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 This paper presents a combination of hyperbolic and polynomial four variable refined 

plate theory for first time to analyze buckling rectangular laminated plates with all simply 

supported edges. Parabolic variation of transverse shear stress over the thickness is 

presented to satisfy zero traction on the top and bottom surfaces of the plate. The 

governing equations solved for simply supported boundary conditions using Navier’s 

functions are formulated and based on the total potential energy. Changing design effects 

(aspect, thickness, orthotropic) ratio and layers scheme on the buckling load of laminated 

plates under uniaxial and biaxial loading conditions are investigated in detail. This theory 

gives good results when compared other theories for buckling of both thick and thin plates 

but there were changing in mode number for some cases. 
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1. INTRODUCTION 
 

Mechanical behavior of laminated plates is very important 

to allow safe structural design so that many researchers have 

searched using different methods such as theoretical (three and 

two) dimension elasticity theory, Numerical (finite element) 

solution with experimental methods. Akavci and Tanrikulu [1] 

used hyperbolic displacement models to investigate the 

buckling and frequency for simply supported [0/90] plate, the 

models used give good results when compared with other 

displacement. Aydogdu [2] improved a new higher order 

theory using three dimensions’ elasticity bending solutions to 

study buckling of plate, this theory gives results accurate to 

three-dimension elasticity solutions. Djedid et al. [3] 

developed a new refined plate theory to obtain the buckling of 

functionally graded simply supported plates, Wankhade and 

Niyogi [4] used Reddy higher order (HOST) as a refined plate 

theory to analyze buckling of composite plates, Schreiber and 

Mittelstedt [5] improved the analytical stability analysis of 

antisymmetric laminated structures, using two methods, first 

method based on (classical theory with first and third 

deformation theory). The second method based on reduced 

bending method. Tounsi et al. [6] presented a novel hyperbolic 

higher-order shear deformation theory (HSDT) for buckling 

analysis of functionally graded plates, Belbachir et al. [7] 

employed a refined plate theory based on a hyperbolic function 

to obtain buckling of cross-ply composite plates, Srivastava et 

al. [8] developed for the initial buckling response of two-

directional functionally graded material (TDFGM) plate using 

energy principle and discretized of radial basis function (RBF) 

based on considering the higher theory, Kettaf et al. [9] used 

different theories of thick plates to analyze mechanical and 

thermal buckling of laminated. Nguyen et al. [10] used Airy's 

stress function to obtain the buckling load of functionally 

graded composite plates and solved using (ABAQUS) for 

buckling response of laminated plate combined with geometric 

nonlinearity, Di Sciuva and Sorrenti [11] presented zigzag 

theory to analysis buckling of functionally graded plate of 

carbon nanotube reinforcement. Sorrenti et al. [12] investigate 

buckling of angle-ply multilayered and sandwich plates using 

the enhanced Refined Zigzag Theory (en RZT), Majeed and 

Abed [13] used Rayleigh-Ritz solution depending on classical 

laminated plate theory to investigate buckling a laminated thin 

plate for different boundary conditions, Hashim and Sadiq [14] 

used a polynomial refined plate theory (RPT) to obtain the 

thermal buckling analysis behavior of laminated simply 

supported plates, Yahea and Majeed [15] investigated 

vibration of laminated plates under thermal load using refined 

theory. Majeed and Sadiq [16] analyzed buckling and 

fundamental frequencies of [0/90] composite plates using new 

higher order theory. Singh and Chakrabarti [17] carried out 

buckling analysis of laminated composite plates using finite 

element method based on zigzag theory. Nguyen-Van et al. [18] 

investigated buckling load of composite plate and shell by 

developing the flat element.  

For present work, a new RPT plate theory was employed to 

address the mechanical buckling analysis of simply supported 

plates modelled with four unknowns and no need to use 

correction factor. The present theory considers a parabolic 

distribution of transverse shear stress in the thickness, which 

gives exactly the boundary conditions on the free surfaces of 

the plate. The derived equations used in this work based on 

Hamilton Principle of total potential energy. Next, theoretical 

analysis of the buckling plates subjected to biaxial and uniaxial 

loading conditions has been found using the Navier’s solution. 

