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The explosive growth of the Internet of Things (IoT) has resulted in a plethora of data 

creation, some of which includes sensitive and private information. With the presence of 

smart devices everywhere, it realizes an urgent need for privacy-preserving intelligent 

decision-making systems in IoT environments. In this paper, presented a new framework 

called FLAIR-IoT (Federated Learning with Adaptive NLP Integration for Resilient IoT) 

that seamlessly incorporates Federated Learning (FL), lightweight NLP models, and 

privacy-based methods for achieving semantic understanding and context-aware 

intelligence at the edge. FLAIR-IoT uses small transformers TinyBERT for on-device 

NLP tasks like intent detection, sentiment analysis, and contextual inference. To achieve 

the user privacy and secure aggregation, the models on these edge nodes are jointly trained 

by FedProx, with user privacy preserved by differential privacy (DP) and secure 

aggregation. The experimental approach utilizes a heterogeneous IoT simulation, where 

six edge devices store non-IID datasets. With our DP and secure aggregation, we protect 

user privacy while our framework does on-device NLP tasks such as in the intent detection 

as well as context classification. Results in experiments: 97.3% intent detection accuracy, 

89.7 F1 score and 2.3MB per round average communication cost, and convergence in 34 

rounds huge improvement over traditional centralized and federated baselines FLAIR-IoT 

achieves the new state-of-the-art on privacy-preserving, intelligent IoT systems. 
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1. INTRODUCTION

The Internet of Things (IoT) is a network of connected 

devices that communicate and exchange data via the Internet 

from household appliances to industrial machinery. This has 

resulted in an unimaginable increase in data generation. Data 

generated by IoT devices, for example, rose from 0.1 

zettabytes in 2013 to approximately 4.4 zettabytes by 2020. 

The continuous growth is due to the growing adoption of IoT 

in different domains such as healthcare, transportation, 

agriculture, and smart cities [1]. This data explosion has 

opportunities and challenges. It allows for better decision-

making, operational effectiveness, and the creation of new 

services. However, it brings serious difficulties in data 

integration, storage management, and security. Latency issues 

and bandwidth limitations make traditional centralized data 

processing models often insufficient [2]. Hence, there is a 

trend towards decentralized methods like edge computing 

where data processing takes place nearer to the origin thereby, 

minimizing latency and improving real-time processing 

capabilities.  

Furthermore, the convergence of Big Data technologies 

with IoT has become significant. They provide infrastructure 

for processing potentially massive, heterogeneous data 

streams produced by IoT devices. But as the data begins to 

flow [3], it does open up questions over data privacy and 

security since later, when more such data is going to flow, 

sensitive data can also be compromised [4]. Natural Language 

Processing (NLP) [5] is a crucial component of reading 

unstructured data produced by humans and sensors in the IoT. 

This unstructured data, which describes text, speech, and 

sensor measurements, usually comes in a messy form unfit for 

a simple analytical approach. NLP methods offer a way to 

derive valuable information from this data, leading to better 

decision-making and user experiences. In smart healthcare, a 

large fraction of the data contained in Electronic Health 

Records (EHRs) is unstructured text, including clinician notes, 

patient histories, etc. Neural NLP techniques have been used 
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to get this data in greater detail and better enhance patient care 

and operational efficiency [6].  

In a similar vein, NLP–based sentiment analysis is 

employed in consumer electronics to analyze streaming IoT 

data and adapt to customer emotions and actions in real time. 

This method incorporates multi-modal data from IoT, such as 

text, audio, and sensor readings, to obtain insights into 

customer satisfaction [7]. Moreover, there have been recent 

developments on bringing together LLMs and IoT sensor data, 

allowing these models to understand and reason over the 

reality. Such integration adds a completely new area of 

possible applications beyond plain text-based tasks. NLP 

enables organizations to structure unstructured data, perform 

entity recognition, topic modeling, text summarization, etc. 

This is a game changer for information retrieval, document 

categorization, and the decision-making process.  

Role of Centralized ML/DL Architectures in Smart System 

Building Leveraging Distributed Sources of Data Centralized 

ML/DL architectures form the building block of intelligent 

systems by bringing together massive amounts of data from 

distributed sources. One drawback to this centralized approach 

is privacy, which is a major concern in areas like healthcare, 

smart homes, and industrial IoT. When sensitive data is stored 

in a centralized manner, that increases the risk of cyberattacks 

and unauthorized accesses. If a central server is compromised, 

then sensitive data becomes leaked to every entity. Because 

the data is centralized, it creates a single point of failure that 

makes the whole system a target for adversaries [8, 9]. 

Adversaries may use trained models to ascertain if a given 

record had been part of the training data. Such membership 

inference attacks compromise user confidentiality, and 

especially become concerning for users, when a model is 

exposed through an API or shared among clients [10]. With 

model inversion, the attacker manipulates the input features 

based on the model’s outputs to create a model that reverse-

engineers sensitive attributes, including health conditions or 

user identities [11, 12]. This is especially concerning when 

models are trained on medical or biometric data. Centralized 

datasets are susceptible to re-identification attacks, where 

anonymous data can be retraced to identify individuals when 

cross-validated with other information sources, even in the 

presence of anonymization techniques. In fact, without strong 

privacy-preserving mechanisms in place, anonymization is 

typically ineffective at protecting user confidentiality. 

