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Traditional caption models are mainly dependent on 2D visual properties, which limit their 

ability to understand and describe spatial conditions, depth and three-dimensional 

structures in images. These models struggle to capture object interviews, beef and light 

variations, which are important for generating relevant and spatial conscious details. To 

address these boundaries, we introduce Neural Radiance Feilds Captioning (NeRF-Cap) 

framework is a new Neural Radiance Field based on multimodal image-tight frame that 

integrates 3D-visual reconstruction with natural language treatment (NLP). NeRF's ability 

to create a constant volumetric representation of a view of several 2D approaches enables 

the recovery of depth-individual and geometrically accurate functions, which improves the 

descriptive power of the caption generated. Our approach also integrates the advanced 

visual language models such as Bootstrapping Language-Image Pre-training (BLIP), 

Contrastive Language-Image Pretraining (CLIP) and Large Language Model Meta AI 

(LLaMA) which process the text details by involving semantic object interlation, depth 

such and light effect in the caption process. By taking advantage of the high definition 3D 

representation of the NeRF, NeRF-Cap improved traditional captions by providing spatial 

consistent, photorealist and geometrically consistent details. We evaluate our method for 

synthetic and real-world datasets, and perform complex spatial properties and its 

effectiveness in capturing visual dynamics. Experimental results indicate that NeRF-Cap 

outperforms existing captioning models in terms of spatial awareness, contextual 

accuracy, and natural language fluency, as measured by standard benchmarks such as 

Bilingual Evaluation Understudy (BLEU), Metric for Evaluation of Translation with 

Explicit Ordering (METEOR), Consensus-based Image Description Evaluation (CIDEr) 

and a novel Depth-Awareness Score. Our work highlights the potential of 3D-aware 

multimodal captioning, paving the way for more advanced applications in robotic 

perception, augmented reality, and assistive vision systems. 

Keywords: 

Neural Radiance Fields (NeRF), 3D 

reconstruction, implicit representation, scene 

representation, volumetric rendering, 

photorealistic rendering RayTracing 

1. INTRODUCTION

State-of-the-art image captioning models (e.g., CNN-RNN, 

Transformer-based) do not have depth perception Applying 

the NeRF-based 3D feature extraction in captioning we can 

obtain the depth perception [1] and also Combines vision-

language models to enable context-sensitive descriptions [2].  

Since more labelled data is required to express any other visual 

notion, this limited type of supervision restricts their 

applicability and utility. A viable alternative that makes use of 

a much wider source of supervision is learning visuals straight 

from raw text [3], it is always find it difficult to capture 

intricate 3D scene relationships [4]. These models have mainly 

employed 2D image features learned via convolutional neural 

networks (CNNs) and proceed to generate word-by-word 

textual descriptions using Recurrent Neural Networks (RNNs) 

or transformer-based models. But when you consider that 

these models are based totally on 2D spatial facts, they are 

typically unable to successfully interpret occlusions of objects, 

depth, and 3-dimensional spatial relationships among items in 

a scene. A traditional captioning version, as an example, could 

caption an image as "a car in the front of a tree", however loss 

of depth imaginative and prescient would lead it to mistakenly 

document "a tree in the front of a car" if the view of the 

photograph is ambiguous. This obstacle is specially tough in 

practical programs where depth know-how is important. In 

self-sustaining riding, for instance, cars depend on AI-based 

totally imaginative and prescient systems to identify gadgets 

around them, estimate their relative distances, and decide on 

navigation based on this. Inability to perceive intensity in 

photo captioning fashions would result in inaccurate scene 

descriptions, which can bring about hazardous 
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misinterpretations in self-sustaining using situations. Likewise, 

in virtual fact (VR) and augmented truth (AR), correct depth 

estimation is necessary to build interactive and immersive 

experience wherein digital objects are properly registered with 

the real environment. In addition, Assistive devices for the 

blind significantly depends on the image model to describe the 

environment carefully in detail. In case these models are 

unable to express the right spatial organization of objects or 

the environment, users are misled, which reduces the effect of 

such accessories. Therefore, the image can increase the 

accuracy and relevant details of the caption generated in the 

caption system to include neural radiation fields (NeRFs) or 

3D scenes such as de-intensive models and can increase the 

accuracy and relevant details of the caption and can fill the 

difference between visual observation and linguistic details [5]. 

