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Sometimes, traditional irrigation mismanages water, wasting resources and harming 

yields. An automated irrigation system adjusts based on soil needs. This boosts 

productivity while conserving water and energy. Traditional methods falter due to 

inconsistent management. Fuzzy logic was used to optimize watering timing. We crafted 

a fuzzy logic controller (FLC) on a Raspberry Pi using sensor data for irrigation timing. 

Twenty-seven fuzzy rules were developed after establishing the membership function. 

This automated system waters precisely, enhancing crop yield autonomously. Watering 

halts when soil moisture is adequate and resumes when it dips. The Raspberry Pi fuzzy 

logic boasts a mere 1.184% error, achieving a stellar 98.816% accuracy compared to 

MATLAB. Manual control had an even lower average error of 0.838%, reaching 99.162% 

accuracy.  The system features advanced innovations, particularly through the effective 

application of fuzzy logic rules on Raspberry in Baghdad, Iraq, during the dry winter 

season marked by limited rainfall. It adapts swiftly to changing weather, responding 

quickly to temperature and humidity shifts. The study shows this smart irrigation saves 

resources, achieving 52.5% less water usage and 80.8% energy savings compared to old 

methods. Plus, it only costs $217, a thrifty alternative to traditional irrigation. 

Keywords: 

wireless sensor networks (WSNs), Internet of 

Things (IoT), fuzzy logic control (FLC), 
artificial intelligence (AI) 

1. INTRODUCTION

Agriculture is one of the most vital events directly 

impacting food security and the global economy. With the 

ever-increasing population and climate change, it has become 

imperative to provide multiple technological solutions that 

contribute to enabling efficient agricultural production and 

reducing waste of resources, such as water, energy, and many 

other factors.  

In mature and emerging economies, agriculture contributes 

considerably to GDP. By 2050, the world population may 

exceed 10 billion. To feed this growing population, food 

output must increase by 70%. Sustainable agriculture is 

essential for food security in a rising population. Sustainable 

agriculture increases output while minimizing environmental 

impact from inadequate farming. Innovative agricultural 

methods frequently lag in demand and require substantial 

research and development to achieve sustainable agriculture 

goals. Farming requires attention to irrigation. Overirrigation 

uses 70% of freshwater. Internet of Things (IoT) and AI can 

monitor, regulate, and plan agricultural irrigation systems 

efficiently [1]. 

The rapid development of the IoT and artificial intelligence 

(AI) has led to the concept of "Artificial Intelligence of 

Things" (AIoT). The integration of AI and the IoT allows 

devices with specific features to sense and transmit data over 

the network. Data can be analyzed and reacted to in real time 

using AI. Advanced AI models processing massive amounts 

of data enable human-like automated decision-making. AIoT 

can choose machine settings according to human learning. 

This technological evolution has produced several neural 

architectures designed for different settings [2]. 

The lack of wireless sensor networks (WSN) in modern 

irrigation systems [3, 4] faces many challenges, including poor 

water and energy use, inability to react dynamically to 

changing environmental factors, inability to modify the 

environment, and unreliable data transmission. We solved 

these problems with wireless Wi-Fi networks in our innovative 

solution. This technology allows precise irrigation scheduling 

based on ongoing surveillance of diverse environmental 

parameters and instantaneous control, improving water and 

energy efficiency, addressing water scarcity, and lowering 

operational costs. These growth-oriented networks can be 

customized for different field sizes and crop types, making 

them adaptable to different agricultural contexts. 

Wireless sensor networks (WSN) must be included in IoT 

systems if we are to solve communication issues and improve 

agricultural practices [5]. The combination of AI with 

advances in wireless communication offers smart decision-

making assistance for irrigation systems, hence enabling 

remote monitoring and administration [6]. Advancements in 

(WSNs) have helped to influence creative trends in the 

agricultural industry. In precision agriculture, WSNs have 

been the favored choice as sensor technology has shrunk in 

size and cost. These networks are used not only in 

conventional agriculture but also in sectors including 

horticulture, animal husbandry, and wine growing. Using 

WSNs in these domains aims first to enhance quality and 
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production [7]. 

This research proposes the design of a smart irrigation 

system based on Internet of Things (IoT) and fuzzy logic 

technologies to improve water and energy efficiency in 

agriculture. The system focuses on analyzing environmental 

data such as temperature, humidity, and soil moisture to make 

automated decisions regarding irrigation timing and duration. 

The research contributions can be encapsulated as follows: 

• The significance of accurately estimating the requisite 

water volume for soil irrigation, which is adequate for the 

soil, plays a crucial role in promoting water conservation 

and mitigating waste. 

• A correlation has been established among air temperature, 

humidity, and soil moisture, highlighting a direct 

interrelationship among these variables to ascertain the 

necessary irrigation for the soil. This data is integrated into 

the Internet of Things (IoT), offering an intuitive interface 

for novice farmers to effectively oversee their agricultural 

practices as required. 