The obtained results computed by the present model for 
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critical buckling load are verified by comparing them with 

other results. 

2. DISPLACEMENT FIELD

With the same mathematical model for displacement 

components of the plate, in present work, the shape function is 

chosen as a combination of hyperbolic and polynomial 

functions to satisfy the zero strain on the inner and outer 

surfaces of the plate is taken as [19]: 

u (x, y, z) = u (x, y) −  z (
∂wb

∂x
) − F(z) (

∂ws

∂x
) (1) 

v (x, y, z) = v (x, y) −  z (
∂wb

∂x
) − F(z) (

∂ws

∂x
) (2) 

w(x, y, z) = wb(x, y) + ws (x, y) (3) 

where, 

F (z) = z − h ∗ sinh (
z

h
) − (

4

3
∗
z3

h2
) cosh (0.5) (4) 

And u, v,wb, ws the four unknown functions.

The strain-displacement relations are: 

εxx =
∂u

∂x
(5) 

εyy =
∂v

∂y
(6) 

εzz =
∂w

∂z
(7) 

εxy =
1

2
γxy =

1

2
(
∂u

∂y
+
∂v

∂x
) (8) 

εxz =
1

2
γxz =

1

2
(
∂u

∂z
+
∂w

∂x
) (9) 

εyz =
1

2
(
∂v

∂z
+
∂w

∂y
) =

1

2
γyz (10) 

Substituting Eqs. (1)-(3) into Eqs. (5)-(10) to give: 

εxx = εxx
0 −  z εxx

1 − F(z)εxx
2 (11) 

εyy = εyy
0 − z εyy

1 − F(z)εyy
2 (12) 

εxy = εxy
0 − z εxy

1 − F(z)εxy
2 (13) 

γxz = εxz
0 − g (z) εxz

3 (14) 

γyz = εyz
0 − g (z) εyz

3 (15) 

where, 

{

εxx
0

εyy
0

γxy
0

} =

{

∂u

∂x
∂u

∂x
∂u

∂y
+ 
∂v

∂x}

(16) 

{

εxx
1

εyy
1

γxy
1

} =

{

∂2wb

∂x2

∂2wb

∂y2

2
∂2wb

∂x ∂y
 }

(17) 

{

εxx
2

εyy
2

γxy
2

} =

{

∂2ws

∂x2

∂2ws

∂y2

2
∂2ws

∂x ∂y
 }

(18) 

{
γxz
0

γyz
0 } =

{

δws

∂x
δws

∂y }

(19) 

𝑔 (𝑧) = 1 − 𝐹′ (𝑧) (20) 

3. HAMILTONS PRINCIPLES

Using refined theory to derive equations of motion with the 

principle of virtual displacements [20]: 

0 = ∫ (δU + δV) dv
v

0

 (21) 

where, 

δU: virtual strain energy and  

δV: virtual work done by applied forces. 

δU = [∫ {∫ σxxδ
k

ῼ

h
2

−h
2

εxx
k + σyyδεyy

k + σxyδεxy
k + σyzδεyz

k

+ σxzδεxz
k ] dxdy}dxdy] = 0

(22) 

δU = ∫(N1δ εxx
0 +M1

bδεxx
1 +M1

sδεxx
2 + N2δεyy

0

+M2
bδεyy

1 +M2
sδεyy

2 + N6δεXy
0

+M6
bδεXy

1  + M6
sδεXy

2 + Q5δεyz
0

+ Q4δεxz
0 )dxdy

(23) 

where, 

(Ni,Mi, Pi) = ∑∫  σi
k(1, z, F(z))dz, i = (1,2,6)

zk

zk−1

N

k=1

 

(Qi) = ∑∫ σi
k(g2) dz  (i = 4,5)

zk

zk−1

N

k=1

 

δV = ∫ [Nxxδ (
∂2wb

∂x2
+
∂2ws

∂x2
)

ῼ

+ Nyyδ (
∂2wb

∂y2
+
∂2ws

∂y2
)]  dx dy 

(24) 
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Substituting Eqs. (11)-(15) into Eqs. (23) and (24) and 

integrating by parts to get energy equation in form of 

displacement components and resultant forces. 