It also risks contravening international data protection 

legislation like the General Data Protection Regulation 

(GDPR) and California Consumer Privacy Act (CCPA), which 

stress data minimization, transparency, and user control [13, 

14]. On the other hand, centralized systems often struggle with 

granular consent management and auditability needed for 

regulatory compliance. These challenges have further 

emphasized the need for distributed learning paradigms such 

as Federated Learning (FL), where the model is trained 

without needing to transfer raw data, preventing any leakage 

of sensitive data. 

Exponential growth in the generation of data has occurred 

due to the proliferation of IoT devices, which often contain 

sensitive personal information. Centralized machine learning 

architectures feel compelled to use and require collecting this 

data in a centralized server, which poses major privacy and 

security issues. As such, FL provides a decentralized scenario 

with multiple devices cooperating to train a global model 

without the need to share the raw data. Under FL, devices 

process data locally, sending only model updates to a central 

aggregator, who accumulates and updates the global model. 

Instead of gathering and centralizing user information, this is 

the concept of keeping the personal data on local devices, 

increasing privacy and reducing risks of data leaks. In addition, 

FL addresses issues related to bandwidth limitations by 

avoiding the need to transmit data [15].  

NLP is heavily relied on in a growing number of smart 

environments like, for example, smart homes and healthcare 

systems to be able to understand and react to commands and/ 

or questions from users. Incorporating NLP as part of these 

systems allows for more natural and human-like interactions. 

Yet working with natural language data often includes 

addressing highly sensitive information, deepening privacy 

concerns [16]. While there have been recent breakthroughs in 

resolving these issues with differential privacy (DP), secure 

aggregation and FL variants of personalized variants however 

these still leave a large gap integrating semantic-aware 

learning capabilities to FL pipeline, especially at the edge for 

e.g. NLP. Though tiny models like TinyBERT and 

DistilBERT are a good lightweight NLP model, other 

deployment on FL in general, and especially with strong 

privacy guarantees is less explored. 

Major Contributions and Novelty of the Paper: 

• We propose a novel framework delivering context-aware 

privacy-preserving intelligence in IoT-enabled smart 

environments by integration of FL with NLP. The main 

contributions are as follows: 

• Federated NLP Architecture Development is constructed 

using the FL principle among distributed IoT devices in a 

way that ensures that no sensitive linguistic information is 

transmitted to the cloud.  

• Integrating privacy-preserving methods including privacy-

enhancing technologies like DP and secure aggregation to 

safeguard model updates during the exchange, guarding 

against exposure during the FL process.  

• Optimization for Resource-Constrained Devices 

Adaptation of NLP algorithms to perform efficiently on IoT 

devices with limited computational power, feasibility and 

scalability in real life applications.  

The aforementioned data analytic process FL and NLP in 

the context of IoT environments serve as a stepping stone in 

the progress of user-centric systems while meeting the 

standards for privacy maintenance. 

The structure of this paper is organized as follows: In 

Section 2, we present a comprehensive review of state-of-the-

art research in privacy preservation in IoT Section 3 

summarizing some of the most relevant works and describing 

the existing approaches for combating attacks in the IoT space. 

Section 4 presents the detailed proposed model with 

mathematical model and pseudocode. Section 4 provides the 

empirical evaluation of the proposed detection scheme and 

shows the results. Further, section 5 presents a comprehensive 

comparative discussion between our results and other relevant 

modern research performed. Eventually, in Section 6, we 

conclude the result and suggest perspectives for future work; 

then, the references section follows. 

 

 

2. RELATED WORK 

 

Recently, very serious work has been done in combining 

NLP capabilities with IoT environments, primarily for 

improving voice recognition and text processing in sensor 

networks. In this section summarize prominent works from the 
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last five years with an outlook on improvements in NLP 

application in IoT context. Zhang et al. [17] presented a joint 

intent detection and slot filling model to enhance natural 

language understanding in Internet of Things (IoT) voice 

interactions. They found that their approach performed better 

than high-level techniques such as capsule networks to capture 

semantic relationships. Utilizing natural language 

understanding capabilities of NLP, Mihailescu et al. [18] 

proposed a multi-level distributed intelligent virtual sensor 

frame. The system allowed users to communicate with sensor 

networks using natural language, making it more user-friendly 

and accessible. Hanifa et al. [19] analyzed voice recognition 

in the IoT environment and its different approaches, and their 

applicability in resource constrained environments. Their 

work gave valuable insights into optimizing voice recognition 

systems for deployable and efficient implementations in the 

IoT networks.  

Zhou et al. [20] investigated the relationship between 

language models and IoT sensors for zero-shot activity 

recognition. They presented TENT, a method that aligned 

textual embedding’s with IoT sensor signals to allow the 

system to identify unseen activities by appending these 

activities with sensory data in complementary descriptive 

language. Ali [21] performed a comparative study on research 

work on Automatic Speech Recognition (ASR) in resource 

constraint wireless sensor networks. The architecture has been 

studied such as (NSR, DSR, and ESR) classification based on 

bandwidth utilization, processing power, and accuracy.  

