

Adaptive League Championship Algorithm (ALCA) for Independent Task Scheduling in Cloud

Computing

Anup Gade1*, Mundukur Nirupama Bhat1, Nita Thakare2

1 VFSTR Deemed to be University, Vadalamudi 522213, AP, India
2 Priyadarshani College of Engineering, Nagpur 440019, MS, India

Corresponding Author Email: gadeanup@gmail.com

https://doi.org/10.18280/isi.240316

ABSTRACT

Received: 12 March 2019

Accepted: 28 May 2019

 Scheduling is a heart of cloud computing as without appropriate scheduling it is impossible to

get the desired results. Primary focus of this article is to focus on minimization of makespan,

minimum utilization of resources and make the cloud services economic for an independant

task. Out of the various task scheduling strategies, in last few years meta-heuristic algorithms

have gained recognition in successful operation of task scheduling algorithms. League

Championship based Algorithm (LCA) is fascinated from sports leagues through which best

team/task in this case can be find out for scheduling. Task scheduling using Adaptive League

Championship Algorithm (ALCA) is employed in this article and thereby it shrinks makespan,

cloud utilization and cost. ALCA is implemented with cloudsim simulator using java as a

programming tool and scheduling has followed the non-premptive approach. Implementation

of ALCA results reducation in makespan by 32.95 %, 20.99 % and 7.29 % against customary

Ant Colony Optimization (ACO), Genetic Algorithm (GA) and Global League Championship

Algorithm (GBLCA) respectively. ALCA also reduces significantly cloud utilization value and

improves economy of scale. ALCA may serve as preferred choice for cloud broker as it proved

to be multipurpose in the area of makespan, resource utilization and economy.

Keywords:

meta-heuristic algorithms, LCA,

makespan, cloud utilization, job

scheduling, economy of scale, resource

utilization

1. INTRODUCTION

Cloud computing has evolved as a technological model in

which user need not have to own any kind of resources, users

will have to pay for only those resources which users will

utilize. This paradigm of rented services like rented cab,

electricity, aeroplane services, etc. has attracted cloud

computing, commercial as well as small users. Cloud

computing services are available with huge infrastructure

which includes servers, infinite storage capacity, large scale of

CPU’s, memory, etc. Whenever it has been stated that it has

infinite resources it actually doesn’t mean infinite it has some

limitations and from the perspectives of cloud service

providers efforts are usually made to minimize resource

utilization, particularly in case of peak time. Multi-tenancy,

on-demand services and any service-any time are the features

which makes cloud computing even more happening [1].

Maintaining these huge amount resources while providing

guarantee of services is a tedious task. Due to popularity of

cloud services multiple issues need to take care of, issues like

resource management, load balancing, task scheduling, energy

efficiency, economy and security requires critical attention to

satisfy customer demands. One of the most crucial and vital

responsibility in cloud computing is supposed to be task

scheduling.

As task scheduling is NP-hard type of problem for which

providing best solution is not possible hence sub-optimal

solution is taken into consideration [2]. It is possible to provide

sub-optimal solution only within polynomial time in case of

NP-hard problem. Task scheduling can be broadly divided into

three categories as heuristic algorithms, meta-heuristic

algorithms and hybrid [3]. Heuristic algorithms can be static

or dynamic whereas meta-heuristic algorithms are broadly

classified into nature inspired and swarm intelligence.

Recently meta-heuristic algorithms has gained fair popularity

few of them are Genetic Algorithm (GA) based on Darwin’s

theory of fittest of the survival, Ant Colony Optimization

(ACO) giving optimized path to the ants searching for the food,

Particle Swarm Optimization (PSO) motivated by communal

behaviour of flock, BAT, Lion optimization algorithm,

Cuckoo Search algorithm are also used popularly, League

Championship Algorithm (LCA) analogous to the sports

league played to find out the best/fittest team of the season. In

case of task scheduling it gives best task to schedule which has

smaller makespan.

Makespan can be roughly defined as finishing point (time)

of last task in a group which need to be optimized, LCA has

gained fair amount of results in terms of minimization of

makespan time. LCA is an optimization algorithms based on

sports league first proposed by Kashan [4]. Author has tailored

it to the optimization of numerical function by proposing some

idealized rules. This algorithm is applicable on sports league

following the round robin time table. Applicability of LCA on

task scheduling in cloud computing is depicted by

Abdulhamid [5] but adaptivity in algorithm can make LCA

even better as only minimization of makespan will not solve

the purpose. This article provide scheduling algorithm which

is adaptive in nature and along with the adaptivity it reduces

cloud utilization for deriving it to be economic in nature.

