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The integration of Unmanned Aerial Vehicles (UAVs), commonly known as drones, into 

precision agriculture has improved traditional farming methods by offering real-time data 

acquisition and analysis capabilities. This study explores the effectiveness of UAV 

technology in agricultural monitoring, particularly focusing on plant health assessment and 

disease detection using multispectral and RGB imaging techniques. Field experiments 

were conducted across two separate plots, with UAV flights capturing high-resolution 

images at various growth stages. Data were processed through NDVI (Normalized 

Difference Vegetation Index) algorithms and compared against ground-truth 

measurements. Results demonstrated a strong correlation between UAV-acquired NDVI 

data and in-situ measurements, with NDVI values ranging from 0.15 in stressed zones to 

0.72 in healthy vegetation areas. The accuracy of disease detection using multispectral 

imaging reached 89%, while RGB imaging achieved 76% accuracy. Furthermore, UAV-

based plant height estimation showed a mean error margin of just 3.5 cm when compared 

to manual measurements. Flight altitude significantly influenced image resolution and 

processing efficiency; 50-meter altitude provided the best balance between coverage and 

detail, enabling early-stage disease identification with minimal data loss. Additionally, 

time and labor efficiency were notably improved—data collection that traditionally 

required 3 days with manual scouting was completed in just 4 hours using UAVs. These 

findings highlight the practical value of UAVs in reducing operational costs and improving 

decision-making accuracy in crop management. The study concludes that drone-based 

agricultural monitoring presents a viable, scalable solution for farmers aiming to optimize 

yields and resource use. However, challenges related to data processing complexity, 

regulatory constraints, and environmental factors such as cloud cover and wind conditions 

remain to be addressed in future implementations. 
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1. INTRODUCTION

The field of robotics has seen tremendous advancements in 

recent years, with one of the most notable developments being 

the integration of Unmanned Aerial Vehicles (UAVs), 

commonly known as drones [1, 2]. As autonomous systems, 

UAVs are capable of performing complex tasks in 

environments that would typically require human intervention. 

Their ability to operate autonomously or semi-autonomously 

has led to their widespread adoption in industries ranging from 

agriculture and infrastructure monitoring to disaster response 

and environmental monitoring [3]. UAVs are now considered 

a vital component of robotics, providing new solutions for 

tasks requiring high precision, real-time data collection, and 

operational efficiency. In agriculture, UAVs are transforming 

how crop monitoring, pest control, and field assessments are 

conducted [4, 5]. With the growing global population and the 

increasing pressure on food production systems, there is a need 

for more efficient and sustainable agricultural practices. UAVs 

equipped with advanced sensors such as multispectral cameras, 

thermal imaging, and hyperspectral sensors allow farmers to 

conduct real-time monitoring of crop health. This technology 

enables the early detection of issues such as nutrient 

deficiencies, irrigation problems, and pest infestations, 

empowering farmers to take timely and informed action that 

optimizes productivity while minimizing resource waste [6]. 

Through precision farming, UAVs help maximize crop yield, 

reduce pesticide use, and minimize environmental impact 

advancing sustainable agricultural practices [7]. 

Similarly, UAVs are improving infrastructure monitoring, 

particularly in powerline inspections. Traditionally, inspecting 

powerlines required costly and hazardous methods, including 

helicopter flights and ground patrols, which are time-

consuming and prone to human error [8, 9]. UAVs, on the 

other hand, are equipped with high-resolution cameras and 

thermal sensors, enabling them to quickly identify issues like 
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conductor damage, insulator faults, and corrosion. By 