• The proposed system facilitates irrigation management via 

a fuzzy inference mechanism, utilizing sensor data to 

determine water pump activation, thereby minimizing 

water and electricity wastage while ensuring automatic 

motor deactivation upon adequate soil moisture, thus 

enabling real-time management and reducing labour costs 

through the elimination of human involvement. 

The research is divided into eight sections. The first section 

discusses a general introduction, the problem deviation in the 

second section and the objective in the third section, while the 

fourth section includes previous studies. The fifth section 

covers the methodologies. The sixth section is about the 

proposed system, while the seventh section discusses the 

results and discussions. We conclude the research in the eighth 

section. 

 

 

2. PROBLEM DEVIATION 

 
Some problems with traditional methods are: 

• Too much waste and water loss because the soil's real 

needs aren't being properly assessed, which means that the 

soil stays too wet, which could hurt plants or cause the 

growth of sick and unhealthy plants. 

• The irrigation system runs for too long, which wastes 

electricity.  

• The need for workers to regulate the motor and irrigate the 

soil, which raises costs. 

 

 
3. OBJECTIVE 

 

A smart irrigation system based on fuzzy logic has been put 

in place to deal with the problems listed above. This new 

method figures out how long it takes to properly irrigate the 

land. The technology will turn off the irrigation system when 

the soil reaches the right amount of moisture and turn it back 

on when the moisture level drops below the specified level. 

The system changes the amount of time it needs to water based 

on things like the temperature and humidity in the air and the 

moisture levels in the soil. This method makes sure that both 

water and power are saved while also cutting down on the 

requirement for physical work. 

 

4. LITERATURE REVIEW 

 

Imteaj et al. [8] studied  an automated irrigation system 

employing technologies such as Raspberry Pi 3, Arduino 

microcontrollers, Wi-Fi modules, GSM shields, relay boards, 

and various sensors. This integration facilitates a reliable and 

effective irrigation solution. By assessing soil moisture and 

light intensity, the system maximizes the timing of tree 

watering, hence fulfilling plant hydration requirements. The 

technology also alerts the administrator to any water supply 

deficits. By use of particular phrase commands, it allows SMS 

communication with the administrator, hence enhancing 

irrigation management and control. 

Alhasnawi et al.  [9] discussed an IoT-based network 

concept connecting agricultural uses to rural communities. 

Irrigation efficiency and agricultural practice development 

depend on this. The system uses many sensors—including 

temperature, humidity, and soil moisture—combined with 

valves. Working together, these parts offer an adaptive smart 

irrigation system appropriate for plant needs and 

environmental changes. Essential for system functioning, the 

paper explains the protocols governing Terminal Units (TU) 

and Base Station Unit (BSU). The BSU processes data from 

TUs tracking necessary parameters for efficient watering. 

Abdullah et al. [10] presents the concept of smart farming 

leveraging IoT technologies. Smartphone apps enable farmers 

to track significant environmental variables. These qualities 

are quite crucial for optimal plant development. The paper 

suggests a method based on user-defined criteria employing 

advanced fuzzy logic to manage pump operation timing. 

Covering tomato crop management and monitoring, the 

study looks at how DL and IoT technologies are used in 

agriculture [11]. The paper emphasizes how IoT allows 

tracking of environmental elements influencing the life of 

plants. Ideal crop growth is determined by three extremely 

significant variables: temperature, humidity, and soil moisture. 

The device offers farmers automated irrigation and remote 

crop watering. This characteristic defines suitable 

circumstances for plant growth and efficient management of 

water resources. The main objective is to develop a 

smartphone application using a CNN to identify problems in 

tomato plants. This program aims to help farmers properly 

control and identify plant diseases. 

Irwanto et al. [12] investigate the extent to which the IoT 

influences agricultural productivity, particularly through 

autonomous decision-making. This is crucial in that region 

since growing mushrooms requires certain weather conditions. 

The light-dependent resistor (LDR), passive infrared receiver 

(PIR), capacitive soil moisture sensor (CSMS), and DHT22 

sensor are just a few of the several sensors utilized by the 

system. Based on the information gathered by these sensors, 

judgments are made about the substrate's watering, 

environmental regulation, lighting management, and insect 

detection. Fuzzy logic (FL) could improve the responsiveness 

of decision-making using sensor data in the IoT architecture. 

Separating sensor networks into static and dynamic clusters 

is novel model design [13]. A master node and several member 

nodes that serve as its subordinates comprise each cluster. To 

improve the efficiency of data transmission, it is helpful to 

choose the main node so that member nodes are closer together. 