FL has become a crucial approach for collaborative machine 

learning on decentralized devices, especially for the Internet 

of Things (IoT) ecosystems. This makes it a particularly 

suitable approach of interest in edge and fog computing 

contexts, which typically entail strict privacy requirements 

over data, bandwidth restrictions, and limited computational 

abilities. Rajagopal et al. [22] have worked on FL on-device 

model training in edge computing, keeping data local, 

improving privacy, and reducing latency. One example is the 

integration of FL and edge computing, which has been 

proposed to deal with the challenges of IoT, highlighting that 

both efficient resource management and privacy preservation 

are needed. Likewise, an FL based on intermediate nodes 

between cloud and edge devices benefits from fog computing 

environments. Similar levels also enhance the scalability of 

IoT applications and optimize resource utilization. 

There is recent work propose frameworks which can 

combine FL and edge or fog computing that can be used to 

improve the applications of IoT. An instance would be the 

FLight framework have designed by Zhu et al. [23], it is a 

lightweight FL system that can be adopted on a wide range of 

devices, from resource-limited edges up to cloud GPUs. 

FLight unifies synchronous and asynchronous FL models and 

proposes a heuristic-based worker selection mechanism to 

enhance training efficiency. Another remarkable approach is 

the cooperative FL paradigm that fully exploits device-to-

device (D2D) by Wang et al. [24] interactions and device-to-

server (D2S) interactions to alleviate the network 

heterogeneity in edge/fog networks. Using resource pooling 

mechanisms, this model results in significant gains in both 

model training quality and network resource use. Several 

integrative systems have been proposed to improve privacy, 

security, and efficiency in healthcare using Blockchain with 

FL in edge, fog, and cloud systems. Frameworks such as these, 

allow the multiple medical IoT devices to collaborate and train 

global models without sharing raw data, thus overcoming 

privacy concerns that arise from centralized storage of data. 

Most importantly, they illustrate an evolution of FL use cases 

across edge and fog-based deployments, opening up future 

research possibilities that further emphasize security, 

sustainability, efficiency, and scalability in IoT systems. 

There are two major privacy-preserving machine learning 

techniques that have gained detailed discussions, DP, and 

secure aggregation. Differential privacy Das and Mishra [25] 

is a mathematical construction that protects the privacy of an 

individual entry in a dataset by bounding the effect of a single 

data point on the outcome of any analysis, ensuring that the 

outcome does not appreciably change if an individual data 

point is added or removed. Within the realm of deep learning, 

DP is most commonly incorporated by adding appropriately 

scaled noise to gradients as part of model training. This 

method seeks to ensure that leaked outputs of a model cannot 

be used to infer sensitive information. Several recent surveys 

by Das and Mishra [25], for example, provide broad and up-

to-date reviews of progress on DP and its applications in ML, 

covering theoretical results and applied endeavors alike.  

Secure Aggregation by Xu et al. [26] is used primarily in FL 

settings, where several clients work together to train a model 

without draining their raw data. Secure aggregation protocols 

enable the central server to obtain only the aggregated model 

updates, but not the individual contributions, preserving the 

privacy of clients. But the common secure aggregation 

methods usually suffer the problems of communication 

overhead and the vulnerability of some inference attacks. The 

TAPFed framework, for example, proposes a threshold 

functional encryption scheme that significantly mitigates 

security vulnerabilities posed by malicious aggregators while 

minimizing the transmission overhead.  

Gaps in the Current Literature: 

• Communication Overhead: Most secure aggregation 

protocols come with a high communication penalty which 

increases with the increase in the number of clients and/or 

model parameters. To address this, works like FastSecAgg 

combine techniques like the Fast Fourier Transform to 

implement multi-secret sharing to ensure reduced 

computation costs by Ergun et al. [27].  

• Privacy Leakage Across Multi-Round Federation: In FL, 

revolution after revolution does increase the systemic risk 

of privacy leakage. Tip: Traditional secure aggregation is 

not effective against privacy leakages on multiple training 

rounds. Multi-RoundSecAgg framework introduces 

structured selection strategies for users to protect their long-

term privacy while participating in multiple training rounds 

by Kadhe et al. [28].  

• Scalability and Efficiency: When translating DP to deep 

learning models, it is common to consider compromises 

between privacy promises and the utility of the model. 

Finding the tradeoff between strong privacy guarantees and 

model utility is still hard. Surveys on different DP 

mechanisms and its effect on model accuracy and training 

speed by So et al. [29].  

• Integrating these approaches with robust aggregators, 

approaches that defend against adversarial manipulations, is 

non-trivial. Striking a balance between privacy and 

robustness under Byzantine assaults is crucial, a complex 

interplay, as further underscored by recent work by 

Baraheem and Yao [30]. 