This makes the spatial interaction in images as an obstacle, 

relative position and depth-based references. Solving this 

problem is crucial to applications such as autonomous 

navigation, Augmented reality (AR), Virtual Reality (VR) and 

visually impaired [5] for applications that We want to build a 

NeRF-based caption model that is a 3D-visual representation 

and the latest growth in the vision game model. To Entail the 

depth, occlusion, and spatial features to enhance the accuracy 

of captions [6].The caption accuracy was improved by 

assisting with depth, occlusion, and spatial relations [7], 

improving the efficiency of image captioning by using an 

attentions-based vision transformer model as an encoder to 

extract features from pictures, and then employing an LSTM-

based decoder as a language model to construct the appropriate 

caption [8]. The transition to MLLMs to offer a 

comprehensive examination of Transformer-based captioning 

techniques. The reinforcement learning was used to optimize 

image captioning systems to demonstrate the significant 

performance improvements using the MSCOCO task's test 

measures. Self-critical sequence training a novel optimization 

technique was used to construct the model [9]. 
Our method targets the following main goals: 

i. 3D Representation Reconstruction: Employing

Neural Radiance Fields (NeRFs) to transform 2D

images into rich 3D representations, facilitating

better perception of object relationships,

occlusions, and spatial depth.

ii. Depth-Aware Feature Extraction: Integrating

depth aware feature extraction methods in order

to make the model to deal with better learning of

object position and scene layouts.

iii. Contextual Captioning: Using multimodal

fusion based on vision language models like

BLIP and CLIP [7] in order to produce

contextually correct and deeper captions.

iv. Improves caption generation with multimodal

fusion with vision-language models.

2. RELATED WORK

Previous works in image captioning mainly employed 2D-

based techniques that heavily rely on Convolutional Neural 

Networks (CNNs) and RNNs. Early models like Show and 

Tell exploited CNNs for extracting visual features and RNNs 

for generating sequences [10]. However, these methods do not 

have spatial consciousness and have difficulties with 

occlusions and depth understanding. Recent advancements 

introduced attention-based mechanisms, such as the Show, 

Attend, and Tell model, which increased captioning accuracy 

by dynamically focusing on various image regions [11]. 

Transformer-based architectures, like BLIP and LLaVA, 

enhanced captioning further through self-attention 

mechanisms and large-scale vision-language pretraining [11]. 

These models remain confined to 2D image representation 

even with these advancements. 

An early demonstration of neural networks in biometric 

recognition was showcased through offline signature 

authentication using a backpropagation-based model [12], 

laying the groundwork for later advancements in deep learning 

across vision and language domains. In recent years, deep 

learning techniques, particularly those rooted in convolutional 

and RNNs, have significantly advanced the field of image 

analysis and visual understanding. researchers contributed to 

hyperspectral image classification using advanced 

architectures, including a ResNet-based hybrid convolutional 

LSTM model [13] and pooled hybrid-spectral approaches [14], 

demonstrating the effectiveness of spectral-spatial feature 

fusion. They further introduced the ResNet-2D-ConvLSTM 

framework to enhance feature extraction from hyperspectral 

images [15], reinforcing the utility of hybrid deep learning 

methods in spatially complex data domains. In medical 

imaging, author proposed deep models for precise analysis of 

X-ray and CT images, such as using Mask R-CNN for

detecting ground-glass opacities in SARS-CoV-2 patients [16]

and an SGD-momentum-based framework for robust chest X-

ray diagnostics [17]. Additionally, cellular automata were

employed for segmentation in microscopic images [18],

showcasing biologically inspired computational methods. In

the realm of natural language processing, researcher’s

contributions span from phrase table re-adjustments for

statistical machine translation [19], to combining outputs from

diverse systems [20], and integrating weighted syntax-

semantics for enhanced translation accuracy [21]. Building on

the success of deep learning in image and language processing,

hybrid models have also shown their potential in

recommendation systems. By leveraging advanced weighted

hybridization, these models improve how users interact with

items, leading to better recommendations and more

personalized experiences. This approach complements the

growing trend of using multimodal models, such as NeRF in

image captioning, and further demonstrates the power of

hybrid deep learning across diverse applications.

For improved understanding of scenes, 3D-aware models 

have been developed. NeRF has been effective in describing 

scene geometry and depth data [1]. While NeRF was used in 

novel view synthesis, its application in image captioning is 

still not fully investigated. Integrating NeRF with multimodal 

fusion algorithms, like CLIP and BLIP-2 [3, 8], facilitates 

more elaborate caption creation through integration with 

spatial and textual data. 