The primary node receives data on soil moisture and 

temperature from the member nodes, which use the DHT22 

sensor to collect this information. Upon receiving readings 

from other nodes, the central node checks the data for 
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correctness and notes any mistakes it finds. Aside from 

communicating with a gateway/base station or another cluster 

coordinator to start irrigation, it also updates its cloud database, 

makes decisions, and analyzes data. Data is stored locally in 

CSV format by both the gateway and the main nodes. The 

sender's MAC address, date, and time are logged as well. Each 

entity—including the main nodes, member nodes, and the 

gateway—represents Raspberry Pi 3B+, a low-power single-

board computer able to endure harsh environments.  BLE 4.2 

is the way to go for communication within member node 

clusters; LORA is the way to go for communications with base 

stations for off-site signal propagation.  This system is 

powered by rechargeable solar energy banks, hence ensuring 

its efficiency and sustainability. Monitoring other factors, such 

energy consumption and Bluetooth signal strength, helps to 

maintain optimal distances between network components and 

improve operational efficiency. 

 

 

5. METHODOLOGIES 

 

5.1 Sensors and communication technologies 

 

5.1.1 DHT11 

The DHT-11 is an integrated sensor designed for the 

measurement of ambient temperature and humidity levels. It 

employs capacitive technology for humidity detection. The 

implementation of specialized digital module collection 

methodologies, in conjunction with humidity and temperature 

sensing techniques, guarantees that the device exhibits 

remarkable long-term stability and a high degree of reliability 

[14]. 

 

5.1.2 Soil moisture 

Soil moisture sensors are utilized to assess the hydration 

levels and moisture content within the soil for plant life  [15]. 

These sensors predominantly operate on two separate 

principles: tension-based sensors (Tensiometer, Granular 

Matrix Sensor) and sensors that quantify soil moisture content 

(Time Domain Reflectometry, Capacitive sensor)  [16].  There 

exist two classifications of soil moisture detection instruments: 

(Resistive Soil Moisture Sensor, Capacitive Soil Moisture 

Sensor) [17]. 

 

5.1.3 Wi-Fi  

IEEE 802.11-based wireless LANs are created [18]. Wi-Fi 

has become popular in many fields as technology has 

advanced. Wi-Fi has high data transmission speeds, signal 

range, and bandwidth. The technology relies on bandwidth, 

and signal interruptions could cause operational failures [19]. 

Lack of data protection makes Wi-Fi vulnerable to breaches 

and data loss in agricultural monitoring. Wi-Fi can't handle 

large amounts of agricultural data. Its networking capacity is 

limited to dozens of devices, making it unsuitable for large 

irrigation systems [19]. This technology carefully configures 

data packets across 2.4 to 60 GHz radio frequencies. Wi-Fi is 

popular across many devices due to its long operational range, 

usually 3–7 km, facilitated by a high-performance transmitting 

antenna, and its 700 Mbps data transfer rates [20]. 

 

5.2 Processing unit 

 

5.2.1 Arduino Uno R4 Wi-Fi 

The Arduino® UNO R4 Wi-Fi is the first UNO board to 

feature a 32-bit microcontroller and an ESP32-S3 Wi-Fi® 

module (ESP32-S3-MINI-1-N8). It features a RA4M1 series 

microcontroller from Renesas (R7FA4M1AB3CFM#AA0), 

based on a 48 MHz Arm® Cortex®-M4 microprocessor. The 

UNO R4 Wi-Fi's memory is larger than its predecessors, with 

256 kB flash, 32 kB SRAM and 8 kB of EEPROM. The 

RA4M1's operating voltage is fixed at 5 V, whereas the 

ESP32-S3 module is 3.3 V. Communication between these 

two MCUs is performed via a logic level translator 

(TXB0108DQSR). 

 

5.2.2 Raspberry Pi 

A budget-friendly, compact Linux-operated circuit board, 

which is capable of interfacing with a monitor and 

keyboard/mouse, presents an economical approach for 

engaging with electronic systems while simultaneously 

serving as a platform for programming or even facilitating 

basic web services. It is imperative to note that this device 

lacks analogue input capabilities in contrast to the Arduino, 

thus necessitating the utilization of an external Analog-to-

Digital Converter (ADC) or an interfacing board to achieve 

such functions. MySQL can be integrated within the board 

whereby a General-Purpose Input/Output (GPIO) pin may 

function as either a digital Input or output, both of which 

operate at a voltage level of 3.3V [21]. 

 

5.3 IoT ThingSpeak platform 

 

ThingSpeak is an IoT platform that facilitates data storage, 

visualization, and analysis from devices. The platform 

accommodates MATLAB code, allowing advanced data 

analyses. ThingSpeak features event triggers known as 

ThingSpeak applications (apps). These applications are 

employed to manipulate and visualize data or initiate actions 

upon specific data insert conditions [22]. 

 

5.4 Decision of irrigation management 

 

The decision-making process in irrigation management 

through fuzzy logic (FL), established by Lofti Zadeh in 1965, 

extends Boolean logic. This framework generalizes classical 

set theory while challenging modal logic principles due to its 

digital nature. It introduces a confidence principle that allows 

conditions to exist beyond binary true or false states. FL 

enhances flexibility and allows for the formulation of rules in 

natural language [23]. 