 

 

4. EQUATIONS OF MOTION  

 

Substituting Eqs. (23) and (24) in Eq. (21) and to give four 

equations of motion as follows: 

 

δu: 
∂N1
∂x

+
∂N6
∂y

= 0 (25) 

 

δv: 
∂N2
∂y

+
∂N6
∂x

= 0 (26) 

 

δwb: 
∂2M1

b

∂x2
+
∂2M2

b

∂y2
+ 2

∂2M6
b

∂x ∂y

+ (Nxx
∂2wb

∂x2
+ Nyy

∂2wb

∂y2
) = 0 

(27) 

 

δws: 
∂2M1

s

∂x2
+ 
∂2M2

s

∂y2
+ 2

∂2M6
s

∂x ∂y

+ (Nxx
∂2ws

∂x2
+ Nyy

∂2ws

∂y2
) = 0 

(28) 

 

The result forces are given by: 

 

{

N1
N2
N6

} =∑ ∫ {

σ1
σ2
σ6
} dz

zk+1

zk

N

k=1

, (29) 

 

{

M1
b

M2
b

M6
b

} =∑ ∫ {

σ1
σ2
σ6
}  z dz,

zk+1

zk

N

k=1

 (30) 

 

{

M1
s

M2
s

M6
s
}∑ ∫ {

σ1
σ2
σ6
}  F(z)dz

zk+1

zk

N

k=1

 (31) 

 

{
Q4
Q5
} = ∑{

σ5
σ4
} (g2)dz

n

k=1

 (32) 

 

The plane stress reduced stiffnes Qij is: 

 

Q11 =
E1

1 − ν12ν21
 ,  Q12 =

ν12E2
1 − ν12ν21

, 

 

Q22 =
E2

1 − ν12ν21
,  Q66 = G12, Q44 = G23,

Q55 = G13 
(33) 

 

where, G (shear modulus), E (Young’s modulus) and υ 

(poison’s ratio) of plate.  

The transformed stress-strain relation is: 

 

{

σxx
σyy
σxy

} = [

Q11
Q12
Q16

Q12
Q22
Q26

Q16
Q26
Q66

] {

εxx
εyy
γxy
} ,

{
σyz
σxz

} = [
Q44 Q45
Q45 Q55

] {
γyz
γxz
}   

(34) 

The force results are: 

 

{

N1
N2
N6

} = [

A11
A12
A16

A12
A22
A26

A16
A26
A66

] {

𝜀𝑥𝑥
0

𝜀𝑦𝑦
0

γ𝑥𝑦
0

} 

+[

B11
B12
B16

B12
B22
B26

B16
B26
B66

] {

𝜀𝑥𝑥
1

𝜀𝑦𝑦
1

γ𝑥𝑦
1

} 

+[

E11
E12
E16

E12
E22
E26

E16
E26
E66

] {

𝜀𝑥𝑥
2

𝜀𝑦𝑦
2

γ𝑥𝑦
2

} 

(35) 

 

{

M1
b

M2
b

M6
b

} = [

B11
B12
B16

B12
B22
B26

B16
B26
B66

] {

εxx
0

εyy
0

γxy
0

} + [

D11
D12
D16

D12
D22
D26

D16
D26
D66

] {

εxx
1

εyy
1

γxy
1

}

+ [

F11
F12
F16

F12
F22
F26

F16
F26
F66

] {

εxx
2

εyy
2

γxy
2

} 

(36) 

 