An outstanding results given by this scheme when applied

to the search space, motivates for further research in the

vicinity of task scheduling in cloud computing. This article

Ingénierie des Systèmes d’Information
Vol. 24, No. 3, June, 2019, pp. 353-359

Journal homepage: http://iieta.org/journals/isi

353

presents novel idea of implementation of LCA in an adaptive

manner with improved learning rate to minimize makespan

time of the task under scheduling. Work presented in this

article proved to be better than MINMIN, MAXMIN, GA,

ACO, GBLCA algorithms after getting results from simulation

using cloudsim. Proposed work also concentrated on

minimization of cloud utilization through calculation of cloud

utilization value and thereby it reduces cost by utilizing cloud

resources for minimal amount of time.

The further sections will describe accordingly, section two

emphasizes on related work, third section is about league

championship algorithm and its description, fourth section

gives proposed algorithm and experimentation, fifth section

put forward the results of adaptive LCA and its comparisons

with existing LCA and other meta-heuristic task scheduling

algorithms. Conclusion and future scope of the article is given

in sixth section.

Figure 1. Organization structure of this article

2. RELATED WORKS

Task scheduling in cloud computing has gained remarkable

attention of research community due to its importance in

execution of cloud. Many researchers have applied heuristic

algorithms and many more have applied meta-heuristic

algorithms of different nature to get exceptional improvements

in the existing work. Genetic Algorithm (GA) is a popular

choice of research community as fitness function designing is

important issue in it. Initially it considers all possible solutions

as contestant a final solution to the problem, they termed it as

chromosomes in case of GA. Only those chromosomes

possessing particular fitness strength will go for next stage of

operations. GA will have some iteration unless and until it

provides best value (fittest solution) out of it by performing

crossover and mutation kind of operations on it [2].

Tamanna Jena, et al. [1] used GA to find out best task-VM

pair which will results in improvement of makespan and

throughput. Regular FCFS policy is ignored by implementing

shortest job first policy. Authors have given concept of

Advance Research (AR) and Best Effort (BE) which are used

for reserving the resources. AR type is designed for high

priority tasks and it operates in non-premtpive mode whereas

BE type task need to halt its execution if AR type task is

arrived, it means that BE is premptive in nature. Tasks in

which deadline to follow strictly need to assigned to AR type.

Algorithms emphasises on maintaining customer satisfaction

rate by reducing waiting time.

Yujja et al. [6] applied GA for improved makespan and

better load balancing by predicting execution time of task

allocated to particular processor and thereby taking best suited

decision over a group of tasks. Authors have implemented

master scheduler which has complete view of system

including processors information, data and workload related

details of CPU’s. Time prediction model has statistic base of

tolerable deviation. The success of the implementation relies

highly on computation time required by GA. Shaminder Kaur,

et al. [7] customized fundamental GA by using Shortest

Cloudlet allocated to Fastest Processor (SCFP) and Longest

Cloudlet assigned to Fastest Processor (LCFP) with stochastic

rules to reduce computational intricacy and computing

economics. It has a limitation that authors have compared their

results with traditional GA only.

Aihong Liu et al. [8] proposed an improved version of basic

ant colony optimization algorithm (ACO) for task scheduling

in grid, they have implemented adaptive algorithm in basic

ACO which gives optimal value of evaporation rate and

thereby it increases its efficiency and load balancing rate.

Results proved better than traditional ACO but for getting

widespread acceptability it is an important factor to compare

an improved version with other existing scheduling algorithms

that particular part is missing in their article. Zehua Zhang et

al. [9] implemented the fundamentals of network theory by

using ant colony optimization for managing load balancing

issue in cloud computing which proved to be beneficial for

improving customer satisfaction and better facility utilization

in cloud environment.

Particle Swarm Optimization (PSO) is a candidate solution

whenever there is a discussion of task scheduling, the

algorithm was proposed by Kennedy and Eberhart [10].

Algorithm has wide spread acceptability due to its simplicity

and ability to provide effective solution to optimization

problem. It considers all probable solutions as particles, every

particle has allocated position and velocity. Particle used to

attain best possible solution out of the available search space,

local best solution will be provided by each particle (Lb). Out

of the available particles having possessing best position and

velocity will be treated as global best solution (Gb). After

every iteration efforts are made by each particle to produce

solution better than global best solution if it will be succeeded

then this newly found out local best will replaces global best.