 

 

6. PROPOSED SYSTEM 

 

6.1 Implementation of the suggested model 

 

The suggested system has two Sub-Nodes, which are 

Arduino Uno R4 Wi-Fi, and a Head-Node, which is Raspberry 

Pi. Each sub-node has a motor pump and sensors that measure 

temperature and humidity (DHT11) and soil moisture. Figure 

1 shows the framework that was suggested, and Figure 2 

shows how it was put into action.  

The planned system will happen in a sequence of steps:  

1. Collecting data: The linked sensors on the Arduino 

devices carefully record values of temperature, humidity, and 

soil moisture.  

2. Data relay: The Wi-Fi network sends this information to 

the Raspberry Pi module using the MQTT protocol. The 
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MQTT protocol was used to send data to and from the 

Raspberry, making sure that communication was quick and 

effective.  

3. Data interpretation: The Raspberry Pi uses Fuzzy Logic 

to look at the data and figure out if irrigation is needed.  

4. Decision and action: The Raspberry Pi sends orders to the 

Arduino devices to turn on or off the irrigation motor based on 

the results of the study. 

5. Transmit your input and output information to the 

ThingSpeak platform using the HTTP protocol. 

 

 
 

Figure 1. The circuit of the proposed system 

 

 
 

Figure 2. The execution of the suggested framework 

 

6.1.1 The flowchart of the sub-nodes and head-node 

The flowchart in Figure 3(a) illustrates the Sub-Nodes, 

which are crucial for system operation by monitoring vital 

parameters like soil moisture, humidity, and temperature and 

transmitting this data to the Head-Node, whose flowchart is 

presented in Figure 3(b). 

 

6.2 Process of the fuzzy logic system 

 

At first, the motor was switched on and off by hand to water 

the land for training. Then, AI was utilized, and the fuzzy logic 

control software was set up to automatically run the motor for 

a set amount of time to save water. The fuzzy control 

mechanisms used the Mamdani inference method, which is 

shown in Figure 4. This figure shows the internal structure of 

the fuzzy reasoning system that was made to control the water 

pump's operation. The first step in the fuzzy logic controller 

(FLC) is to get information from different sensors that keep an 

eye on the weather, such as temperature, humidity, and soil 

moisture levels. 
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(a) (b) 

 

Figure 3. The flowchart of the: (a) Sub-nodes (Arduino Uno R4 Wi-Fi) (b) Head-node (Raspberry Pi) 

 

 
 

Figure 4. The structure of a FLC 
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We use sensor data to come up with fuzzification guidelines. 

The moisture sensor makes it easier to figure out how much 

water is needed. When the soil's moisture level drops below a 

certain point, irrigation starts. Fuzzy reasoning figures out how 

long to water the plants to keep the water cycle in check. The 

rule-based method finds the best length and frequency of 

irrigation. The FLC that is being recommended uses triangle 

and trapezoidal functions, as well as segmented linear 

affiliation functions, to carry out the fuzzification process. The 

triangle function and the trapezoidal function are two of the 

most well-known membership functions. They are shown in 

Eqs. (1) and (2) below [24]: 

 
𝜁 − 𝑎

𝑏 − 𝑎
        𝑎 ≤ 𝜁 ≤ 𝑏 

𝑋(𝜁) = 𝐹(𝑎, 𝑏, 𝑐) =
𝑐 − 𝜁

𝑐 − 𝑏
       𝑏 ≤ 𝜁 ≤ 𝑐 

0          otherwise 

(1) 

 
𝜁 − 𝑎

𝑏 − 𝑎
       𝑎 ≤ 𝜁 ≤ 𝑏 

𝑋(𝜁) = 𝐹(𝑎, 𝑏, 𝑐, 𝑑) =
𝑑 − 𝜁

𝑑 − 𝑐
       𝑐 ≤ 𝜁 ≤ 𝑑 

1               𝑏 ≤ 𝜁 ≤ 𝑐 

0               otherwise 

(2) 

 

The nebulous variable x, which encompasses the magnitude 

of ζ, relies heavily on the definitions of the membership 

functions. 

Tables 1-4 provide essential input and output values. 

The fuzzy logic program was applied on the Raspberry Pi 

using Python, where sensor data was sent from the sub-nodes 

to the Raspberry Pi via Wi-Fi. Based on this data, the 

Raspberry Pi decides whether to turn the motor on or off and 

sends the command to operate or shut down the motor to the 

sub-nodes via Wi-Fi. Additionally, the Raspberry Pi sends 

sensor data to the platform for display on a smartphone. 

MATLAB was also used to plot the input and output, referred 

to as Figure 5. 

In the context of membership characteristics, each input 

variable is characterized by three distinct membership 

characteristics, comprising a pair of trapezoids and a single 

triangle configuration. The initial input variable, humidity, is 

delineated through three fuzzy sets {low, medium, high}, 

while the subsequent input variable, temperature, is similarly 

represented by three fuzzy sets {low, medium, high}. The third 

input variable, soil moisture, is categorized into three fuzzy 

sets {dry, moderate, wet}, and the output variable, designated 

as the motor time, is characterized by five distinct membership 

characteristics, comprising a pair of trapezoids and a three-

triangle configuration, and five linguistic values are 

incorporated {very low, low, medium, high, very high}. 