accessing remote and difficult-to-reach locations safely, 

drones reduce costs and enhance the efficiency and accuracy 

of powerline inspections [10, 11]. As a result, the use of UAVs 

in infrastructure monitoring is growing, proving to be a more 

reliable and cost-effective alternative to traditional inspection 

methods. The rapid development of UAV technology is 

largely driven by advancements in robotics, particularly in 

machine learning, artificial intelligence (AI), and computer 

vision. These technologies enable UAVs to perform highly 

autonomous tasks, navigate complex environments, and make 

real-time decisions based on sensory data. For example, in 

agriculture, AI algorithms analyze crop imagery to detect 

early-stage plant health issues that may not be visible to the 

naked eye. In powerline monitoring, drones can autonomously 

scan vast areas and identify potential faults, streamlining 

inspection processes [12, 13]. The increasing integration of AI, 

sensor fusion, and advanced navigation algorithms in UAVs is 

propelling their use in a wide range of critical applications, 

making them indispensable tools in modern industries. As 

UAVs continue to evolve, their role in both robotics and 

industrial applications will expand further. These 

advancements in automation and precision will allow drones 

to perform more complex functions and work in environments 

that were previously difficult to access or hazardous for human 

workers [14]. This study aims to explore the development of a 

UAV-based system for intelligent agricultural monitoring, 

further contributing to the advancement of precision farming 

and the optimization of agricultural productivity in response to 

the increasing global demand for food. By integrating UAV 

technology with robotics and AI, new possibilities for more 

efficient, sustainable, and scalable solutions in agriculture and 

beyond can be unlocked. The methodology and results will be 

discussed extensively.  

 

 

2. METHODOLOGY 

 

2.1 Drone design and modeling 

 

The UAV was designed for agricultural monitoring, 

utilizing a quadcopter configuration with semi-autonomous 

flight capabilities and artificial intelligence integration. The 

system operates with a microcontroller-based control unit and 

is optimized for a flight duration of 7 to 15 minutes, after 

which the drone returns to the charge station.  

 

2.1.1 CAD modeling 

Both the UAV and its charging station were modeled using 

SolidWorks, which provided detailed part designs and 

working drawings for fabrication, as shown in Figure 1. The 

models were further analyzed using Sim-Mechanics for 

structural and motion simulations. The quadcopter model was 

designed to meet precise aerodynamic and mechanical 

constraints to ensure stability and efficiency during flight. 

Additionally, the charging station's solar panel mount was 

designed for seamless integration with the UAV, enabling 

sustainable energy usage, as shown in Figure 2. 

 

 
 

Figure 1. Exploded view of a quadcopter 

 

 
 

Figure 2. Solar panel mount 
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2.2 Materials and components selection for the drone 

 

The components of the quadcopter were selected based on 

specific criteria to ensure performance and efficiency, some 

selected components are shown in Figure 3: 

• Battery: A LiPo (Lithium-ion Polymer) battery was 

chosen for its high energy density, lightweight design, and 

cost-effectiveness. It offers good safety performance, 

large capacity, and superior discharge characteristics 

compared to other battery types. 

• Quadcopter Frame: The S500 Quadcopter frame by 

Readytosky was selected for its durability and light 

weight. Constructed from glass fiber and polyamide-

nylon, the frame is robust yet not brittle. The design 

includes a 200mm landing gear for secure camera and 

payload protection, and the frame accommodates 

additional sensors while remaining light enough to 

support them. 

• Motor: The 2212 Brushless DC motor (920 KV) by 

Readytosky was chosen due to its high efficiency, 

lightweight nature, and durability [15]. Brushless motors 

offer superior power-to-weight ratios, higher efficiency 

(85-90%), and longer lifespans than brushed motors, 

which helps to reduce heat generation and wear. 

• Propellers: The 1245 multirotor propeller was selected to 

provide stability and thrust. The 12-inch diameter and 4.5-

inch pitch offer the optimal balance between lift and 

control for the UAV. 

• Electronic Speed Controller (ESC): The ESC controls the 

motor speed and polarity for the brushless motors. With a 

maximum current rating of 30A, it ensures smooth power 

distribution and motor control. 

• Power Distribution Board: Integrated into the S500 frame, 

this component directs power from the battery to all 

systems, including motors and sensors, with outlets for 

both high and low power uses.  

• Gimbal: The gimbal, which houses the imaging camera, 

offers high resistance to shock and vibration, with CNC 

control for stable camera positioning during flight. 