Fahimeh Ramezani et al. [11] applied PSO in cloud

atmosphere so as to maintain load balancing in task-oriented

approach. Authors have implemented the concept of migration

of overloaded task than migration of overloaded VMs. They

have given model by using PSO algorithm for migration of

overloaded task which ultimately reduces time required for

load balancing. Zahra Pooranian et al. [12] inspires from the

fact that PSO has outstanding global search ability but when it

comes to local search it needs some support. This support is

provided by Gravitational Emulation Local Search (GELS)

technique which has strength of performing local optima.

Given approach proved to be better in minimizing makespan

and it provides number of those tasks which are unable to

match their predicted completion time.

League Championship Algorithm (LCA) is a kind of

evolutionary algorithm used as a solution to the optimization

problem. It has been designed looking towards the philosophy

of sports league by Kashan [4]. Algorithm has some

predefined (idealized) rules based on these rules sports league

is correlated with optimization problem like number of league

will resembles with number of possible solutions, number of

seasons will give stopping condition, fitness function is

nothing but the team’s strength of winning the match and

change in combination of team resembling the operation of

crossover and mutation from genetic algorithm. In basic LCA

each team will have to play with each other in a round robbing

fashion. If there are L numbers of teams in a league then there

354

will be L (L-1)/2 number of matches played to maintain round

robin approach. Identifying the new combinations played an

important role in defining the strength of the team at the same

time knowing team’s weakness is matter of strength both are

internal to the team where as knowing opponents threat and

converting it in to opportunities are external factors. This is

commonly referred as SWOT analysis. Abdulhamid et al. [5]

have applied LCA for task scheduling in order to minimize

makespan, response time and economy of use in cloud

computing. Authors have gained remarkable results as

compared to popular meta-heuristic algorithms like genetic

algorithm, ant colony optimization and traditional algorithms

like minmin and maxmin. In their article authors have applied

LCA by adaptation of SWOT algorithm in order to gain

improved results. In this algorithm authors have not given

value of Learning Rate (LR) as they have considered same LR

for every iteration. The primary goal of this article is to come

across with an optimal value of LR in order to minimize cloud

utilization and thereby it condenses makespan and economy of

cloud utilization.

3. LEAGUE CHAMPIONSHIP ALGORITHM (LCA)

AND ITS DESCRIPTION

League Championship Algorithm (LCA) is a sports inspired

techniques used to find winner or in case of task scheduling it

can be considered as best task for scheduling. Traditional LCA

is implemented by Kashan [4] for the first time by giving six

idealized rules as:

1. It is obvious that team with higher playing strength will

capture the game. Here “team’s playing strength” means its

capabilities to overrule other team.

2. The result of match (game) is not predictable, it is not

unlikely that Indian cricket team will lose the game to

Afghanistan cricket team in world cup.

3. There is fair probability that team i beats team j or vice-

versa by considering both team’s point of view.

4. The result will be either win or lose, there will be no tie

in the game.

5. Team will focus on their coming matches only

irrespective of their future matches. Formation will be based

on results of earlier week(s).

6. If team i crushed team j, then there must be some positive

points that makes team i to win has double shortcomings

caused team j to lose.

Winner or loser determination is an important aspect of

LCA and it will take place using stochastic approach. It is very

natural that team with higher strength will have higher

probability of winning. Let us assume teams i and j (job in case

of scheduling) playing a match m with the team formations Xi
m

and Xj
m having playing potential f(Xi

m) and f(Xj
m) respectively.

Let Pi
m gives probability of team i winning with team j in

match m, considering an ideal value

𝑓(𝑥𝑖

𝑚)− �̂�

𝑓(𝑥𝑗
𝑚)− �̂�

=
𝑝𝑖

𝑚

𝑝𝑗
𝑚

 (1)

From LCA rules it can be derived that

𝑃𝑖
𝑚 + 𝑃𝑗

𝑚 = 1
 (2)

Using Eq. (1) and (2), value of Pi
m can be derived as

𝑃𝑖
𝑚 =

𝑓(𝑥𝑗
𝑚)−�̂�

𝑓𝑖
𝑚+𝑓𝑗

𝑚−2�̂�
 (3)

By using idealized rules stated above one number is

generated in between 0 and 1, if this number is less than Pi
m

then team i will have the probability of win and team j will

lose else j will won and i will lose.