{

M1
s

M2
s

M6
s
} = [

E11
E12
E16

E12
E22
E26

E16
E26
E66

] {

εxx
0

εyy
0

γxy
0

} + [

F11
F12
F16

F12
F22
F26

F16
F26
F66

] {

εxx
1

εyy
1

γxy
1

}

+ [

H11
H12
H16

H12
H22
H26

H16
H26
H66

] {

εxx
2

εyy
2

γxy
2

} 

(37) 

 

{
Q4
Q5
} = [

L44 L45
L45 L55

] {
γyz
0

γxz
0
} (38) 

 

where, 

 

Aij = ∫Qij

h
2

−h
2

dz    i = (1,2,4,5,6) (39) 

 

Bij, Dij, Eij, Fij, Hij = ∫Qij(z, z
2, F(z),

h
2

−h
2

z

∗ F(z), (𝐹(𝑧)) 2) dz   i = (1,2,6) 

(40) 

 

Lij = ∫Qij

h
2

−h
2

(g2)dz    i, j =  (4,5) (41) 

 

 

5. BUCKLING ANALYSIS  

 

Substituting Navier’s equations which satisfied simply 

supported boundary conditions [20], for (cross – angle) ply 

with the force and moment resultants from Eqs. (29)-(32) into 

equations of motion Eqs. (25)-(28), the following eigenvalue 

equation is obtained: 
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[
 
 
 
 
C11 C12 C13 C14
− C22 C23 C24
− − C33 − (α

2 ∗ Nx + k ∗ β
2 ∗ Ny) C34

− − − C44 − (α
2 ∗ Nx + k ∗ β

2 ∗ Ny)]
 
 
 
 

{𝑑𝑖𝑗} = 0 

 

 

where, 

 

{dij} = {Umn, Vmn, Wbmn,Wsmn} 

 

Cij= stiffness element which given in appendix. 
 

 

6. RESULTS AND DISCUSSIONS  
 

A comparison of buckling load for laminated plates using a 

combination of hyperbolic and polynomial displacement 

function [19], with other plate theories and solving techniques 

are investigated also plates with different thickness (a/h) ratio, 

orthotropic ratio, number of plies, loading conditions and 

aspect (a/b) ratio are studied and solved by Matlab22 program. 

Different theories and solution methods used by other 

researchers are compared to present theory which takes little 

efforts than other analytical or numerical methods based on 

five variables refined or third order plate theories as shown in 

Table 1, which present a comparison between present four 

variable refined theory, TSDT and finite element method for 

[0/90] square plate for different (a/h), the results give good 

agreement and mode number not changed. 

 

Table 1. Effect of thickness ratios (a/h) on nondimentional 

critical uni-axial buckling loads (Ncr) for simply supported 

[0/90] square plate 
 

Source 
(a/h) 

(10) (20) (50) (100) 

Our Work 11.126 12.452 12.884 12.948 

Ref. [16] 11.616 12.602 12.910 12.955 

Ref. [17] 11.310 12.427 12.800 12.873 

Ref. [18] 11.360 12.551 12.906 13.039 

Ref. [21] 11.349 12.510 12.879 12.934 

Ref. [22] 11.563 12.577 12.895 12.942 
Notes: Using material 1. Mode for all: (q=s=1) accept when written. 

 

Table 2. Effect of thickness ratios (a/h) on normalized 

critical uni-axial buckling loads (Ncr) for angle-ply square 

plate, using material 2. Mode for all: (q=s=1) accept when 

written 
 

a/h Source 
Layers Type 

[5 /-5]6 [30/ -30]6 [45/ -45]6 

5 

Ref. [20] 11.082 13.546 12.169 

Present work 
13.572 

q=2, s=1 

13.357 

q=2, s =1 

12.7635 

q=3, s =1 

10 

Ref. [20] 22.592 33.701 32.405 

Present work 26.399 35.806 
34.680 

q=2, s =1 

20 
Ref. [20] 31.577 47.643 53.198 

Present work 33.628 50.572 56.166 

50 
Ref. [20] 35.657 53.951 60.760 

Present work 36.434 57.227 64.496 
Notes: Using material 2. Mode for all: (q=s=1) accept when written. 