Figure 6 elucidates the specifics regarding the employed 

membership characteristics and the grand expanse of 

conversation. Soil moisture refers to the water retained within 

the soil matrix, which is subject to the influences of rainfall, 

soil, temperature, and additional elements.  

 

Table 1. Temperature threshold 

 
Temperature (℃) Category 

0-22 low 

17-27 medium 

22-32 high 

 

Table 2. Humidity threshold 

 
Humidity (%) Category 

0-57 low 

23-91 medium 

57-100 high 

 

Table 3. Soil moisture threshold 
 

Soil Moisture (%) Category 

0-39 dry 

19-59 moderate 

39-80 wet 

 

Table 4. Motor time threshold 
 

Motor Time (sec) Category 

0-120 Very short 

108-135 short 

120-153 medium 

135-174 long 

153-200 Very long 

 

 

 
(a) 
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(b) 

 

 
(c) 

 

 
(d) 

 

Figure 5. Membership functions of input and output: (a) temperature membership (b) humidity membership (c) soil moisture 

membership (d) output motor time membership 

 

The interrelationship between soil moisture and these 

influential elements has been duly acknowledged and 

integrated into the fuzzy rule framework, wherein 27 rules 

predicated on Mamdani inference methodology were 

employed to facilitate the regulation of the controller. The 

correlational dynamics between the input and output variables 

are articulated through “IF THEN” rules, which are derived 

from empirical experiences and expert insights. A selection of 
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these rules is illustrated in Table 5. These rules serve to 

facilitate the generation of informed decisions regarding the 

management of irrigation practices in accordance with the 

prevailing conditions of soil and the surrounding environment. 

 

 
 

Figure 6. System irrigation system: 3 input, 1 output, 27 rules 

 

Table 5. A Few of the fuzzy rules 

 

Rules 

Rule 1 

IF 

AND 

AND 

THEN 

Humidity is Low 

temperature is high 

soil moisture is dry 

motor time is very long 

Rule 2 

IF 

AND 

AND 

THEN 

Humidity Low 

temperature is high 

soil moisture is moderate 

motor time is long 

Rule 3 

IF 

AND 

AND 

THEN 

Humidity Low 

temperature is high 

soil moisture is wet 

motor time is medium 

Rule 4 

IF 

AND 

AND 

THEN 

Humidity Low 

temperature is medium 

soil moisture is dry 

motor time is long 

Rule 5 

IF 

AND 

AND 

THEN 

Humidity Low 

temperature is medium 

soil moisture is moderate 

motor time is medium 

Rule 6 

IF 

AND 

AND 

THEN 

Humidity Low 

temperature is medium 

soil moisture is wet 

motor time is short 

Rule 7 

IF 

AND 

AND 

THEN 

Humidity Low 

temperature is low 

soil moisture is dry 

motor time is medium 

Rule 8 

IF 

AND 

AND 

THEN 

Humidity Low 

temperature is low 

soil moisture is moderate 

motor time is short 

Rule 9 

IF 

AND 

AND 

THEN 

Humidity Low 

temperature is low 

soil moisture is wet 

motor time is very short 

Rule 10 

IF 

AND 

AND 

THEN 

Humidity is medium 

temperature is high 

soil moisture is dry 

motor time is long 

The enchanting Fuzzy Logic procedure woven into the 

Raspberry Pi unfolds through  four of captivating stages: 

1. Fuzzification: Implement membership functions that 

transform inputs into the realm of fuzzy sets. 

2. Rule Evaluation: Use either the min (AND) or product 

procedures to find out how intense the firing is. The word 

"min" is used in the following guideline to refer to organic 

classes for humidity levels, temperature conditions, and soil 

moisture levels. 

IF Humidity Low AND temperature is low AND soil 

moisture is dry THEN motor time is medium. 

3. Rule Aggregation: Use max (OR) to combine the outputs 

into one result. 

4. Defuzzification: Transform the consolidated fuzzy output 

into a precise value utilizing the Center of Area (COA). As 

demonstrated by the following Eq. (3) below [25]. 

 

COA=
∫ 𝑓(𝑥).𝑥 𝑑𝑥

𝑥𝑚𝑎𝑥
𝑥𝑚𝑖𝑛

∫ 𝑓(𝑥) 𝑑𝑥
𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛

 (3) 

 

where CoA stands as the center of the area, x signifies the 

measure of the linguistic variable, while xmin and xmax 

delineate the spectrum of the linguistic variable. 

 

 
7. RESULT AND DISCUSSION 

 
To tackle the issue of data interference coming  from each 

node, we devised a solution that involves the Raspberry Pi 

launching an individual terminal window for every node. In 

these separate windows, we execute the code pertinent to each 

node, allowing the respective node data to be displayed 

independently. This approach guarantees that the data received 

by the Raspberry Pi remains untainted by interference. Below 

is the terminal window for the first node, showcasing the 

complete automatic irrigation of the soil via the fuzzy logic 

program applied to the Raspberry to automatically control the 

operation or shutdown of the motor for the first node and 

1048



 

display the data of the first node via the platform, referred to 

as Figure 7. 