  

955



 

3. PROPOSED METHOD 

 

3.1 System architecture 

 

The FLAIR-IoT model publishes a novel architecture to 

enable efficient computation on conducting FL and NLP in a 

privacy-preserving way so they could construct a context-

aware intelligence system in smart IoT environments. The 

FLAIR-IoT architecture aims to tackle three major issues 

within the contemporary IoT landscape: (1) safeguarding user 

privacy whilst minimizing the transfer of sensitive information, 

(2) achieving semantic understanding of user interactions and 

environment context using NLP and (3) ensuring scalability 

and adaptability in resource-constrained environments across 

a variety of IoT devices. 

The architecture consists of four main layers: IoT Device 

Layer, Edge Intelligence Layer, Federated Aggregation Layer, 

and Actuation Layer. The IoT device layer forms the base of 

the architecture and comprises of various data-generating 

entities such as smart sensors e.g., motion detectors, 

temperature sensors, user-facing devices e.g., voice assistants, 

wearables, and cameras. These devices generate a combination 

of structured numerical sensor readings and unstructured user 

voice commands or logs data. This layer performs tasks like 

noise filtering, or format normalization at the local level. 

On top of that, the Edge Layer serves as the core processing 

engine of smart and non-public information processing. Each 

edge device carries a lightweight NLP model compatible to 

run in resource-constrained settings. Input data feeds into these 

NLP models that semantically analyze the input data to 

retrieve user intent, context, or command classification. This 

is followed by feeding the NLP outputs to a localized deep 

learning model, which learns to personalize responses or 

automate behaviors based on user preferences and historical 

interactions. Importantly, there is no raw data transmission to 

external entities; local to the federated server model updates 

are then shared with the federated server only post-application 

of privacy-preserving mechanisms. 

Federated Aggregation Layer is the decentralized learning 

coordinator, often deployed on a secure cloud or edge-based 

server. The edge implementation of this component collects 

the model updates from all participating edge devices in a 

differentially private and/or encrypted manner. The server 

aggregates per-client updates in the form of a global model 

using algorithms like Federated Averaging (FedAvg) without 

learning sensitive information. Moreover, use of secure 

aggregation protocols guarantees that server cannot decrypt or 

reconstruct individual contributions during aggregate the 

contributions from clients which add even more security to the 

whole training procedure. 

Finally, the Global model can be used to intelligently 

control and automate IoT devices in the Actuation Layer. 

Based on the globally trained model and locally observed 

context, devices autonomously decide to alter light, sound 

alarms, or trigger health alerts. The ability to infer locally not 

only reduces latency, but also allows for real time 

responsiveness without the need for constant cloud 

connectivity. 

The framework adds multiple layers of protection and 

optimization to improve privacy and efficiency. DP adds noise 

to model updates so that user-specific data cannot be reverse 

engineered. Also, secure aggregation makes sure that the 

server side only has access to the aggregated updates. You 

have deep learning based models to compress models and 

lightweight architectures to help transfer having the system 

work on all angles of devices including IoT. In conclusion, this 

architecture provides a meaningful advance toward secure, 

intelligent, and user-centric IoT environments, integrating the 

contextual capabilities of natural language processing and the 

privacy advantages of FL. 

 

3.2 Methodology 

 

The FLAIR-IoT architecture leverages FL with privacy-

preserving mechanisms such as secure aggregation and 

homomorphic encryption to ensure data confidentiality in 

smart IoT environments. The goal is to allow multiple 

distributed IoT devices to collaboratively train a global 

machine learning model without exposing their raw data. 

Let Dᵢ represent the local dataset of the iᵗʰ IoT client, and wt 

∈ ℝᵈ denote the global model parameters at training round t. 

Each client trains a model locally using its data and computes 

an update Δwᵢᵗ that minimizes a loss function over its dataset. 

Formally, the local training process seeks to minimize the 

empirical risk function as Eq. (1). 

 

𝐿ᵢ(𝑤) = (
1

|𝐷ᵢ|
) ∑ ℓ(𝑓(𝑤;  𝑥𝑗), 𝑦ⱼ)

𝑥𝑗∈ 𝐷ᵢ

 (1) 

 

where, f(w; xⱼ) is the model output, and ℓ(𝑓(𝑤;  𝑥𝑗), 𝑦ⱼ) is the 

loss function (e.g., cross-entropy) for the true label yⱼ. After 

training, the device produces the model update Δwᵢᵗ. To protect 

these updates during transmission, secure aggregation is 

applied. Each client masks its update using a set of pairwise 

secrets shared with other clients. The masked update is 

computed as Eq. (2). 

 

ŵ𝑖 = 𝛥𝑤𝑖
𝑡 + ∑ 𝑚𝑖,𝑗

𝑗≠𝑖

− ∑ 𝑚𝑗,𝑖

𝑗≠𝑖

 (2) 

 

Here, mᵢⱼ is the cryptographic mask shared between clients i 

and j. When the server aggregates all masked updates, the 

masks cancel each other out due to their symmetric 

construction, and the server obtains the sum of all updates as 

Eq. (3). 

 

∑ �̂�𝑖

𝑛

𝑖=1

= ∑ ∆𝑤𝑡
𝑖

𝑛

𝑖=1

 (3) 

 

This ensures the server never learns any individual update, 

only the aggregate contribution. Alternatively, the system can 

use homomorphic encryption (HE) as an additional or 

substitute privacy mechanism. In this approach, each client 

encrypts its local update using a homomorphic encryption 

function 𝜀(𝑤𝑡+1).  The server performs the aggregation 

directly on encrypted values as Eq. (4). 

