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This paper introduces a novel two-phase metaheuristic framework leveraging Painting 

Training Based Optimization (PTBO) to solve the coupled problem of Distributed 

generation (DG) placement and Distribution network reconfiguration (DNR) for power 

loss minimization and voltage stability enhancement. In Phase I, PTBO’s “education” 

(exploration) and “skill refinement” (exploitation) stages identify optimal DG siting and 

sizing on a fully meshed network, yielding up to 79% loss reduction on the IEEE 33-bus 

system. In Phase II, with DG locations fixed, PTBO reconfigures the network into a radial 

topology by selectively opening tie switches, achieving a further 74% loss reduction 

without violating voltage or current limits. Extensive simulations on IEEE 33 node 

benchmarks demonstrate that the proposed two-stage approach matches or outperforms 

simultaneous DG-plus-reconfiguration schemes in loss minimization (up to 87%), 

convergence speed (converging within 150–300 iterations), and solution robustness 

(standard deviation < 2 kW over 50 runs), while preserving design interpretability and 

reducing computational overhead by 40%. The results confirm PTBO’s ability to balance 

global research and local refinement in highly constrained, nonlinear combinatorial 

problems. Future extensions will target multi-objective formulations and real-time 

stochastic enhancements for renewable-rich distribution networks. 
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1. INTRODUCTION

The proliferation of Distributed generation (DG) in modern 

distribution networks has profoundly reshaped traditional 

power system operations. The integration of renewable energy 

resources—such as photovoltaic (PV) systems, wind turbines, 

and fuel cells—has catalyzed a paradigm shift from 

centralized generation to decentralized energy architectures, 

enhancing the reliability, resilience, and sustainability of 

power delivery infrastructures [1]. Despite these advantages, 

the benefits derived from DG integration are highly contingent 

upon the strategic siting and sizing of these resources. 

Improper placement and sizing can exacerbate voltage 

instability, elevate system losses, and undermine operational 

efficiency [2]. Consequently, optimization-based strategies for 

DG deployment have garnered significant research attention, 

with the overarching aim of maximizing system performance 

while safeguarding grid stability [3]. 

A complementary strategy to optimize DG integration is 

Distribution network reconfiguration (DNR), which involves 

the deliberate alteration of network topology through the 

opening and closing of tie and sectionalizing switches. 

Effective reconfiguration can minimize active power losses, 

alleviate system congestion, and enhance voltage profiles, 

thereby enabling more efficient utilization of distributed 

energy resources [4]. Numerous studies have validated the 

synergistic benefits of simultaneous DG allocation and 

network reconfiguration, demonstrating notable 

improvements in system reliability and efficiency [5]. 

However, the inherent multi-objective, highly nonlinear, and 

combinatorial nature of the problem imposes considerable 

computational challenges, particularly in the context of large-

scale, real-time distribution systems [6]. 

Various optimization methodologies have been explored to 

address these challenges, spanning from conventional 

mathematical programming techniques to more sophisticated 

methodology and hybrid machine learning (ML)-based 

models. Classical deterministic approaches, such as linear 

programming (LP), mixed-integer linear programming 

(MILP), and dynamic programming (DP), offer 

mathematically rigorous solutions but suffer from severe 

scalability limitations and computational burdens when applied 

to real-world, high-dimensional network problems [7, 8]. 

In contrast, metaheuristic algorithms have demonstrated 

superior adaptability and computational efficiency in handling 

the nonlinearity, nonconvexity, and dimensionality associated 

with DG allocation and DNR problems. A wide array of 

metaheuristics—including Genetic Algorithm (GA) [9], 

Particle Swarm Optimization (PSO) [10], Differential 

Evolution (DE) [11], Ant Colony Optimization (ACO) and 
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Fireworks Algorithm (FWA) [12] have been employed with 

considerable success. For instance, the Equilibrium 

Optimization Algorithm (EOA) has been applied to 

simultaneous DG placement and reconfiguration, achieving 

notable reductions in power losses and improvements in 

voltage stability [4]. Likewise, graph-based optimization 

models incorporating Soft Open Points (SOPs) have been 

proposed to further enhance system flexibility and operational 

reliability [13]. 

The evolution of computational intelligence has also led to 

the development of hybrid approaches that integrate 

metaheuristic optimization with artificial intelligence (AI) and 

machine learning (ML) techniques. Deep learning-based 

models have been introduced to enable dynamic, adaptive 

optimization frameworks capable of responding to stochastic 

variations in load and renewable generation [14]. Neural 

network-assisted optimization strategies have been proposed 

to enhance real-time adaptability and resilience in DG 

allocation and DNR tasks [15]. Nevertheless, the deployment 

of AI-driven solutions is often hindered by the necessity for 

extensive training datasets and substantial computational 

resources, posing significant barriers to their practical 

implementation in real-world power distribution networks 

[16]. 

Despite these advancements, critical challenges persist. 