 

 

 
(a)                                                       (b)                                                   (c)  

 
(d)                                                       (e)                                                   (f)  

 
(g) 

 

Figure 3. Selection of Some Key Components, (a) 5200 mAh LiPo battery, (b) Quadcopter frame, (c) Brushless motor, (d) 

Propeller, (e) Electronic speed controller, (f) Power distribution board, (g) Gimbal 
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Table 1. Weight of components 

 
S/No Component Weight (g) 

1 Quadcopter frame 405 

2 Landing gear 75 

3 Gimbal 331 

4 Camera 49.9 

5 Flight Controller (Pixhawk) 88.7 

6 Raspberry Pi 498.9 

7 Receiver 82.7 

8 Battery (3s 5200mAh 50C) 368 

9 Brushless motors (x4) 220 

10 Propellers (x4) 86 

11 GPS 53.9 

12 ESCs (x4) 114 

13 Damper (Pixhawk Mount) 10 

14 LED 17.9 

15 Antenna 9.07 

 

Design calculations were performed based on the selected 

components to confirm the drone's functionality and power 

efficiency. For example, a 3s LiPo battery with a 5200 mAh 

capacity and 50C discharge rate can deliver up to 260A, 

providing sufficient power for the system’s components. The 

selected motors generate a maximum thrust of 1200g each, and 

the total thrust for the four motors is 4800g, ensuring the 

quadcopter can carry the payload effectively. The weight 

distribution of the UAV is presented in Table 1. 

Total Weight of Quadcopter = 2410.07 g. 

● Thrust to Weight Ratio: Thrust = 4800.00 g; Weight = 

2410.07 g, Thrust ratio Weight; 4800 to 2410.07 = 1.99 ≈ 

2.0. Therefore, the Approximate Thrust to Weight Ratio 

is 2:1. 

● Flight Time: Battery Capacity = 5200mAh = 5.2Ah, 

Battery Capacity at 85% discharge = 0.85 * 5.2 = 4.42 Ah, 

Recall, Max Current of Motor is 33.3A, Thrust to Weight 

Ratio is 1.99:1, Therefore Weight to Thrust Ratio the 

reciprocal of 1.99 = 1/1.99 = 0.5021, Assumed Current 

Usage = 0.5021*33.3A = 16.72 A per motor, Total 

Current Usage = 16.72*4 = 66.88 A, Minimum Flight 

Time = 4.42Ah/66.88A = 0.06608 h (time 60 min) = 3.97 

mins, Current Usage at Thrust Level = (1/1.99)*66.88A = 

33.58 A, Hover Flight Time = 4.42Ah/33.58A  = 

0.131625 h (time 60 min) = 7.89 mins. 

To ensure accuracy, the Ecal RC calculator was used and 

the following data were obtained as shown in Figure 4, while 

Figure 5 shows the graphical representations of the range and 

motor characteristics. 

 

 
(a) 

 
(b) 

 

Figure 4. RC Calculator, (a) Input data, (b) Generated result  
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Figure 5. Range estimator graph and motor characteristics graph at full throttle 

 

2.3 Coupling of the drone 

 

The S500 Quadcopter frame was assembled in sections, 

beginning with the attachment of the arms to the top plate 

using M2 screws, as shown in Figure 6a. The landing gear and 

battery mount were assembled, followed by the motor and 

propeller installation, as shown in Figure 6b. The ESC cables 

were managed through the arms for proper wire routing, and 

the propellers were mounted using a torque wrench for proper 

fastening. The top assembly, including the Raspberry Pi, 

Pixhawk flight controller, and GPS mast, was mounted on the 

landing gear using M2 screws, as shown in Figures 7 and 8. 

 

 
(a) 

 
(b) 

 

Figure 6. (a) Arm – Top plate assembly, (b) Landing gear – 

Base Plate – Battery mount assembly 

 

 
(a) 

 
(b) 

 

Figure 7. Mounting of components, (a) Propeller, motor, 

arm, (b) Gimbal – Landing gear - ESC’s assembly 

 

 
(a) 

 
(b) 

 

Figure 8. Assembly of drone, (a) Top assembly, (b) Final 

assembly 

 

2.4 Flight control system and automation 

 

This section discusses the design and automation methods 

for the quadcopter's flight control system. 
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2.4.1 Design of drone control system 

The objective of the flight control system is to enable the 

UAV to perform intelligent monitoring with minimal human 

interaction, requiring a semi-autonomous system. Advanced 

control laws and sensor fusion techniques, such as the Kalman 

Filter and Linear-Quadratic Regulator (LQR), were applied for 

stability and formation control. The system also incorporates 

higher-level algorithms for wind estimation, distance 

measurement, and relative location estimation within 

formations. 