 

𝜀(𝑤𝑡+1) = ∑ 𝜀(∆𝑤𝑡
𝑖
) −

𝑛

𝑖=1

 𝜀(∑ ∆𝑤𝑡
𝑖)

𝑛

𝑖=1

 (4) 

 

Since homomorphic encryption preserves the structure of 

arithmetic operations (e.g., addition), the aggregated 

encrypted update can be decrypted only by an authorized 

entity, thus preserving the confidentiality of each participant’s 
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local contribution. Finally, the global model is updated using 

the aggregated updates as Eq. (5). 
 

𝑤𝑡+1 = 𝑤𝑡 + 𝜂.
1

𝑛
∑ ∆𝑤𝑡

𝑖

𝑛

𝑖=1

 (5) 

 

where, η is the learning rate. This updated model is then sent 

back to all clients for the next training round. The entire 

process ensures that no raw data or intermediate sensitive 

information is leaked during training, making it ideal for 

deployment in privacy-critical IoT scenarios such as smart 

healthcare, industrial automation, and home automation 

systems. 

 

3.3 Natural language processing module 

 

Tokenization refers to the splitting of raw input text into 

smaller manageable units called tokens (words, subtokens, 

sentences, etc.). This is an important step that impacts how 

models learn semantic relationships. For instance, for edge 

devices, subword tokenizers (for example, Byte Pair Encoding 

or WordPiece used in BERT-like models) are preferred as they 

have smaller vocabularies and perform better when used with 

unseen text. Given a raw input sentence S={c1,c2,...,cn}, 

where ci are characters, tokenization transforms SSS into a 

sequence of tokens as Eq. (6). 

 

T = Tokenizer(S) =  {t1, t2, … , 𝑡𝑚}, m ≤ n (6) 

 

In subword tokenization, the function is optimized to 

minimize vocabulary size V while maximizing token coverage 

as Eq. (7). 

 

min |V| subject to: ⋃ 𝑡𝑖 = 𝑆

𝑚

𝑖=1

 (7) 

 

The stop words are common words like the, is, and which 

may be filtered out before processing, because in general they 

carry little meaning compared to other words in most NLP 

tasks. Yet in context-aware systems, a method of selective 

stopword removal is used, ensuring functionally relevant 

stopwords are preserved (for example in "turn off lights", the 

term "off" is preserved). Stopwords: Generic stopwords are 

not as recommended; specific to IoT command grammars are 

more effective. Given the tokenized set T and a stopword list 

SW, filtered token set is as Eqs. (8) and (9). 

 

T′ = {tᵢ ∈ T|tᵢ ∉ SW} (8) 

 

ϕ(T, SW) = T′ =
𝑇

𝑆𝑊
 (9) 

 

Let T′={t1,t2,...,tk} be the tokens after stopword removal. 

Lemmatization maps each token ti to its lemma li using a 

mapping function λ as Eq. (10). 

 

𝐋 = 𝛌(𝐓′) = {𝐥𝟏, 𝐥𝟐, … , 𝒍𝒌}, where 𝐥ᵢ = 𝛌(𝐭ᵢ) (10) 

 

The function λ may depend on part-of-speech (POS) 

tagging pi as Eq. (11). 

 

lᵢ = λ(tᵢ, pᵢ) (11) 

 

Normalization involves transforming the data to make it 

suitable for analysis which includes such processes as 

converting everything to lowercase, removing punctuation, 

and standardizing formats. Lemmatization is the process of 

reducing a word to its base form using linguistic context like 

"running" => "run", which helps in reducing the size of the 

vocabulary and improving generalization. Edge devices 

usually have lightweight lemmatizers such as spaCy’s pipeline 

and on-device neural lemmatizer. Let L be the lemmatized text. 

Normalization is a function ν applied element-wise to enforce 

consistent format as Eq. (12). 

 

N = ν(L) = {ν(lᵢ)|lᵢ ∈ L} (12) 

 

Here, ν may include lower(x) converts to lowercase, strip(x) 

removes punctuation, regex_replace(x,r,s) applies regular 

expressions. 

Input Noise as it is often seen in IoT environments from 

speech recognition errors, and/or sensor glitches, and/or even 

multi-lingual inputs. These include fuzzy string matching, 

rule-based correction, or language specific filtering. 

Lightweight language detection modules such as FastText 

language ID are used for preprocessing routing in multi-

language scenarios. Let N={n₁,..., 𝒏𝒌 } be the normalized 

tokens. The noise-filtered output N′ is computed using a 

denoising function δ that identifies and corrects errors as Eq. 

(13). 

 

N′ = δ(N) = {δ(nᵢ)|nᵢ ∈ N} (13) 

 

Fuzzy matching if δ is δ(nᵢ) =  argmin{w ∈ V}dist(nᵢ,w)  and 

Confidence-based replacement if  𝑃(𝑒𝑟𝑟𝑜𝑟|𝑛𝑖 > 𝜃) , then 

correct 𝑛𝑖. 