Chief among them are the issues of computational complexity 

and scalability, particularly in large-scale networks with high 

DG penetration, where the number of decision variables 

escalates rapidly [17, 18]. Moreover, the majority of existing 

models inadequately address the stochastic nature of 

renewable energy sources, leading to suboptimal performance 

under dynamic operating conditions [19]. These limitations 

underscore the pressing need for robust, scalable, and 

computationally efficient optimization frameworks capable of 

supporting real-time decision-making in increasingly complex 

power distribution systems. 

Against this backdrop, metaheuristic algorithms continue to 

offer promising avenues for research. Among recent 

developments, the Painting Training Based Optimization 

(PTBO) algorithm—a novel human-inspired metaheuristic—

has demonstrated exceptional potential [20]. PTBO emulates 

the dynamic, iterative learning processes observed during 

painting instruction, incorporating both instructor-led 

exploration and student-driven exploitation phases to achieve 

a superior balance between global search and local refinement. 

Although metaheuristics have been extensively applied across 

fields such as logistics, communications, and financial 

modeling, their application to critical problems in power 

systems, notably DG allocation and DNR, remain relatively 

unexplored. 

Motivated by these considerations, this study proposes a 

novel optimization framework based on the PTBO algorithm 

to simultaneously optimize DG placement and network 

reconfiguration. The principal contributions of this research 

are threefold: (1) the development of a computationally 

efficient and highly scalable two-phase optimization model 

leveraging the PTBO paradigm; (2) the incorporation of 

dynamic real-time demand modeling to adaptively respond to 

load and renewable energy fluctuations; and (3) a 

comprehensive comparative evaluation against cutting-edge 

metaheuristic and AI-driven optimization methods. The 

effectiveness of the proposed framework is rigorously 

validated through extensive numerical simulations conducted 

on standard IEEE 33-node test systems, with detailed 

performance metrics focusing on power loss reduction, 

voltage profile improvement, and computational efficiency. 

 

 

2. PROBLEM FORMULATION  
 

The integration of Distributed Generators (DGs) into 

contemporary distribution networks introduces substantial 

technical challenges arising from the networks’ intrinsic 

structural and operational intricacies. Although distribution 

systems are traditionally engineered with a meshed topology, 

they are conventionally operated in a radial configuration to 

simplify protection schemes and facilitate fault isolation. With 

the addition of DG units, local injections of active and reactive 

power disrupt the conventional unidirectional power flow 

pattern. Consequently, determining the optimal siting and 

sizing of DG resources is critical to reducing system losses, 

reinforcing voltage stability, and bolstering overall reliability. 

Concurrently, DNR — realized through the deliberate 

manipulation of sectionalizing and tie‐ switch statuses—
provides a dynamic means to further enhance operational 

efficiency. Yet, when DG placement and DNR are addressed 

in isolation, complex interdependencies emerge: a location 

and capacity assignment for DGs that appears optimal under 

one network configuration may become suboptimal once 

reconfiguration is applied. To address this challenge, the 

present work develops a sequential, two‐stage optimization 

framework. The first stage focuses exclusively on DG 

placement and sizing under a reference meshed topology, 

ensuring robust long‐term planning decisions. In the second 

stage, network reconfiguration is performed to exploit the DG 

deployments’ potential fully while preserving the integrity of 

the initial planning stage. This structured approach balances 

the strategic objectives of DG integration with the operational 

flexibility afforded by DNR. 

 

2.1 Analytical model of power loss in mesh and radial 

networks 

 

Consider a simple meshed distribution network containing 

a loop, as illustrated conceptually in Figure 1. 

 

 
 

Figure 1. One loop distribution network 

 

When all tie switches are closed, the network operates in a 

meshed configuration. The current flowing through each 

branch i is denoted by Ii and the current through the tie branch 

is IMN. 

The total power loss in the mesh configuration (∆𝑃𝑚𝑒𝑠ℎ ) 

can be expressed as:  
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∆𝑃𝑚𝑒𝑠ℎ = ∑ 𝑅𝑖

𝑖∈𝑂𝑀

. 𝐼𝑖
2 + 𝑅𝑀𝑁 . 𝐼𝑀𝑁

2 + ∑ 𝑅𝑖. 𝐼𝑖
2

𝑖∈𝑂𝑁

 (1) 

 

where, 

OM is the set of branches in one segment of the loop. 

ON is the set of branches in the complementary segment. 

Ri is the resistance of branch i. 

RMN is the resistance of the tie branch. 

If the tie switch between nodes M and N is opened, the 

network transitions into a radial topology. The change in 

currents across branches can be approximated as: 

 

Branches in OM: 𝐼𝑖 → (𝐼𝑖 − 𝐼𝑀𝑁) 

(𝐼𝑖 − 𝐼𝑀𝑁)2 − 𝐼𝑖
2 =  −2. 𝐼𝑖 . 𝐼𝑀𝑁 + 𝐼𝑀𝑁

2  

Branches in ON: 𝐼𝑖 → (𝐼𝑖 + 𝐼𝑀𝑁) 

(𝐼𝑖 + 𝐼𝑀𝑁)2 − 𝐼𝑖
2 =  2. 𝐼𝑖 . 𝐼𝑀𝑁 + 𝐼𝑀𝑁

2  

 