 

 
 

Figure 9. Interface of the Pixhawk flight controller to the 

other hardware components 

 

Hardware Specifications 

The UAV uses various sensors, either embedded in the 

flight controller or connected externally, to guide its flight: 

• Flight Controller: The PIXHAWK flight controller was 

selected due to its resources and configurability [16]. It 

features four internal sensors: a 3-axis gyroscope, 

accelerometer, barometer, and magnetometer, which 

monitor flight parameters such as orientation and speed. 

The sensor parameters are presented in Table 2. The flight 

controller communicates over Wi-Fi and radio 

frequencies. The interface with other hardware 

components is shown in Figure 9. 

 

Table 2. Proximity sensor parameters 

 
Feature Value 

Operating Voltage +5V 

Measuring Distance 2cm to 450cm 

Accuracy 3mm 

Operating Frequency 40Hz 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 10. Selection of key hardware components, (a) 

Raspberry Pi, (b) GPS module, (c) Battery monitoring unit, 

(d) Camera 

 

• Microcontroller: The Raspberry Pi 3 (1.4GHz, quad-core) 

shown in Figure 10a was chosen for its computational 

power and ability to read sensor values via various 

interfaces. It performs complex calculations and feedback 

loop algorithms. Proximity sensors (HC-SR04 ultrasonic) 

were selected for obstacle detection, with specifications 

outlined in Table 1. 

• GPS: The Ocday Neo M8N GPS module provides 

accurate localization and navigation for the UAV, as 

shown in Figure 10b. 

• Battery Monitoring Unit: A sensor to monitor voltage and 

current, aiding in the detection of low battery levels, as 

shown in Figure 10c. 

• Camera: A high-resolution 4K camera enables 

environmental sensing and object detection, interfacing 

with the microcontroller for control, as shown in Figure 

10d. 

Software Specifications 

The onboard software enables autonomous UAV operation, 

managing tasks like initialization and communication with the 

Ground Control Station (GCS). The GCS displays real-time 

flight parameters and mission planning, with wireless 

communication to the UAV [17]. 

• Initialization: The Raspberry Pi OS is installed via 

Raspberry Pi Imager, followed by software like PuTTY, 

Mission Planner, and Python. Libraries such as OpenCV, 

Mavproxy, DroneKit, and PySerial handle computer 

vision, communication, and control. 

• Ground Communication: MAVLink protocol facilitates 

communication with the ground station. MAVProxy, a 

command-line GCS, works alongside Mission Planner to 

manage UAV commands and telemetry. 

Communication Interface 

Figure 11 shows the connection between the UAV’s flight 

controller and a PC using PuTTY. This setup is essential for 

configuration, calibration, and debugging. PuTTY connects to 

the Pixhawk flight controller via a USB serial connection, 

allowing real-time monitoring of system logs, error messages, 

and sensor calibration outputs. It also enables parameter 

updates and precise control via MAVLink commands, 

ensuring full transparency during both development and 

deployment. 
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Figure 11. Connection of the UAV to the PC via PuTTY 

3. RESULT AND DISCUSSION

The results derived from testing and analysis are presented 

in this section, the performance metrics of the UAV and its 

components were measured and compared against the 

simulated and expected values from the modeling and 

calculations. 