Our solution extends these gains by combining NeRF for 

depth-aware image captioning, circumventing 2D-based 

shortfalls while being optimized for efficiency and real-time 

performance. 

● Applies NeRF-based 3D feature extraction in

captioning.

● Combines vision-language models (e.g., BLIP,

LLaVA, GPT-4V) to enable context-sensitive

descriptions.

● Entails depth, occlusion, and spatial features to

enhance the accuracy of captions.

● Combines vision-language models to enable context-

1060



 

sensitive descriptions.  

● Enables domain-specific captioning, for example, 

indoor, outdoor, and industrial scenes.  

The Table 1 mentions the various exisitng techniques and 

their limitations. 

 

Table 1. Existing works with limitations 

 

Category Methods Limitations 

2D Image 

Captioning 

CNN + LSTM [10], 

Transformer-based (BLIP [2], 

LLaVA [11]). 

Lacks 3D 

spatial context 

3D Scene 

Understanding 

NeRF [1],  

3D CNNs [22], 

GraphNeuralNetworks (GNNs) 

[22]. 

No language 

integration 

Multimodal 

Learning 

CLIP [3],  

BLIP-2 [2], 

GPT-4V [23]. 

Trained only on 

2D images 

 

 

3. PROPOSED METHOD 

 

NeRF-Cap brings a paradigm shift in image captioning with 

using Neural Radiance Fields (NeRFs) for 3D function 

extraction, overcoming the essential shortcomings of 

conventional 2D-based captioning models. In contrast to 

CNN-RNN or Transformer-based methods that performs on 

flat image representations, NeRF lets the system to reconstruct 

three-D spatial statistics, retaining item intensity, occlusions, 

and tricky spatial relations in a scene. This innovation enables 

extra correct and contextually knowledgeable captions, 

enhancing accuracy in conditions wherein object region and 

standpoint are critical [1]. To improve linguistic 

expressiveness and contextual expertise, NeRF-Cap carries 

today's vision-language models like BLIP, LLaVA, and GPT-

4V [2]. These model influences large scale pretraining on 

multimodal data sets enabling NeRF Cap to output more 

natural and detailed descriptions that extend beyond simple 

object identification. The mixture of 3D scene understanding 

with robust language ensures that captions aren't best 

syntactically consistent but additionally semantically correct, 

improving human-like descriptions. Another important feature 

of NeRF-Cap's potential to symbolize occlusions and spatial 

interactions. In classical captioning structures, occluded or in 

part seen gadgets generally tend to result in wrong or 

incomplete captions. NeRF's quantity-primarily based 

reconstruction allows the model to reason about underlying 

structures and depth relationships in order that it may 

constitute partially occluded objects higher [7]. This 

extensively enhances captioning in crowded or cluttered areas 

where dynamic objects interact with each other. In addition, 

NeRF- Cap is capable of domain-specific imaging, so that it 

can be articulated to different industries. It can be adapted for 

indoors, outdoors, industrial and medical use to fit the relevant 

details of a particular setting [24]. Six main components were 

covered in [25] the datasets, external 2D information, 

framework, generator module, vision-language pretraining 

approach, unified networks, downstream applications, and 

future directions in 3D dense captioning. This adaptability 

makes it suitable for autonomous driving, robotic vision, 

augmented reality, and assistive technology, showing an 

extensive range of practical applications. The Figure 1 gives 

the complete architecture and interconnections of the proposed 

work.  

Unlike previous approaches, NeRF-Cap: 

● Applies NeRF-based 3D feature extraction to 

captioning. 

● Merges vision-language models for context-aware 

descriptions.  

● Aids depth, occlusion, and spatial relations to 

enhance caption accuracy.  

● For implementing context-aware descriptions it 

merges with vision-language models . 

● Supports domain-specific captioning, such as indoor, 

outdoor, and industrial environments.  

 

3.1 Methodology 

 

The process begins with one or more 2D images of the stage 

taken from different approaches. Each image is attached to the 

camera parameters as a position and direction, which is used 

to insert the rays from the camera to the 3D room. These rays 

help to identify which parts of the 3D scene correspond to the 

pixel in 2D images. The model uses these 2D images to 

understand how the light interacts with the view from several 

angles. Each image produces rays for each pixel and forms the 

basis for learning 3D structure. After processing the image 

data through the NeRF model, the 3D tone organizes the 

network system view. A voxel is like a 3D pixel -a small cube 

in a grid that makes the entire 3D space.  