Figure 8 shows the sensor data received from the second 

node displayed on the platform. 

Information was gathered from various sensors over distinct 

time intervals, resulting in a visual representation depicted in 

Figure 9. The horizontal axis of the chart signifies the passage 

of time, whereas the vertical axis illustrates the information 

obtained from each individual sensor. 

The empirical findings pertaining to the fuzzy logic system 

implemented on the Raspberry Pi alongside that developed on 

MATLAB software are presented in Table 6. Upon 

examination of Table 6, it is evident that the discrepancies in 

the watering time values derived from the fuzzy logic 

assessments on both the Raspberry Pi and MATLAB are 

minimal. Cumulatively, an average error of 1.184% was 

observed, which can be interpreted as an accuracy rate of 

98.816%. Furthermore, the test results concerning the fuzzy 

logic system deployed on the Raspberry Pi in conjunction with 

Manual Operation are depicted in Table 7. Analysing Table 7 

reveals that the variance in watering time values acquired from 

the fuzzy logic evaluations on the Raspberry Pi and Manual 

Operation is exceedingly negligible. Collectively, an average 

error of 0.838% was recorded, indicating an accuracy rate of 

99.162%. 

This indicates that the FLC utilizing the Mamdani approach, 

constructed on the Raspberry Pi, demonstrates a commendable 

level of accuracy, thereby rendering it suitable for regulating 

the duration of irrigation periods in agricultural practices. 

when: 

 

Error=
|Estimated − Actual|

Actual
× 100% 

Accuracy=100% – Error 

 
If the Estimated is the fuzzy logic implemented on 

Raspberry Pi. 

The technique has worked well on different kinds of dry, 

moderate, and wet soil (19%, 39%, and 59%), as shown in 

Tables 6 and 7. In Iraq, especially in Baghdad, and during the 

severely cold winter, it is hard to have temperatures as low as 

18 degrees or as high as 27 degrees. Iraq's dry environment, 

which doesn't get much rain all year, also makes it hard to get 

the air humidity levels below 23% or above 58%. We tried to 

create a diverse environment, nevertheless, so that we could 

fully test the system in real-world situations. The system 

shows how rapidly it can adapt to changes in the environment 

and soil. It easily adjusted to changes in temperature (from 18 

to 27 degrees) and air humidity (from 23% to 58%). The 

Raspberry's fuzzy system rapidly and accurately told how long 

it would take to operate the engine to water the soil enough. 

Figure 10 shows the amount of water needed for irrigation 

for different systems, including our system that applies FLC 

on the Raspberry Pi, compared to Manual Operation and also 

compared to the FLC system applied in MATLAB. This 

substantiates the numerous benefits of implementing the 

suggested system, which ensures intelligent irrigation through 

a fuzzy inference mechanism, IoT, and WSNs, thereby 

facilitating substantial cost savings for agronomists regarding 

water, energy, and labour costs. 

A visual representation was crafted to illustrate the 

correlation between the readings from each sensor and the 

motor time computed by the Raspberry Pi, as depicted in 

Figure 11. 

Water flow regulation has varied effects, as shown in Figure 

12(a) and (b). According to Figure 12(a), several 

environmental factors affect irrigation duration. The low 

humidity of 23%, high temperature of 27 degrees Celsius, and 

soil moisture of 59% indicate that water will continue 

irrigation for 136 minutes. In Figure 12(b), the temperature 

and humidity are the same, but the soil moisture is 39% lower. 

This will increase watering time to 154 minutes.  

 

 

 
(a) 
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(b) 

 

 
(c) 

 

Figure 7. Irrigations of the soil via the fuzzy logic program: (a) raw data output (b) ThingSpeak IoT web application (c) the soil 

is dry and the soil is wet 

 

 
 

Figure 8. Sensor data of the node 2 display on the ThingSpeak 
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(a) 

 

 
(b) 

 

 
(c) 

 

Figure 9. Graph of the data acquisition from each sensor: (a) temperature (b) soil moisture (c) humidity 
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Table 6. Fuzzy logic test results in Raspberry Pi and MATLAB 

 

Humidity (%) Temperature (c) Soil moisture (%) 
Motor Time in sec 

Error 
Raspberry Pi MATLAB 

23 27 19 175 181.7462 3.71 

23 27 39 154 153.9756 0.016 

23 27 59 136 136.0324 0.024 

53 18 19 120.9 120.0076 0.744 

58 23 39 109.6 108.0591 1.426 

Average (%)                                                                        1.184 

Accuracy (%)                                                                       98.816 

 

Table 7. Fuzzy logic test results in Raspberry Pi and Manual Operation 

 