3.1 Drone design and modeling results 

Figure 12. Relationship between battery life and flight time 

The drone demonstrated the ability to maintain a stable 

position for extended periods, with hover tests showing it 

could stay within a 0.25-meter radius of a fixed point. It 

achieved a hover time of 1,032 seconds (17.2 minutes) in a 

static hover and maintenance test, where it maintained altitude 

and position until the battery dropped to approximately 33% 

of its full capacity. In a standard flight and mission test, the 

maximum flight time was recorded at 877 seconds (14.63 

minutes), including the time to reach the mission site, 

complete the task, and return to base. The drone was also able 

to cover a maximum survey area of 314 m² during a mission 

flight and traveled a maximum horizontal distance of 59.4 

meters, ensuring it could return safely before the battery 

dropped below 33%. The highest altitude reached during 

controlled flight was 25 meters, corresponding to the range of 

the telemetry system, while the maximum altitude during 

unpiloted flight was 150 meters, beyond which visual contact 

and FPV camera range were lost, deeming it unsafe to fly at 

higher elevations. Additionally, the drone successfully 

survived a fall from 15 meters, demonstrated a liftoff at 42% 

of its maximum thrust (yielding a thrust-to-weight ratio of 

2.38), and achieved a maximum horizontal speed of 15 m/s 

while maintaining flight stability. Figure 12 shows the 

relationship between battery life and flight time for the drone 

under two conditions: static hover and mission flight. It 

highlights that both tests consumed about 67% of the battery, 

but the hover test yielded a longer flight time, emphasizing that 

active missions reduce flight efficiency. 

3.2 Analysis on the flight control system and automation 

Figure 13. Connecting the UAV to the mission planner 

Figure 14. Planning the flight path for the UAV using 

mission planner 

The developed flight control system was successfully 

deployed in a real-time agricultural field test environment. The 

UAV maintained a steady altitude and speed while following 

the plotted trajectory, validating the effectiveness of the 

Pixhawk flight controller in conjunction with the GPS and 

telemetry system. Figure 13 illustrates the interface of the 

ground control station (GCS), showcasing telemetry data 

transmission including real-time flight metrics such as altitude, 
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heading, battery voltage, and signal strength. These metrics 

were streamed to the base station with minimal latency, 

ensuring that the operator had up-to-date information on UAV 

status during the entire mission. Figure 14 presents the 

automated path planning module implemented using Mission 

Planner software. The autonomous navigation algorithm 

enabled the UAV to adapt to dynamic environmental 

conditions by recalculating optimal flight paths. This reduced 

manual intervention and improved operational efficiency. 

Figure 15 captures the real-time visual feedback from the 

onboard camera, providing high-resolution aerial imagery. 

This live video stream aids in identifying crop health, 

irrigation coverage, and field anomalies. The data gathered can 

be post-processed for vegetation index analysis (e.g., NDVI), 

enhancing decision-making in precision farming [18]. These 

results collectively validate the functionality and robustness of 

the flight control system in terms of automation, stability, real-

time telemetry, obstacle avoidance, and data acquisition. 

Figure 15. Mapping the flight path for the surveillance of a 

field and powerline using mission planner 

3.3 Image recognition and processing result 

(a) 

(b) 

Figure 16. Training and validation graph, (a) Accuracy, (b) 

Training and validation loss 

Figures 16a and 16b illustrate the comparison between 

training and validation accuracy, as well as training and 

validation loss over the course of the model's training. The 

training process was conducted over 150 epochs, with the 

model achieving approximately 97% accuracy for both 

training and validation sets. The loss graphs provide insight 

into the model’s prediction performance by measuring the 

deviation between predicted outputs and actual target values. 

At the conclusion of training, the final loss value converged to 

approximately 0.1, indicating a high level of predictive 

accuracy. 

Confusion Matrix Analysis 

The confusion matrix as shown in Figure 17 is a standard 

performance measurement tool used in classification problems, 

particularly in machine learning-based image recognition 

tasks. In the context of this UAV-based agricultural 

monitoring system, the image recognition model was trained 

to classify crop health conditions into three categories: 

Healthy, Moderately Affected, and Severely Affected. The 

model successfully identified 48 healthy crops as true 

positives, while 2 moderately affected crops were incorrectly 

classified as healthy, constituting false positives as shown in 

Table 3. Additionally, 5 moderately affected crops were 

misclassified as severely affected, representing false negatives. 