Global League Championship Algorithm [5] has

implemented successfully with effective reduction in

makespan. The algorithm is given below:

Initialize parameter of LCA

Number of Leagues is represented as NL

Number of Seasons is represented as NS

Learning Rate is represented as LR

Step I: -

for season 1 to NS

 for league 1 to NL

generate a set of VM’s of different capacity randomly

execute the task on VM’s and find the fitness function (f)

𝑓 =
𝑇𝑜𝑡𝑎𝑙 𝑡𝑎𝑠𝑘 𝑡𝑜 𝑒𝑥𝑒𝑐𝑢𝑡𝑒

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑉𝑀′𝑠
 (4)

whereas,

𝑇𝑜𝑡𝑎𝑙 𝑡𝑎𝑠𝑘 𝑡𝑜 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 = 𝑁𝑜. 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠 ∗
𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛 𝑏𝑦 𝑒𝑎𝑐ℎ 𝑡𝑎𝑠𝑘 (5)

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑉𝑀′𝑠 = 𝑀𝐼𝑃𝑆 𝑜𝑓 𝑉𝑀′𝑠 ∗ 𝑁𝑜. 𝑜𝑓 𝐶𝑃𝑈′𝑠 (6)

Step II:-

Find the mean fitness (Mf) as

 𝑀𝑓 =
∑ fi

NL
 (7)

Find Threshold fitness (THf)

𝑇𝐻𝑓 = 𝑀𝑓 ∗ 𝐿𝑅

Step III:-

if

𝑓𝑖 > 𝑇𝐻𝑓

then

League need to be changed

else

League can play next season

Repeat the steps for all seasons then

Select the league with minimum fitness or maximum capacity

with respect to total task.

Here, in case of global league scheduling algorithm it has

been observed that authors have paid no attention towards

Cloud Utilization Value (CUV) which can produce better

learning rate.

4. PROPOSED ALGORITHM AND

EXPERIMENTATION

4.1 Proposed algorithm

Step I:-

Initialize learning iteration (LI)

355

Step II:-

Generate a random value of learning rate (LR) for each

iteration in LI

Step III:-

Run the LCA with this LR value and obtain the Cloud

Utilization Value (CUV)

where

CUV= No. of repetition needed by the cloud VM’s to complete

the entire task set

Step IV:-

Repeat this LI iteration and select the value of LR which has

minimum value of CUV

This value of LR will provide the optimal learning rate for

minimal cloud utilization

Table 1. Parameter matching of LCA and traditional

evolutionary algorithm (EA)

LCA Traditional Evolutionary

Algorithm (EA)

League (L) Population

matches (m) Iteration

team (i) ith member in population

formation (Xi m) Solution

winning strength f (Xi m) fitness value

number of seasons (S) maximum iteration

Here, optimal learning rate is obtained by using adaptive

LCA to minimize the cloud’s makespan and ultimately cloud

utilization which provides us economy of scale.

Based on idealize rules formed in earlier section LCA is

able to identify which task is scheduled to which VM but

before that it is necessary to understand the parameter

matching of LCA and traditional evolutionary algorithm so

that it would be easy to understand the implementation details

of LCA. In LCA it has been cleared by using stochastic

approach that team with higher playing strength will have

higher probability of win as compared to other team. Table 1

shows parameter matching for ease of understanding in order

to apply LCA to any of the optimization problem.

Taking above parameters matching into consideration

adaptive LCA has been implemented according to the flow

chart given in fig. 2 as shown below. Here optimization

parameters used for implementation are reducing makespan,

cloud utilization and economy of scale. Makespan is nothing

but the completion time of last task in execution.

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = max{𝐹𝑖} (8)

where Fi denotes the finishing time of task i

4.2 Experimentation

Cloud utilization refers to the numbers VM’s, CPU’s and

other resources were used to fulfil execution of designated

tasks.

Figure 2. Flowchart of implementation details of adaptive

LCA algorithm

Table 2. Parameters of scheduling algorithms under

consideration

Sr.

No.