Humidity (%) Temperature (c) Soil Moisture (%) 
Motor Time in Sec 

Error 
Raspberry Pi Manual Operation 

23 27 19 175 174 0.57 

23 27 39 154 153 0.65 

23 27 59 136 135 0.74 

53 18 19 120.9 120 0.75 

58 23 39 109.6 108 1.48 

Average (%)                                                                                            0.838 

Accuracy (%)                                                                                          99.162 

 

 
 

Figure 10. Comparison of proposed (Raspberry pi) vs. MATLAB and Manual Operation 

 

 
(a) 
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(b) 

 

 
(c) 

 

Figure 11. Graph of the correlation between data acquisition from each sensor and motor time: (a) temperature (b) soil moisture 

(c) humidity 

 

 
(a) 
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(b) 

 

Figure 12. Motor time: (a) medium (b) long 

 

 
(a) 

 

 
(b) 
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(c) 

 

Figure 13. The interplay between (a) soil moisture, relative humidity, and the FLC's final product (b) temperature, soil moisture, 

and the FLC's final product (c) humidity, temperature, and the FLC's final product 

 

Table 8. The comparison based on the techniques used  
 

Ref Year Sensors Wireless Communications AI IoT Platform 

[8] 2016 
Water level 

Soil moisture 
Wi-Fi _ _ 

[9] 2020 

Moisture 

DHT11 

Flow 

ultrasonic 

Wi-Fi _ Node-Red 

[10] 2021 

DHT11 

Soil moisture 

ultrasonic 

NRF FL 
Blynk 

Think Speak 

[11] 2023 

DHT22 

Soil moisture 

MQ135 

TDS 

Wi-Fi DL Fire base cloud 

[12] 2024 

DHT22 

Soil moisture 

LDR 

PIR 

Wi-Fi FL cloud 

[13] 2024 
DHT22 

Soil moisture 

BLE 

LORA 
_ IoT cloud 

Proposed  
DHT11 

Soil moisture 

Wi-Fi 

MQTT 
FL ThingSpeak 

 

Table 9. The complete of the comparison 

 

Ref Year No. of Sub-Node Microcontroller No. of Head-Node Microcontroller 

[8] 2016 tow Arduino Uno one Raspberry Pi 

[9] 2020 five Wemose-d1 one Raspberry Pi 

[10] 2021 one Node MCU one Arduino Uno 

[11] 2023 _ _ one Esp8266 

[12] 2024 _ _ one Arduino Uno R3 

[13] 2024 three Raspberry Pi one with one base station Raspberry Pi 

proposed  tow Arduino Uno R4 Wi -Fi one Raspberry Pi 

 

A MATLAB-generated surface plot in Figure 13(a) 

demonstrates how humidity and soil moisture impact motor 

time as independent factors and motor time as the dependent 

variable. This plot shows an inverse relationship: when 

moisture levels go down (yellow), water flow goes up; when 

moisture levels go up (blue), water flow goes down. 

Figure 13(b) exhibits identical temperature, soil moisture, 

and FLC output. Figure 13(c) displays humidity, temperature, 

and FLC output. 

The comparison will be made based on the techniques used, 

and the comparison is illustrated with Table 8 and Table 9. The 

comparison indicates the superiority of the proposed model in 
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terms of the techniques used, as WSN, AI, and IoT were 

integrated. 

In Table 10, the energy usage of every element integrated 

into the system is explored alongside the cumulative energy 

usage of the system over a span of one hour. 

 

Table 10. Energy Consumption of the system 

 

The 

Apparatus 
Number 

Energy Usage 

for Each 

Element (W) 

Aggregate 

Energy 

Utilization (W) 

Raspberry Pi 

4 B 
1 7.6 7.6 

Arduino uno 

R4 Wi-Fi 
2 1.0 2.0 

DHT 11 2 0.0125 0.025 

Soil moisture 

sensor 
2 0.175 0.35 

Pump 2 5.0 10.0 

Relay 2 0.4 
0.8 

Total = 20.775 

 

Table 11. Evaluation of the proposed system 

 

Model 

Water 

Consumption 

(L) 

Energy 

Consumption 

(Wh) 
Operating Time of 

water pump 

approximately 1 

hour 

[26] 59 108 

[23] 46 73 

[27] 37 59 

Proposed 28 20.775 

 

Table 11 presents a juxtaposition of the suggested and 

existing frameworks, concentrating on three primary 

dimensions: water usage, energy usage, and pump operation 

duration, limited to around one hour exclusively . 

We observe that when the system operates for a remarkable 

span of 17 hours, it reveals that the innovative system uses an 

astonishing 80.8% less energy in contrast to the system [26], 

71.5% less when juxtaposed with the system [23], and a 

striking 64.87% less when viewed alongside the system [27]. 

