal or not. If P-

value < 0.05, then the gene is significant and has clear pattern 

with time and so we take this gene in building GRN.  One-

way ANOVA explains the behavior of genes with time. The 

limit of P-value can be decreased to decrease the number of 

genes used with GRN inference algorithm; least P-values 

represents most significant genes. 

 

2.3 GENIE3 method 

 

GENIE3 records best results with DREAM4 challenge, it 

decomposes GRN problem with N genes into N regression 

trees problems solved by random forest or Extra trees. 

GENIE3 thus gets relations between each gene and the other 

genes. Rank aggregation is held to construct global GRN. 

GENIE3 is a popular algorithm which is used in GRN 

inference for steady state data [10]. 

 

2.4 ANOVAG3 

 

ANOVAG3 is a hybrid algorithm integrating both one- 

way ANOVA and GENIE3. As most of real gene expression data 

is time series, ANOVAG3 is applied on time series data. One-

way ANOVA presents behavior of genes with time and 

extract genes which have a significant effect in forming gene 

regulatory network (GRN). GENIE3 separates each gene as a 

target gene and uses other genes to predict this target gene by 

tree-based ensemble method. Relations between target gene 

and other genes are ranked. This process is repeated for every 

gene then rank aggregation is employed to construct a global 

GRN. The benefit of integrating both methods is that One-

way ANOVA reduces the number of genes introduced to 

GENIE3 as illustrated in Figure 1. 

 

 
 

Figure 1. Steps of ANOVAG3 

 

 
3. RESULTS   

 

Time series samples of DREAM5 are used to infer GRN 

with PLSNET, GENIE3 and ANOVAG3 algorithms, Area 

under the Receiver Operating Characteristic Curve (AUROC) 

is used to compare the accuracies of all. The resultant 

AUROC of GENIE3[10], ENNET [11], NIMEFI[12], 

PLSNET[13], TIGRESS[14], MRNET [15], ARACNE [16], 

CLR [17], iRafNet [18], RGBM[19], BiGENIE[20], the score 

of non-parametric and nonlinear correlation coefficient  

derived  from two way analysis of variance(ANOVA)[21], 

ADANET[23] are all shown in table 2. Most of the published 

algorithms record results of three networks out of four 

networks that were presented by DREAM5challenge except 

BiGENIE which were applied on E. coli network only 

(network3). PLSNET records best result with network one. 

correlation coefficient of two-way ANOVA records best 

result with network3 and ANOVAG3 records best result with 

network4. 

 

 

4. DISCUSSION 

 
Through all algorithms applied on DREAM5 data 

ANOVAG3 accomplished best result with network 4 

(5950genes). The explanation of this results is that DREAM5 

network 4 has the largest number of genes and one-way 

ANOVA is basically reducing number of genes as it plays the 

main role in extracting significant genes which has special 

response patterns with time. This makes ANOVAG3 perform 

well with large scale GRN. In network 4, 3, one-way 

ANOVA step takes less than one minute after that genes are 
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reduced from 5950 genes to 5620 genes in network 4 and 

from 4511 genes to 4252 genes in network 3 at P value= 0.05. 

Execution time of ANOVAG3 is less than execution time of 

GENIE3 by nearly an hour in network 3 and 4. This time is 

different from one situation to other and it is dependent on 

number of samples and computer's clock speed. ANOVAG3 

records best results also for networks 2 (AUROC =0.5190), 

While none of the rest algorithms attained results with 

network 2. In network 2 ANOVAG3 reduce number of genes 

from 2810 to 1919. In network one, ANOVAG3 reduces 

1643 genes to 1581 genes at P value= 0.05. ANOVAG3 

reduces execution time by several minutes than GENIE3 in 

network 1 and 2 with time series data. 

 

Table 2. Results of DREAM5 

 
Algorithm Net1 Net2 Net3 Net4 

GENIE3[10] 0.814 --- 0.618 0.517 

ENNET [11] 0.867 --- 0.642 0.532 

NIMEFI [13] 0.817 --- 0.625 0.518 

PLSNET [13] 0.862 --- 0.577 0.519 

TIGRESS [14] 0.789 --- 0.589 0.514 

Naïve TIGRESS [14] 0.782 --- 0.595 0.517 

MRNET [11] 0.668 --- 0.525 0.501 

CLR [11] 0.773 --- 0.590 0.516 

ARACNE [11] 0.763 --- 0.572 0.504 

iRafNet [19] 0.813 --- 0.641 0.523 

RGBM [19] 0.846 --- 0.633 0.546 

BiGENIE [20] --- --- 0.642 --- 

Correlation coefficient 

of two-way ANOVA 

[21] 

0.78 --- 0.671 0.518 

ADANET [11] 0.752 --- 0.596 0.517 

GENIE3 with time 

series 

0.7363 0.4897 0.6352 0.525 

PLSNET with time 

series  

0.7154 0.4897 0.543 0.559 

ANOVAG3 with time 

series (at P value=0.05) 

0.7244 0.5190 0.6458 0.5628 

 

ANOVAG3 can also be used with determined number of 

genes as it deals with arranged list of genes. For example, 

instead of number of genes extracted at P valve <0.05 we can 

construct GRN from the most 1000 significant genes. As the 

execution time of one-way ANOVA is short (it takes less 

than one minute with DREAM5 data), and the execution time 

of GENIE3 considering thousands of genes may take several 

hours.  Wherefore, reducing the number of genes by one-way 

ANOVA as a prior step to GENIE3 can reduce execution 

time, hopefully raise the results. And is essential with 

problems including huge number of genes to simplify it by 

constructing sparse matrix of GRN in shorter time.  

The highlighted part of table 2 represents our results after 

the implementation of PLSNET, GENIE3 and ANOVAG3 

with time series data only of DREAM5. GENIE3 records 

best results in network 1 (0.7363) but ANOVAG3 record best 

results in network 2,3 and 4 (0.5190, 0.6458 and 0.5628). 

 

 

5. CONCLUSION 

 

Although reducing number of samples using time series 

samples only without perturbations, ANOVAG3 records best 

result with network 4 compared to previously published work 

and yet to two popular inferring algorithms that were 

implemented in this work; PLSNET, GENIE3. 

ANOVAG3 deals with time series data only and has a 

different job not as correlation coefficient of two-way 

ANOVA. two-way ANOVA determines the similarities or 

associations between transcription factors and target genes, 

where determining transcription factors may be difficult in 

real data. One-way ANOVA in ANOVAG3 extract 

significant genes which have a special behavior with time. 

One-way ANOVA can be used as a prior step to several 

GRN inference algorithms to reduce number of genes in large 

scale problems and thus reduce execution time. And 

hopefully raise the results as accomplished in this work. 

Execution time of ANOVAG3 as GENIE3 depends on 

number of genes, number of samples and computer's clock 

speed but execution time of ANOVAG3 is often less than 

execution time of GENIE3.  
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