Intent detection identifies the purpose behind a user's input, 

which is critical in IoT to trigger correct device actions like 

turning on lights, adjusting thermostat. Let the input sequence 

be represented as:𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}, Each token xi is mapped 

to an embedding 𝑒𝑖 ∈ 𝑅𝑑 , forming as 𝐸 = {𝑒1, 𝑒2, … , 𝑒𝑛}The 

encoded representation h is obtained using an encoder function 

f, typically a lightweight transformer as Eq. (14). 

 

ℎ = 𝑓(𝐸) ∈ {𝑅}𝑑 (14) 

 

Intent classification is modeled as Eq. (15). 

 

�̂� = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊ℎ + 𝑏) (15) 

 

Here, 𝑊𝜖𝑅|𝑦|×𝑑, 𝑏𝜖 𝑅|𝑦|  and Y = set of possible intent 

labels. 

Sentiment analysis in IoT can help tailor responses or 

emotional state tracking in smart environments. Given 

sentence embeddings h, sentiment is classified as Eq. (16). 

 

�̂� = max
𝑠∈{− ,0 ,+}

{𝑠𝑜𝑓𝑡𝑚𝑎𝑥}(𝑊𝑠ℎ + 𝑏𝑠) (16) 

 

Here, Ws, bs are trainable parameters, and s ∈ {Negative, 

Neutral, Positive}. Contextual cues (location, time, prior 

interaction) are critical for improving system intelligence. 

Context vector ccc is computed from metadata M as Eq. (17). 

 

𝑐 = 𝑔(𝑀) = 𝑔(𝑡, 𝑔, 𝑢) (17) 
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The final enriched representation as 𝑧 = 𝑐𝑜𝑛𝑐𝑎𝑡(ℎ, 𝑐)  is 

used for downstream tasks to enhance precision. To enable 

real-time processing on IoT edge devices, resource-efficient 

transformers are used. DistilBERT compresses BERT using 

knowledge distillation, preserving ~97% of performance with 

40% fewer parameters. Given teacher logits zTz_TzT and 

student logits zSz_SzS, the loss function is as Eq. (18). 

 

𝐿{𝑑𝑖𝑠𝑡𝑖𝑙𝑙} = 𝐿𝐶𝐸{𝑍𝑠,𝑦} + (1 − 𝛼). 𝐿𝐾𝐿{𝑍𝑆,𝑍𝑇} (18) 

 

where, 𝐿𝐶𝐸  is cross-entropy with ground truth, 𝐿𝐾𝐿  is 

Kullback-Leibler divergence, α∈[0,1] balances both terms 

TinyBERT applies layer-wise distillation from BERT and 

includes both attention and embedding mimicking. Let 𝐴𝑇
𝑙 , 𝐴𝑆

𝑙  

be the attention matrices of teacher and student at layer l. Then 

Eq. (19) is: 

 

{𝐿}𝑎𝑡𝑡𝑛 = ∑ |𝐴𝑇
𝑙 − 𝐴𝑆

𝑙 |2
2

{𝐿}

{𝑙=1}

 (19) 

 

Total loss combines attention and hidden state distillation as 

Eq. (20). 

 

𝐿𝑇𝑖𝑛𝑦𝐵𝐸𝑅𝑇 = 𝐿𝑎𝑡𝑡𝑛 + 𝐿ℎ𝑖𝑑𝑑𝑒𝑛 + 𝐿𝐶𝐸  (20) 

 

These NLP tasks and efficient transformer models enable 

intelligent, real-time, and privacy-aware processing at the 

network edge in IoT applications. Intent detection, sentiment 

analysis, and contextual understanding can now be embedded 

within constrained environments through TinyBERT ensuring 

both performance and deploy ability. 

 

3.4 Federated Learning framework 

 

In the FLAIR-IoT framework, each IoT device maintains a 

local copy of a lightweight NLP model and trains it using its 

private dataset. The training is performed independently using 

stochastic gradient descent (SGD) or adaptive optimizers like 

Adam. Let 𝐷𝑖  represent the local dataset on device i, and 𝑤𝑡
𝑖  

be the model weights at training round t. The local update rule 

is as Eq. (21). 

 

𝑤{𝑡+1}
𝑖 = 𝑤𝑡

𝑖 − 𝜂∇ᵢ𝐿𝑖(𝑤𝑡
𝑖 , 𝐷𝑖) (21) 

 

Here, η is the learning rate, 𝐿𝑖 is the loss function based on 

the NLP task. This enables devices to learn from locally 

observed user behaviors, sentiments, or intents without 

transmitting raw data. The system adopts the Federated 

Averaging (FedAvg) algorithm due to its communication 

efficiency and scalability. After local training, each device 

sends its updated weights to a central server, which aggregates 

them using a weighted average based on local dataset sizes as 

Eq. (22). 