 

Table 2 presents buckling load for different angle plates and 

give good agreement with those obtained by other researchers 

used TSDT, but with changing mode number for some thick 

and moderately thick plates. Table 3 shows the effect of (b/a) 

for the laminated plate on buckling load which give the same 

behavior to those obtained by other researchers, also changing 

orthotropic ratio (E1/E2) shown in Table 4, but under biaxial 

in plane loading and give results close to those obtained by 

studies [22].  

 

Table 3. Nondimentional uni-axial buckling loads (Ncr) for 

different (a/h) and (a/b) for [0/90]s square plate 

 
a/b Source a/h 

0.5 

Ref. [16] 
5 10 20 50 100 

8.848 18.488 25.856 29.151 29.693 

Ref. [17] 8.739 18.347 25.746 29.087 29.657 

Present 

work 
9.113 18.931 26.092 29.200 29.706 

1 

Ref. [16] 

 
12.029 23.394 31.716 35.400 36.005 

Ref. [17] 11.858 23.134 31.517 35.278 35.923 

Present 

work 
11.614 23.519 31.888 35.442 36.016 

2 

Ref. [16] 
16.681 

(q=3, s=1) 

48.119 

(q=2, s=1) 

93.579 

(q=2, s=1) 

113.21 

(q=1, s=1) 

115.335 

(q=1, s=1) 

Ref. [17] 15.000 47.368 92.847 112.81 115.029 

Present 

work 

15.631 

q=3, s=1 

46.458 

q=2, s=1 
92.572 111.52 114.891 

Notes: Using material 1. Mode for all: (q=s=1) accept when written. 

 

Table 4. Normalized critical biaxial buckling load for 

different thickness and orthotropic ratios for different angle-

lamination square plate 

 

a/h Source 
E1/E2=10 

[45/ -45] [45/ -45]4 

10 
Ref. [22] 3.923 6.771 

Present work 4.043 6.994 

100 
Ref. [22] 4.526 8.792 

Present work 4.542 8.844 

a/h Source 
E1/E2=25 

[45/ -45] [45/ -45]4 

10 
Ref. [22] 6.115 12.067 

Present work 6.468 12.715 

100 
Ref. [22] 7.717 20.437 

Present work 7.735 20.502 
Notes: Using material 1. Mode for all: (q=s=1) accept when written. 

 

Buckling load for symmetric cross and angle ply plate with 

antisymmetric ones are listed in Table 5, from which it is noted 

that symmetric plies have larger buckling load than 

antisymmetric and angle plied plate has larger buckling load 

than cross plied plate same behavior given by other theories. 

As expected, critical buckling load for laminated plate under 

uniaxial load are larger than those under biaxial load as shown 

in Table 6.  
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Material1: the first one used in present work is: E1/E2 = 40, 

G12 = G13 = 0.6 E2 (Gpa), G23 = 0.2 E2 (Gpa), υ12 = υ13= 

0.25.  

Material 2: the second one used in present work is: E1/E2 

=40, G12=G13=0.6E2 (Gpa), G23=0.5E2 (Gpa), υ12= 

υ13=0.25 and Ncr = (N˟a2/E2˟H3). 

 

Table 5. Comparison of nondimentional uni-axial buckling 

loads (Ncr) with different orthotropic ratio for different cross 

and angle-ply square plate 

 

Layers 
E1/E2 

5 10 20 30 40 

[0/ 90]s 6.887 10.256 16.267 21.459 25.992 

[0/ 90]2 6.481 9.267 14.284 18.693 22.602 

[45 /-45]s 9.100 15.269 25.232 
31.102 

q=2, s=1 

35.086 

q=2, s=1 

[45/ -45]2 8.387 13.565 22.065 
27.894 

q=2, s=1 

31.584 

q=2, s=1 
Notes: Using material 2. Mode for all: (q=s=1) accept when written. 