 

 
 

Figure 14. Water usage comparison proposed system vs. 

existing methods 

 

In Figure14, it is illustrated that the pump's water flow rate 

stands at 3.6 L for each water pump per hour, based on a water 

pump flow rate of 60 ml/min. Given that the system comprises 

two water pumps, we estimate that the combined water flow 

rate per hour for both pumps reaches 7 L, with updates 

anticipated every 15 minutes. This indicates: 

The total water consumption for the watering routine: 

 

1 hour = 4 updates 

17 hours = 68 updates 

 

That means the water consumption of the total system is: 

 

7 L * 68 = 476 L 

 

Figure 14 shows that the new method has led to a huge cut 

in water use in contrast to the suggested frameworks 

throughout a span of 17 hours. To be exact, the system [26] 

says that the baseline use was 1003 liters, but the 

recommended technique cut that down by 527 liters, or 52.5%. 

The system [23] also says that the baseline usage is 782 liters. 

The recommended solution was able to decrease consumption 

by 306 liters, which is 39%. Also, the system [27] shows a 

reference consumption of 629 liters. The suggested method 

cuts consumption by 153 liters, which is roughly 24%. This 

shows how useful it may be for farmers to use the proposed 

strategy that includes smart irrigation with FLC and IoT 

technology. This could save them a lot of money on water, 

electricity, and labor costs. 

 

Table 12. The expenses associated with the materials utilized 

within the system 

 

The Apparatus Number 
Price of Each 

Element (US $) 

Aggregate Price 

(US $) 

Raspberry Pi 4 

B 
1 112 112 

Arduino uno R4 

Wi-Fi 
2 33.5 67 

DHT 11 2 1.5 3 

Soil moisture 

sensor 
2 7 14 

Pump 2 9 18 

Relay 2 1.5 
3 

Total = 217 

 

Table 12 delineates the economic viability of the system. It 

gives a full list of the costs for each device in the framework. 

The system doesn't have to pay for installation since wireless 

nodes are easy to use, so the user may set it up on their own. 

With a total cost of $217 US dollars. The system's low cost 

and high efficiency make it a good choice for many farmers 

who can't afford to try other methods. As a result, the system 

has shown that it is cost-effective and easy to install and 

maintain. It doesn't cost any more than traditional irrigation 

methods, which require a lot of manual labor for setup and 

field oversight. 

 

 

8. CONCLUSIONS 

 

The research accomplished the development of a fuzzy 

logic system to regulate the duration of irrigation within 

agricultural frameworks, commencing from sensor data 

acquisition, transmitting it to the Head-Node, and 

subsequently displaying it on the ThingSpeak platform, 

thereby enabling user monitoring of the parameters. The 

framework employs fuzzy inference system alongside IOT 

technologies to enhance efficient water utilization and refine 
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irrigation oversight. Utilizing the Mamdani approach, the 

fuzzy inference System adeptly ascertains the optimal 

frequency and duration of irrigation. This system relies on 

trapezoidal and triangle organic functions. The fuzzy control 

approach is meant to save water and energy by controlling 

extra runoff and keeping the soil moisture level above a certain 

level. Also, testing the fuzzy logic system on Raspberry Pi and 

MATLAB-based fuzzy logic showed an average error rate of 

1.184%. In contrast, the results from manual control tests 

exhibited an average error of 0.838%, reinforcing the efficacy 

and applicability of the system within automated irrigation 

frameworks. Furthermore, the mechanism adjusts for the 

moisture deficit resulting from evapotranspiration throughout 

the winter months. It is crucial that the suggested approach 

preserve its ease of use and cost-effectiveness, even when 

applied to extensive agricultural initiatives.  

To adapt this system for larger farms or varying climates, 

several innovative enhancements can be made: 

• More sensor networks: By putting out more sensors, bigger 

farms may be able to get more information on the 

temperature, humidity, and soil moisture in their fields. 

Adding more sensors to this larger network should not 

affect the integrity of the data. 

• Make the wireless network cover a larger area: Wi-Fi is an 

excellent wireless communication technology because it is 

robust, stable, and constant even when it is under stress. 

This network can handle additional nodes and distances of 

up to 200 meters without losing signal strength during 

transmission and reception. An extender catches the signal 

from the main router and boosts it. The extender and router 

can function together as one network if they have the same 

network settings. The router will handle the system's IP 

addresses (DHCP server), and the extender will make the 

signal reach farther. It needs a static IP address that is 

inside the range of the main router's network, but it 

shouldn't utilize DHCP so that it doesn't cause problems 

with the main router. 

• Better Data Processing: Large-scale operations need to 

analyze data in real time and make decisions quickly; 

therefore, it's important to improve data processing 

capabilities by adding additional sensors with 

sophisticated units or cloud solutions. 

• Customized Adaptation for Crops: You may change the 

fuzzy rules and functions to make the fuzzy logic system 

work better for different types of crops and weather. This 

makes it possible to adjust crops to their needs. This makes 

irrigation more efficient, which means more crops with 

less water. 

Upcoming endeavors will focus on these key aspects: 

• Evaluation of the system under varying environmental 

conditions. 

• Comparisons with other advanced methods. 

• Combining with advanced technology:  Integrating 

blockchain technology to enhance data security. Adding 

drones for aerial surveillance and automated irrigation 

equipment can improve resource management and 

operational efficiency. 
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