 

𝑤{𝑡+1} = ∑
𝐷𝑖

{∑ |𝐷𝑖
{𝑁}
{𝑗=1} |}

𝑤𝑡+1
𝑖

𝑁

{𝑖=1}

 (22) 

 

FedAvg is chosen over more complex algorithms like 

FedProx or FedNova for its simplicity and adaptability to non-

IID data distributions common in IoT networks. The 

communication between IoT devices and the central 

aggregator server follows a round-based synchronous protocol: 

Broadcast: The server broadcasts the global model weights 

𝑤{𝑡} to all selected devices. Local Training: Each device trains 

the model on its local data. Upload: Devices send updated 

weights 𝑤𝑡+1
𝑖 to the server. Aggregation: The server computes 

the new global model 𝑤{𝑡+1} via FedAvg. 

The protocol minimizes bandwidth by compressing model 

updates and supports periodic device participation based on 

availability and power status. To enhance privacy during 

federated optimization, two key techniques are integrated like 

one is DP. It adds calibrated noise to model updates before 

transmission as Eq. (23). 

 

�̃�{𝑡+1}
{𝑖}

=  𝑤{𝑡+1}
{𝑖}

+  𝑁(0, 𝜎2𝐼) (23) 

 

where, N is Gaussian noise and σ controls the privacy-utility 

tradeoff. Another one is Secure Aggregation, it employs 

cryptographic masking to ensure that individual updates are 

not visible to the server, only the aggregate is. This is critical 

for protecting sensitive NLP patterns (e.g., emotional tone, 

personal habits) encoded in model weights. Together, these 

mechanisms ensure compliance with privacy standards like 

GDPR and HIPAA, while preserving model utility across 

decentralized IoT networks. 

 

3.5 Integration strategy 

 

The combination of these is necessary for FL enabling 

context-aware and privacy-preserving intelligence at scale on 

spatially distributed devices. This section discusses how the 

NLP outputs are standardized and included in the federated 

training cycle, how the model update strategies are managed 

for the FL setting, and how the system deals with 

heterogeneous and non-IID data distributions. In this 

architecture, TinyBERT NLP models live at the edge to take 

on tasks like intent detection, sentiment analysis, or context 

extraction. These are then used in two different ways, based 

either on the semantic embedding or the classification outputs 

from the models: 

• Feature Enrichment: NLP outputs are used as auxiliary 

features for logic tasks downstream (exposes predictive 

modeling, anomaly detection etc). 

• Intention or Sentiment Extraction: User specific intent or 

sentiment can help personalize local models so that 

training becomes relevant to user context without giving 

away raw data in the process. 

To dealing with non-IID and heterogeneous data due to 

heterogeneous user behavior and diverse environmental 

contexts, IoT devices implicitly create non-IID (non-

identically distributed) data. Address this by personalized FL. 

A personalization layer is kept per device and fine-tuned in 

response to local NLP context signals, while a shared global 

model extracts general knowledge. FedProx Algorithm is a 

proximal term is injected into the local loss to constrain 

divergence from the global model, stabilizing training in 

heterogeneous settings as Eq. (24). 

 

𝐿𝑖
𝑝𝑟𝑜𝑥(w) = 𝐿𝑖(w, 𝐷𝑖) +

μ

2
∥ w − 𝑤𝑡 ∥2 (24) 

 

where, μ is a regularization constant and 𝑤𝑡  is the current 

global model. Such a unique solution allows the system to be 

reliable, contextualized, and privacy-concerned in various IoT 

settings. 
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4. RESULTS AND DISCUSSION 

 

4.1 Experimental setup 

 

The experiments conducted were in simulated but realistic 

federated settings to evaluate the efficiency of the FLAIR-IoT 

framework coupled with NLP modules targeted at privacy-

preserving IoT environments. The experimental framework 

sought to replicate the distribution challenges and 

heterogeneity typically experienced in real-world IoT 

deployments. The simulation environment provides the 20 

emulated IoT clients (each representing a smart device with 

localized datasets). Here, did the training for communication 

rounds of 100, while each device performed 5 local training 

epochs per round. The server side computations were 

performed on a workstation with a NVIDIA RTX 3090 GPU, 

and edge devices were emulated by Raspberry Pi 4 

counterparts to represent hardware constraints. Here, used 

PyTorch for the model development, HuggingFace 

Transformers for lightweight NLP model deployment and 

Flower as the FL orchestration framework. 

Here used two datasets for multimodal training. NLP-based 

intent recognition and context extraction was conducted using 

the Smart Home Intent Dataset. It has been pre-trained on user 

voice commands that were categorized into intents (e.g., 

control commands, queries). Also used synthetic IoT sensor 

data that generates environmental data with temperature, gas 

concentration, and motion activity. The datasets were 

partitioned across clients in a non-identical manner to simulate 

real-world non-IID data distributions. In order to assess model 

performance, we used the following metrics. For classification, 

report accuracy (ACC) as a performance measure; for intent 

detection, focus on intent detection performance, in particular 

when the classes are imbalanced, using the F1 score. The 

efficiency of communication was measured as communication 

overhead (CO), i.e., the average megabytes sent per round. 

The privacy loss (ε-DP) was estimated to measure the 

seriousness of a trade-off caused by DP. Also calculated the 

convergence rate, which is the number of rounds required to 

achieve 90% of the final model accuracy. 