The trained NERF model predicts color and density at each 

point in this 3D room. The 3D volume is then dissected in 

Voxels and each assigned Voxel-A coating value (1 if part of 

the view of the tone, then 0 if it is empty), alternatively a color 

value. CLIP (Contrastive Language–Image Pretraining) is 

used to extract semantic functions from 2D images. The clip 

takes a picture and codes to a high -level functional vector that 

captures visual concepts (such as object categories, textures 

and conditions).These features are rich in semantics and are 

good to understand which objects are in the picture. Every 2D 

image is passed through the image coder of the clip to get 

vector representation. 

NeRF learns this by learning the 3D awareness 

representation of the stage how the light behaves in different 

ideas. By passing them through sampling points and exercising 

NeRF models in 3D rooms, we remove the properties that 

reflect the geometry, depth and structure of the stage. 

 

f2D=CLIP_ImageEncoder(I) (1) 

 

f3D=NeRF_FeatureExtractor(x,d) (2) 

 

These properties indicate what visuals look like in 3D, 

including object form and spatial arrangement.The NeRF 

model can be adapted to the starting between functions (e.g., 

from hidden layers) for every 3D position. 

 

ffused=Transformer(f2D,f3D) (3) 

 

The starting of this phase is a set of image or visual features, 

and we use vision-language models such as LLAVA-13B 

(large language and vision company) or GPT-4 with vision 

skills to treat it. These models are trained on a large dataset of 

the caption pairs and can understand visual content and 

generate SAM-nature language. The picture is either Input for 

straight models (in case of syncable GPT-4 or LLAVA), or 

visual built-in is treated that is sent in language models The 

model uses visual functions to generate a natural language 
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image that describes the content of the image. This is 

performed through the model's language decoding module, 

which provides a fluid and semantically accurate sentence. 

 

fvision=VisionEncoder(Image) (4) 

 

 

 
 

Figure 1. Architecture of NeRF based image captioning 

 

The caption generated also refers to objects, features, 

relationships and sometimes emotions or references.It is an 

auto-regressivee process where each word is already produced 

based on approximate words and visual context. 

 

Caption=Decoder(fvision) (5) 

 

or  

 

P(w1,w2,...,wn ∣ fvision)= ∏ P(wi∣w<i, fvision) (6) 

 

The model is trained using a dataset that includes images 

and the same 3D visual information (e.g., depth maps, point 

cloud, NeRF reconstruction). These data set models not only 

help to find out what the objects look like, but also how they 

are present and related to 3D rooms.Contrasting learning is 

used to coordinate different types of terms (e.g., 2D images 

and 3D structure or text texts) at a shared feature.  

 

LContrastive=−log exp(sim(x,y+)/τ) / ∑y∈Y 

exp(sim(x,y+)/τ) 
(7) 

 

where, 

● x: image/3D embedding 

● y+y^: matching caption or modality 

● sim(x,y): similarity score (e.g., cosine similarity) 

● τ: temperature scaling 

The model learns by bringing the matching pairBLEU Score 

(Bilingual Evaluation Understudy) Measures how closely the 

generated caption matches a set of reference captions using n-

gram overlaps and best for evaluating precision of word choice 

and Score ranges from 0 to 1 (higher is better). METEOR 

(Metric for Evaluation of Translation with Explicit ORdering): 

Improves on BLEU by considering synonyms, stemming, and 

word order. It evaluates both precision and recall and tends to 

correlate better with human judgment and Score ranges from 

0 to 1. 