Scheduling

Scheme

Parameter

Considered

Value

1. GA

Population volume 1000

Maximal iteration 1000

Cross over rate 0.5

Mutation rate 0.1

2. ACO

Presence of ants in

colony
10

Evaluation factor ρ 0.4

Pheromone tracking

weight α
0.3

Heuristic information

weight β
1

Pheromone updating

constant Q
100

3. GBLCA

Retreat constant Ψ1 0.5

Approach constant Ψ2 0.5

Rate of change pc 0.01

League size L 1000

4. ALCA

Retreat constant Ψ1 0.5

Approach constant Ψ2 0.5

Cloud utilization

value CUV

adaptive in

nature(best value

is considered)

League size L 100

356

Along with minimization of makespan, the algorithm

focuses on reducing cloud utilization value (CUV) which

ultimately provides reduction in cost of execution of task on

cloud. Algorithm is implemented by using CloudSim

simulator platform popularly used for execution of cloud

projects and eclipse editor using java as a programming tool.

In order to determine the competency of proposed algorithm

makespan, cloud utilization and economy are the parameters

under consideration. Experiments are conducted repeatedly

for 60 numbers of times and average of the same is considered

for getting analogous results. Here table 2 shows some of the

selected scheduling algorithm’s parameter settings. Parameter

settings of Genetic Algorithm (GA) are inspired from [13, 14]

whereas in case Ant Colony Optimization (ACO) parameters

are taken from [15, 16] and that of the same from GBLCA are

derived from [5].

Task sets are taken from workload archive [17] having

43,800 jobs. The NASA Ames iPSC/860 log has made this

task set available from their archive, moreover the intent

behind using this data set is that it is available in universally

accepted Standard Workload Format (SWF) and it has been

acknowledged by CloudSim simulator. The workload

encompasses the data which has the fields like CPU time, no.

of jobs with its wait and run time, number of node used and

required. Experimental parameters are considered as per the

details given in table 3.

Table 3 Experimental parameters

Sr.

No.
Entity

Parameter under

Consideration
Values

1. User
Number of users 1000

Broker 2

2. Task

Number of tasks 200-2000

Length 1000000

File Size 300

3. Host

Memory Size 2048 MB

Host Storage 1000000

Bandwidth 10000

4.

Virtual

Machine

(VM)

Number of VMs 2

Policy
Time or space

shared

VM RAM 512

VMM Xen

Operating System (OS) Linux

Number of CPUs 10

5.
Data

Center

Number of Data Center 2

Number of Hosts 2

Makespan: - Makespan indicates the time at which last task

finishes its execution. Reducing makespan is primary

responsibility of any task scheduling algorithm. Minimum

makespan time indicates minimum utilization of cloud i.e.

minimum use of cloud which ultimately indicates economic

use. As given in equation (8) above mathematically it can be

written as

𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛 = max{𝐹𝑖}

where Fi denotes the finishing time of task i

Performance Improvement (PI) percentage: It can be

defined as improvement in makespan for technique under

consideration i with respect to other existing technique k.

Percentage performance improvement is given by the equation

(9) as shown below:

PI (%) = (𝑓𝑚𝑎𝑥(𝑓𝑘) − 𝑓𝑚𝑎𝑥(𝑓𝑖)) ×
100

𝑓𝑚𝑎𝑥(𝑓𝑖)
 (9)

5. RESULTS AND COMPARISON

Experimental results are computed for various task

scheduling models in cloud computing as (MINMIN,

MAXMIN, GA, ACO, GBLCA and ALCA) these techniques

are used most popularly for task scheduling in cloud

computing. Figure 3 represents the makespan calculated for

above mentioned six techniques. Figure shows that there is

significant increase in makespan as increased in number of

tasks. From the results it has been cleared that ALCA is taking

lesser makespan as compared to other techniques. It can be

stated from the figure that MINMIN algorithm is taking

maximum time for completion of its allocated tasks whereas

ALCA algorithm is performing fairly better than GBLCA by

updating its learning rate to minimum acceptable value.

Figure 3. Makespan calculations using various scheduling

techniques

The results show that ALCA is having minimum cloud

utilization value which reduces the time period of cloud

utilization. As it is clear that minimum cloud utilization will

reduces cost of cloud services.