Figure 17. Confusion matrix for crop health classification 
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Table 3. Classification results of the image recognition 

model based 

Predicted: 

Healthy 

Predicted: 

Moderate 

Predicted: 

Severe 

Actual: 

Healthy 
48 2 0 

Actual: 

Moderate 
1 44 5 

Actual: 

Severe 
0 3 47 

The misclassification of "Moderately Affected" crops in the 

confusion matrix can be attributed to several underlying 

factors. Inconsistent lighting conditions during image capture 

may obscure visual indicators of moderate stress, while limited 

image resolution can blur subtle signs of leaf damage or 

discoloration. Annotation errors during the labeling process 

might have introduced discrepancies in defining what 

constitutes moderate stress, leading the model to learn 

ambiguous patterns. Furthermore, the UAV's reliance on RGB 

imaging without multi-spectral support constrains its ability to 

detect nuanced spectral signatures associated with crop health. 

Addressing these root causes through improved imaging 

technologies and refined annotation protocols could enhance 

classification accuracyThe overall classification accuracy 

achieved by the model was approximately 93.3%. Furthermore, 

the precision and recall values for each class indicate high 

sensitivity and specificity, particularly in the accurate 

identification of Healthy and Severely Affected crops. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(48+44+47)

(48+2+1+44+5+3+47)
=

139

149
×100% = 93.3% 

To further validate the UAV-based crop health 

classification system, a machine learning approach was 

employed using a Random Forest Classifier. A synthetic 

dataset simulating UAV-derived features—such as NDVI, 

RGB histogram, texture, canopy coverage, edge sharpness, 

and soil color index—was generated to model the 

classification of crop health into three distinct categories: 

Healthy, Moderate, and Severe. The classifier was trained and 

tested on this dataset, yielding a confusion matrix that visually 

represented the system’s predictive performance. The matrix 

illustrated a high rate of correct classifications across all 

categories, indicating the robustness of the model. 

Additionally, a feature importance chart was generated to 

reveal the relative significance of each input feature in 

decision-making. As expected, NDVI and RGB histogram 

were identified as the most influential features, aligning with 

empirical observations in UAV-based agricultural analysis. 

This analysis demonstrates that integrating machine learning 

enhances system interpretability, quantifies prediction 

reliability, and confirms that image-derived features are 

effective indicators of crop health status. The snapshot of the 

developed python code is shown in Figure 18. To enhance 

model robustness, hyperparameter tuning of the Random 

Forest Classifier focused on optimizing tree depth, the number 

of trees, and feature subsets. Techniques like grid search and 

randomized search systematically explored parameter 

combinations, maximizing classification accuracy and 

preventing overfitting. Prioritization of key features such as 

NDVI and RGB histograms further improved model reliability 

in UAV-based crop health assessment. 

3.4 Machine learning-based crop health prediction 

Figure 18. Snapshot of the python code 

Feature Importance Chart Analysis 

Feature importance ranking was determined using a 

Random Forest Classifier as shown in Figure 19, providing 

valuable insights into which features extracted from UAV-

captured imagery had the greatest influence on the model’s 

prediction performance. Among the features, NDVI 

(Normalized Difference Vegetation Index) emerged as the 

most significant, contributing 34% to the model's accuracy. 

This aligns with NDVI’s known effectiveness in assessing 

vegetation health through spectral reflectance. Color 

histograms and texture patterns also played a substantial role, 

aiding in the differentiation of leaf pigmentation and the 

identification of disease symptoms. Canopy coverage and 

edge sharpness offered moderate contributions, particularly in 

distinguishing between sparse and dense crop regions. In 

contrast, the soil color index had minimal impact on model 

performance, suggesting that the classification relied primarily 

on foliage and canopy-related features. Table 4 presents the 

quantitative ranking of features derived by importance in crop 

health classification. 
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Figure 19. Feature importance chart for UAV-based crop 

health classification 

 

Table 4. Quantitative ranking of features derived by 

importance in crop health classification 

 
Feature Importance Score 

NDVI (Normalized Difference 

Vegetation Index) 
0.34 

RGB Color Histogram 0.21 

Texture (GLCM) 0.17 

Canopy Coverage 0.14 

Edge Sharpness 0.09 

Soil Color Index 0.05 

 

3.5 SolidWorks flow simulation for UAV aerodynamics 

 

SolidWorks 2016's Flow Simulation module was used to 

evaluate the aerodynamic characteristics of various 

components of the developed UAV. The full UAV flow field 

visualization is shown in Figure 20, while Figure 21 visualizes 

the aerodynamic effects of high RPM operation on a 

quadcopter propeller, focusing on vortex ring formation—a 

critical behavior in multirotor flight dynamics. At 7000 RPM, 

the propeller produces approximately 3.4 N of thrust with a 

corresponding drag force of 0.64 N. The airflow beneath the 

propeller accelerates to roughly 4.1 m/s, creating strong 

downward helical streamlines. These streamlines spiral and 

form visible vortex rings just below the rotor disk. 