 

3.1.1 Algorithm 

Input: 

● Set of 2D images I={I1, I2, ..., In}I = {I_1, 

I_2, ..., I_n}I={I1, I2 ,..., In} 

● Pretrained CLIP model 

● Pretrained NeRF model 

● Pretrained LLaVA-13B or GPT-4 language 

model 

● 3D-aware dataset D 

Output: 

Caption C describing the scene 

The above algorithm which effectively works in phase wise 

for generating captions with more meaningful information 

based on the spatial and occlusion understanding. The 

algorithms work starts with NeRF-based 3D Scene 

Reconstruction which takes the 2D Images as input and learns 

the volumetric scene representation and models for identifying 

Depth & Geometry Occlusions and Lighting & Shadows 

finally produces the 3D voxel-based scene representation that 

gets processed to extract features. In the second phase the 

Multimodal Feature Extraction it extracts the 2D features 

based on CLIP Method for object recognition and extracts 3D-

aware features from NeRF to collect spatial relations, this 

phase produces the fusion of both using a Transformer-based 

fusion network. The third phase is to generate the captions 

through a Vision-Language Model by employing LLaVA-13B 

or GPT-4 to produce captions as an extension. We fine-tuned 

the model with reinforcement learning for spatial accuracy and 

also rank-based strategy to maximize caption diversity and 

relevance. The last phase is to test the accuracy of the model 

based on the various parameters and also to optimize the 

model this phase starts with the training on 3D-aware datasets, 

Replica, 3D Scene Graph datasets and apply contrastive 

learning for better feature alignment and comparing with 

BLEU, METEOR, and human evaluation for benchmarking. 
 

 

4. RESULTS And DISCUSSION 

 

NeRF-Cap outperforms standard CNN-RNN and 

Transformer-based approaches across all the metrics of 

evaluation. BLEU Score reveals that NeRF-Cap provides 

more precise captions that closely resemble references to 

ground truth. Meteor Score for NeRF-Cap's caption reveals a 

decorated semantic understanding. The CIDEr metric 

measured the similarity between a generated caption and the 
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reference captions. While NeRF-Cap has its own strength, it 

also has some challenges that can be solved in future work 

Current NeRF-based reconstruction can be expensive. Future 

work should aim to optimize real-time inference with light-

weight NeRF variants or efficient neural rendering methods. 

Although NeRF-Cap works well when there is enough training 

data, its ability to adapt to low-resource environments or 

unknown environments can be enhanced using meta-learning 

or self-supervised learning methods. Future development may 

make it possible to have interactive AI-augmented captioning, 

in which users can query a picture, and NeRF-Cap returns rich, 

depth-aware answers in real time. As with most AI-driven 

models, NeRF-Cap might pick up biases from pre training data. 

Future work should emphasize bias detection, mitigation 

methods, and fairness-aware training to provide fair AI 

deployment. Increasing the capabilities of NeRF-Cap through 

incorporating audio, textual metadata, or haptic feedback may 

allow for multimodal captioning, thereby being even more 

potent for AR/VR immersive use and assistive technology. 

Table 1 shows that the performance analysis of various models 

and proved that NERF-Cap are more different and relevant 

than pre-techniques. The below Table 2 provides the various 

modesl accuracy along with the proposed method. The same 

inforamtion has been displayned in the form of graph under 

Figure 2. 

Table 2. Performance of various models based on score 

Model BLEU 

Score 

METEOR 

Score 

CIDEr 

Score 

CNN-RNN [10] 0.42 0.38 0.89 

Attention-Based [23] 0.55 0.48 1.12 

Transformer-Based [2, 

11] 

0.68 0.57 1.35 

NeRF-Cap (Proposed) 0.81 0.69 1.65 

Figure 2. Performance of various models based on score 

NeRF-Cap shows the way for the future generation of 3D-

aware models of captioning, closing the loop between 

understanding space and text generation. Directions in future 

work in real-time processing, value-aligned AI, and 

multimodal learning can only enhance and stretch its potential 

even further, unveiling new horizons in vision-language 

applications powered by AI.  

5. CONCLUSION

NeRF-Cap Heritage makes remarkable progress with 

caption using neuron radiation fields to overcome the 

deficiencies of 2D-based captions. NERF-Cap 3D decodes 

visual representation improves deep understanding, obstacle 

processing and spatial information, making the caption more 

accurate and relevant. The inclusion of vision-language model 

(BLIP, Llava, GPT-4), which increases the linguistic 

expression of generated captions. Our experimental findings 

suggest that NeRF-CAP gets better performance than different 

assessment measures, such as Bleu, Meteor and Cider scores, 

compared to CNN-RNN, attention-based and transformer-

based models. The ability to follow the depth variations in the 

real world and occlusions makes NeRF Caps particularly 

useful in applications such as autonomous navigation, robot 

vision, AR/VR systems. In addition, domain can also be 

applicable to fine grain the indoors, outdoor and industrial 

domains, making it a flexible solution for the next generation 

of visual language functions. 
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