We compared proposed model with four baselines for 

benchmarking: (1) A centralized BERT model trained on 

aggregated data, as an upper-bound performance; (2) A 

lightweight TinyBERT model trained in a centralized manner 

without federated mechanisms; (3) A standard federated 

TinyBERT model without any NLP or privacy integration and 

(4) our model that integrates FL, lightweight NLP, DP, and 

FedProx optimization. A broadened perspective emerges from 

the comparison against each component in our approach. 

 

4.2 Results and discussion 

 

In this segment, the empirical outcome of the experimental 

setup is shown along with a detailed explanation of the 

performance of the suggested FL and NLP integrated 

framework in the context of privacy-preserving IoT 

surroundings. FLAIR-IoT framework (FL + NLP Integration 

+ DP + FedProx) outperformed the baseline of federated and 

centralized models with the largest margin in both NLP-

specific and downstream IoT tasks. The intent detection 

accuracy was 97.3%, and the context classification F1 score 

improved to 89.7%, more than 7% better than the baseline 

federated TinyBERT model. Compared to centralized 

TinyBERT, the federated version achieved over 95% of the 

performance while demonstrating promising result to edge-

side deployment as shown in Table 1 and Figure 1. 

 

Table 1. Performance comparison of baseline and proposed models 

 
Model Accuracy (%) Precision (%) Recall (%) F1 Score (%) ROC-AUC 

Centralized BERT (Upper Bound) 93.1 92.5 88.1 89.2 0.92 

Centralized TinyBERT 91.2 88.6 84.1 85.1 0.92 

Federated TinyBERT (No NLP/DP/FedProx) 90.1 86.3 80.5 82.4 0.90 

FLAIR-IoT 97.3 94.7 93.4 92.7 0.95 

 
 

Figure 1. Comparative evaluation of baseline and proposed 

models 

 

Moreover, incorporating semantic context via NLP 

components enhanced personalization among the non-IID 

clients. Devices adapted to localized user behavior with better 

convergence curves. Assessed the impact of DP in terms of the 

privacy budget (ε) that varies. proposed model also performed 

consistently, retaining more than 88% accuracy at ε = 3, 

indicating increased resilience to moderate privacy restrictions. 

Secure aggregation had negligible overhead, dropping 

accuracy by < 3%, but without leaking individual updates. 

Collectively, these results confirm that the system provides a 

strong trade-off between privacy and utility. 

Even using lightweight TinyBERT NLP model, 

communication cost was still within a practical scale 2.3 MB 

per round on average. The process of FedProx-based 

(federated) learning outperformed not only vanilla FedAvg, 

but even non-IID clients across six, simulated system where 

Fast and smooth convergence was accomplished with 90% of 

peak accuracy with FedProx in 34 rounds versus 52 rounds 

with FedAvg. The personalization layer and features capturing 

semantic context from NLP led to significantly improved 

robustness to non-IID data distributions. In cases of skewed 

label distribution on devices, global knowledge was still 

utilizable with the context-specific adaptation retained. 

FedProx also stabilizes training by discouraging large local 

updates that deviate from the global model. 

This section supports the empirical results with a theoretical 

analysis of the FLAIR-IoT framework for providing strong 

privacy and optimal communication efficiency in FL for IoT 
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environments. FLAIR-IoT harnesses DP, one of the most 

common privacy enforcements to block inference attacks at 

client level. Each client then perturbs its local gradients prior 

to transmission by adding Gauusian noise with budget 𝜀. This 

noise mechanism guarantees that the model updated 

distribution is robust, and independent of any single user. Our 

theoretical analysis demonstrates the model can have more 

than 88% accuracy even at very low privacy setting (𝜀 = 3). 

This indicates that the system balances utility of the data and 

robustness by ensuring perfect privacy guarantees. Moreover, 

as we move towards tighter privacy budget (𝜀 →  1), the 

performance still degrades in a gradual manner indicating that 

the model is not privacy-averse. FLAIR-IoT also integrates 

with secure aggregation, a cryptographic protocol to ensure 

that only the sum of the encrypted model updates reaches the 

central server and not any individual contribution. 

 

 

5. CONCLUSIONS 

 

The Internet of Things (IoT) is a network of connected 

devices that communicate and exchange data via the Internet 

from household appliances to industrial machinery. This 

research presents a FLAIR-IoT, it is a new privacy-preserved 

framework based on FL, small size NLP models, and secure 

computation procedures for intelligent decision making in IoT 

enabled smart environments. The proposed solution used 

semantic context understanding through NLP tasks including 

intent recognition and context extraction, these were computed 

on the edge using compressed TinyBERT model. FedProx 

algorithm is used to co-train these models to keep data locally 

without jeopardizing user privacy. For security and utility, 

added DP and secure aggregation and achieved a good tradeoff 

between performance and protection. It achieved 97.3% and 

89.7% accuracy for intent and context tasks, respectively, with 

reasonable communication costs, outperforming independent 

centralized and federated baselines by a large margin. 

Additionally, ran the experiments using a non-IID distribution 

of data, and found that the proposed model results to be robust, 

demonstrating the framework’s utility in practical real-world 

IoT scenarios with a multitude of diverse users. 
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