Table 4. Statistical picture after 60 trails of ALCA

No. of

Tasks to

be

Executed

Best Worst Mean Median Mode

200 62.6438 83.004 72.837 73.571 73.571

400 125.287 166.009 145.675 147.142 147.142

600 187.931 249.013 218.513 220.712 220.712

800 250.575 332.018 291.351 294.283 294.283

1000 313.219 415.022 364.189 367.854 366.648

1200 375.863 498.027 437.027 441.425 441.425

1400 438.506 581.032 509.865 514.995 514.995

1600 501.150 664.036 582.703 588.566 588.566

1800 563.794 747.041 655.541 662.137 660.196

2000 626.438 830.045 728.379 735.708 735.708

In order to have statistical hold for the data obtained after

performing experimentation repeatedly for 60 numbers of

trails, inference can be drawn and it will be in a state to suggest

robustness of proposed technique. Hence ALCA has been

executed for different number of jobs numbered from 200 to

357

2000 and based on the results best (to showcase best value of

makespan for particular number of tasks), worst (gives

maximum makespan for given number of jobs), mean (average

value come-out for mentioned number of tasks), median (will

provide middle value in the list) and mode (most frequently

resulted value) all are deliberated and its values are given in

table 4. From the table it has been cleared that values

calculated from the execution are quite close to each other. The

experimentation results pursued the normal distribution and

sturdiness of proposed scheme in optimization.

After performing multiple numbers of trails it is mandatory

to calculate performance improvement of one strategy over

another. Table 5 gives details of performance improvement of

ALCA over remaining strategies under consideration in fact it

provides comparative analysis of all techniques under

consideration.

Table 5. Performance improvement in percentage for

makespan time

Makespan

Performance

improvement

in %

Name of Algorithm

MIN

MIN

MA

XMI

N

ACO GA
GBL

CA

ALC

A

6295 5968 5326 4847 4298 4006

PI % over

MINMIN
- 5.47 18.18 29.87 46.46 57.13

PI % over

MAXMIN
- - 12.05 23.12 38.85 48.97

PI % over

ACO
- - - 9.88 23.92 32.95

PI % over

GA
- - - - 12.77 20.99

PI % over

GBLCA
- - - - - 7.29

From the table it is clear that ALCA has 57.13 %, 48.97 %,

32.95 %, 20.99 % and 7.29 % improvement over MINMIN,

MAXMIN, ACO, GA and GBLCA respectively. The result

depicts that ALCA show outstanding performance for the

issue of makespan minimization as compared to MINMIN,

MAXMIN, ACO, GA and GBLCA task scheduling algorithms.

6. CONCLUSION AND FUTURE SCOPE

This article offered implementation of adaptive league

championship algorithm on task scheduling of cloud

computing model. Experimentation is performed using

cloudsim simulator which is popularly used for simulation of

cloud computing model. Results are compared with five

existing algorithms which are used traditionally for task

scheduling in cloud computing namely MINMIN, MAXMIN,

ACO, GA and GBLCA. Comparison shows that proposed

ALCA performed far better than MINMIN, MAXMIN and

ACO algorithms where as it performs significantly better than

GA and it gives marginally better result in comparison with

GBLCA algorithm.

The primary objective of this paper is to reduce the

makespan and offer the cloud services in economic manner.

Result shows that ALCA proved to be optimal as compared to

other techniques. The proposed algorithm is designed for

independent tasks of non-preemptive nature only.

Authors are recommending two important aspects for future

research first is prediction of load which will make it even

more intelligent and responsive. There is always a probability

that load may be increased suddenly and in that case algorithm

must be able to handle the situation effectively. Machine

learning approach will be helpful in order to predict the load

and accordingly scheduling algorithm will be prepared for the

execution. Second is normalization of various parameters

under consideration will also be helpful in finding more

appropriate results as whenever there are multiple sub-

parameters associated with single parameter normalization of

associated sub-parameters will make it more effective.

ACKNOWLEDGMENT

Gade Anup thanks both the research supervisors Dr. M.

Nirupama Bhat and Dr. Nita Thakre for their time to time

guidance and motivation. Also Gade Anup expresses his

gratitude towards Head of Computer Science and Engineering

Department Prof. Dr. Venkatesulu Dondeti for his support and

cooperation.

REFERENCES

[1] Jena, T., Mohanty, J.R. (2017). GA-based customer-

conscious resource allocation and task scheduling in

multi-cloud computing. Arab J Sci. Eng., 43(8): 4115-

4130. https://doi.org/10.1007/s13369-017-2766-x

[2] Kalra, M., Singh, S. (2015). A review of metaheuristic

scheduling techniques in cloud computing. Egyptian

Informatics Journal, 16(3): 275-295.

https://doi.org/10.1016/j.eij.2015.07.001

[3] Dubey, K., Kumar, M., Sharma, S.C. (2017) Modified

HEFT algorithm for task scheduling in cloud computing.