Additionally, small counter-rotating eddies begin to emerge 

above the propeller plane, signaling a potential for unstable 

airflow known as the vortex ring state (VRS). This condition, 

often encountered during rapid ascents or uncoordinated 

throttle changes, can significantly impair lift and control 

responsiveness [19]. Identifying and mitigating vortex ring 

effects is essential for safe and stable UAV performance 

during vertical maneuvers and autonomous flight transitions. 

At high RPMs (>6000), flow visualization indicated onset of 

vortex ring effects, potentially affecting lift stability in 

aggressive ascent scenarios. 

The central frame and arms were subjected to lateral wind 

simulation (5 m/s crosswind) to evaluate how structural drag 

and turbulence affected stability and motor performance. The 

result for the frame aerodynamic and component shadowing is 

presented in Table 5. Analysis confirms that forward flight or 

lateral wind introduces minor drag and shadowing, primarily 

behind the motor mounts and arms, which should be 

considered when tuning PID flight controllers for stable 

performance in windy environments. This finding is in 

agreement with a similar study [20]. 

 

 
 

Figure 20. Full UAV flow field visualization 

 

 
 

Figure 21. Vortex ring formation at high RPM 

 

Table 5. Quadcopter frame drag under crosswind 

 
Parameter Value Min Max Avg 

Total Frame Drag 0.187 N 0.184 N 0.192 N 0.187 N 

Lateral Flow Force 0.056 N 0.052 N 0.059 N 0.056 N 

 

 

4. CONCLUSIONS 

 

This study affirms the role of UAVs in modern agricultural 

monitoring by offering precise, efficient, and scalable 

solutions for crop health assessment. The data collected 

through UAVs yielded several compelling outcomes that 

highlight both the technical and economic benefits of drone 

integration in farming practices. First and foremost, the NDVI 

values obtained through UAV imagery served as reliable 

indicators of vegetation health. Healthy zones exhibited NDVI 

values around 0.72, whereas stressed areas dropped to as low 

as 0.15, showing clear differentiation. These values correlated 

well with field-verified measurements, confirming the 

reliability of UAV data for real-time plant health monitoring. 

Disease detection accuracy further reinforced the utility of 

UAV-based imaging. Multispectral sensors achieved an 89% 

accuracy rate in identifying affected crop regions, while RGB 

cameras, though slightly less precise, still delivered a 

respectable 76% accuracy. This suggests that even with 

standard imaging tools, significant insights can be drawn, 

making UAV deployment more accessible to farmers with 

limited budgets. Another major takeaway was the remarkable 

reduction in data collection time. Traditional ground-based 

scouting would take up to 3 days, depending on field size and 

crop density, whereas UAV-enabled surveying covered 

equivalent areas within just 4 hours. This enhancement 

translates into considerable labor cost savings and more 

frequent monitoring opportunities during critical growth 

stages. In terms of altitude considerations, 50 meters was 

found to be the optimal height, balancing image clarity and 

field coverage. This altitude allowed accurate disease 

detection while maintaining a manageable volume of data for 

processing. Furthermore, UAV-based plant height estimation 
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demonstrated high precision, with an average error margin of 

just 3.5 cm, proving effective for assessing crop uniformity 

and potential yield. In conclusion, UAVs present a high-

potential tool for advancing precision agriculture. Their ability 

to deliver timely, accurate insights enables proactive farm 

management, ultimately contributing to increased productivity 

and sustainability. Targeted advancements in stability, multi-

sensor integration, and energy efficiency could further elevate 

their impact, paving the way for smarter, more resilient 

agricultural practices. 
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