 

Table 6. Comparison of nondimentional critical biaxial 

buckling loads (Ncr) with various orthotropic ratio for 

different cross and angle-ply square plate,  (a/h = 10) 

 

Layers 

E1/E2 

Uniaxial buckling Biaxial buckling 

20 40 20 40 

[0 /90]s 16.267 25.992 8.133 12.996 

[0/ 90]2 14.284 22.602 7.142 11.301 

[30/ -30]s 21.201 
27.856 

q=2, s=1 
10.600 15.839 

[30/ -30]2 18.783 
25.575 

q=2, s=1 
9.391 14.061 

Notes: Using material 1. Mode for all: (q=s=1) accept when written. 

 

 

7. CONCLUSIONS 

 

Buckling analysis of cross and angle laminated simply 

supported plates is studied by using refined hyperbolic shear 

theory for first time, under two types of mechanical loadings. 

The displacement field of the proposed theory contains four 

unknowns, and involves a hyperbolic shape function to 

account for more acceptable distribution of the transverse 

shear strains through the thickness; with no need for shear 

correction factor. The equations are derived by using the 

Hamilton’s principle and the analytical solutions are obtained 

using the Navier’s solution method. The reliability of the 

present approach is checked by comparing it with various 

shear deformation theories. The numerical results show that 

the proposed refined plate theory is in excellent agreement 

with respect to other higher-order shear deformation theories 

for the evaluation of critical buckling of laminated plates but 

changing mode number. 
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NOMENCLATURE 

 

a Plate dimension in x-direction (m) 

b Plate dimension in y-direction (m) 

h Plate thickness 

E1, E2, E3 Elastic modulus components (GPa) 

Aij‚ Bij‚ Dij‚  

Bij
s ‚ Dij

s ‚ Hij
s

 
 

Extension, bending, extension coupling 

(N/m) 

k=0 or 1 In plane load factor 

n  Total number of plate layers                      

Nx‚ Ny ‚Nxy In-plan force per unit length (N/m) 

Mx
b ‚ My

b ‚ Mxy
b  Bending moment result per unit length 

(N.m/m) 

Mx
s ‚ My

s  ‚ Mxy
s  Force per unit length due to shear moment 

(N/m) 

Qxz
⬚ ‚ Qyz

⬚  Transverse shear force (N) 

TSDT Third shear deformation theory 

x, y, z  Cartesian Coordinate system 

Wb, Ws Displacement in, bending and shear 

respectively 

us, vs Displacement  in x ans y direction due to 

shear respectively 

 

Greek symbols 

 

εx, εy, εz Strain components (m/m) 

γxz, γyz Transverse shear strain (m/m) 

σx σy σxy σyz σxz Stress components (Gpa) 

v12 v21  Poisson's ratio 

 

 

APPENDIX 

 

C11 = - A11 * (α2) - A66 * (β2); 

 

C12 = - A12 * α * β - A66 * α * β; 

 

C13 = (B11 * α3) + (B12 * α * β2) + (2 * B66 * α * β2); 

 

C14 = (E12 * α * β2) + (E11* α3) + (2 * E66 * α * β2); 

 

C22 = (-A66 * α2) - (A22 * β2); 

 

C23= (2 * B66 * β * α2) + (B12 * β * α2) + (B22 * β3); 

 

C24 = (E12 + (2 * E66)) *(β * α2) + (β3) * (E22); 

 

C33 = (-D22 * β4) - (D11 * α4) - (2 * D12 * (α2) * (β2)) - (4 * 

D66 * (β2) * (α2)); 

 

C34 = (α4) * (-F11) + ((α2) * β2) * (-2 * F12 – 4 * F66) + (β4) 

* (-F22); 

 

C44 = (-H11) * (α4) + ((α2) * β2) * (-2 * H12 – 4 * H66) + (β4 

* (-H22) -(L11) * (α2) - (L22) * (β2). 
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