In Science Direct, Procedia Computer Science, 125: 725-

732. https://doi.org/10.1016/j.procs.2017.12.093

[4] Kashan, A.H. (2009) League championship algorithm: A

new algorithm for numerical function optimization. 2009

International Conference of Soft Computing and Pattern

Recognition, Published in IEEE Computer Society, pp.

43-48. https://doi.org/10.1109/SoCPaR.2009.21

[5] Abdulhamid, S.M., Latiff, M.S.A., Abdul-Salaam, G.,

Madni, S.H.H. (2016). Secure scientific applications

scheduling technique for cloud computing environment

using global league championship algorithm. PLoS ONE,

11(7): e0158102.

https://doi.org/10.1371/journal.pone.0158102

[6] Ge, Y., Wei, G. (2010). GA-based task scheduler for the

cloud computing systems. In: International Conference

web Information System Mining, WISM 2010. pp. 181–

186. https://doi.org/10.1109/WISM.2010.87

[7] Kaur, S., Verma, A. (2012) An efficient approach to

genetic algorithm for task scheduling in cloud computing

environment. I.J. Information Technology and Computer

Science, 10: 74-79.

https://doi.org/10.5815/ijitcs.2012.10.09

[8] Liu, A., Wang, Z. (2008). Grid task scheduling based on

adaptive ant colony algorithm. In: International

conference on Management E-commerce E-government

Grid, pp 415–418.

https://doi.org/10.1109/ICMECG.2008.50

358

https://doi.ieeecomputersociety.org/10.1109/WISM.2010.87
https://doi.org/10.1109/ICMECG.2008.50

[9] Zhang, Z., Zhang, X. (2010). A load balancing

mechanism based on ant colony and complex network

theory in open cloud computing federation. In: 2nd

International Conference on Industrial Mechatronics and

Automation, pp 240–243.

https://doi.org/10.1109/icindma.2010.5538385

[10] Kennedy, J., Eberhart, R. (1995). Particle swarm

optimization. Proceedings of ICNN'95 - International

Conference on Neural Networks, Perth, WA, Australia,

Australia. http://dx.doi.org/10.1109/ICNN.1995.488968

[11] Ramezani, F., Lu, J., Hussain, F.K. (2014). Task-based

system load balancing in cloud computing using particle

swarm optimization. Int J Parallel Program, 42:739–754.

https://doi.org/10.1007/s10766-013-0275-4

[12] Pooranian, Z., Shojafar, M., Abawajy, J.H., Abraham, A.

(2015) An efficient meta-heuristic algorithm for grid

computing. J Comb Optim (2015), New York.

https://doi.org/10.1007/s10878-013-9644-6

[13] Ga̧sior, J., Seredyński, F. (2013). Multi-objective parallel

machines scheduling for fault-tolerant cloud systems.

Algorithms and Architectures for Parallel Processing:

Springer. pp. 247–256. https://doi.org/10.1007/978-3-

319-03859-9_21

[14] Chen, Z.G., Du, K.J., Zhan, Z.H., Zhang, J. (2015).

Deadline constrained cloud computing resources

scheduling for cost optimization based on dynamic

objective genetic algorithm. Evolutionary Computation

(CEC), 2015 IEEE Congress on; 2015: IEEE.

https://doi.org/10.1109/CEC.2015.7256960

[15] Liu, X.F., Zhan, Z.H., Du, K.J., Chen, W.N. (2014).

Energy aware virtual machine placement scheduling in

cloud computing based on ant colony optimization

approach. Proceedings of the 2014 Conference on

Genetic and Evolutionary Computation; 2014: ACM.

https://doi.org/10.1145/2576768.2598265

[16] Li, K., Xu, G., Zhao, G., Dong, Y., Wang, D. (2011).

Cloud task scheduling based on load balancing ant

colony optimization. 2011. IEEE. pp. 3–9.

https://doi.org/10.1109/ChinaGrid.2011.17

[17] The NASA Ames iPSC/860 log by CS Huji labs parallel

workload.

359

https://doi.org/10.1109/CEC.2015.7256960
https://doi.org/10.1145/2576768.2598265
https://doi.org/10.1109/ChinaGrid.2011.17