Thus, the total power loss in the radial configuration 

(∆𝑃𝑟𝑎𝑑𝑖𝑎𝑙) becomes: 
 

∆𝑃𝑟𝑎𝑑𝑖𝑎𝑙 = ∑ 𝑅𝑖

𝑖∈𝑂𝑀

. (𝐼𝑖 − 𝐼𝑀𝑁)2

+ ∑ 𝑅𝑖. (𝐼𝑖 + 𝐼𝑀𝑁)2

𝑖∈𝑂𝑁

 
(2) 

 

The difference in losses between the radial and mesh 

configurations is, from Eqs. (1) and (2), we obtain Eq. (3): 

 

∆𝑃𝑟𝑎𝑑𝑖𝑎𝑙 − ∆𝑃𝑚𝑒𝑠ℎ =  𝐼𝑀𝑁
2 . 𝑅𝑙𝑜𝑜𝑝 (3) 

 

where, 

 

𝑅𝑙𝑜𝑜𝑝 = ∑ 𝑅𝑖

𝑖∈𝑂𝑀

+ 𝑅𝑀𝑁 + ∑ 𝑅𝑖

𝑖∈𝑂𝑁

 (4) 

 

Interpretation: 

If IMN = 0, opening the tie switch does not cause additional 

losses. 

However, achieving IMN = 0 is practically impossible; 

therefore, the objective is to minimize IMN through strategic 

reconfiguration. 

 

2.2 Sequential two-stage optimization strategy 

 

Based on the above analysis, solving the combined problem 

of DG placement and DNR simultaneously is computationally 

expensive and may yield coupled, suboptimal solutions. 

Instead, a sequential two-stage framework is adopted: 

State-I: Optimal Siting and Sizing of DGs [14] 

• The distribution network is assumed to be fully 

meshed, with all tie switches closed. 

• DG locations and sizes are optimized independently 

of network operational states. 

• Objective: Minimize active power losses by adjusting 

DG deployment while all possible paths are available. 

State-II: Optimal Network Reconfiguration 

• After DG installation, the network is reconfigured 

into a radial structure by selectively opening tie switches. 

• The DG locations and sizes determined in State-I 

remain fixed. 

• Objective: Further minimize active power losses 

while satisfying radiality and operational constraints. 

• This sequential division ensures: 

• The design problem (DG siting) remains robust and 

unaffected by later operational decisions. 

• The operational problem (reconfiguration) is 

optimized based on a fixed, already optimized DG deployment. 

Simplified optimization search spaces and reduced 

computational burden. 

 
2.3 Mathematical formulation of the optimization problem 

 
The common objective function across both stages is: 

 

Minimize 𝑃𝑙𝑜𝑠𝑠 = ∑ 𝑅𝑖 . (
𝑃𝑖

2+𝑄𝑖
2

𝑉𝑖
2

𝑛𝑏𝑟
𝑖=1 ) (5) 

 

Subject to 

• Voltage constraints: The optimization enforces that 

all bus voltages remain within safe operating bounds: 

 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑚𝑎𝑥        ∀𝑖 = 1, … 𝑛𝑏𝑢𝑠 (6) 

 

• Branch current limits: all branch currents do not 

exceed their thermal limits: 

 
0 ≤ 𝐼𝑖 ≤ 𝐼𝑚𝑎𝑥,𝑖        ∀𝑖 = 1, … 𝑛𝑏𝑟 (7) 

 

• DG capacity limits (only for State-I): Phase I each 

DG’s output is constrained by its capacity: 

 
0 ≤ 𝑃𝐷𝐺,𝑖 ≤ 𝑃𝐷𝐺,𝑚𝑎𝑥,𝑖        ∀𝑖 = 1, … 𝑛𝐷𝐺 (8) 

 

• Radial structure constraint (only for State-II): Phase 

II requires the network to maintain a radial topology. 

where: 

Pi, Qi are the active and reactive power flows. 

Vi is the bus voltage magnitude. 

nbr, nbus, nDG numbers of branches, buses, and DG units. 

 

 
3. PROPOSED PTBO-BASED OPTIMIZATION DRN  

 

3.1 Introduction to PTBO 

 

PTBO is a recently proposed human-inspired metaheuristic 

algorithm that models the progressive and iterative learning 

process observed during painting instruction. In this paradigm, 

learners (candidate solutions) undergo a two-phase evolution 

[20]. 

In PTBO, the education phase (governed by parameter λ) 

controls the magnitude of global exploration: a larger λ 

encourages candidate solutions to be drawn more aggressively 

toward diverse regions around the instructor (“best” solution), 

thereby preventing premature convergence to local optima. In 

contrast, the skill‐refinement phase (governed by parameter δ) 

dictates the step size of local exploitation: a higher δ allows 

individual candidates to make finer adjustments around their 

current positions, accelerating convergence toward nearby 

valleys in the objective landscape. By carefully tuning λ and δ, 

PTBO transitions smoothly from broad, λ‐driven exploration 

in early iterations to δ‐driven, fine‐grained exploitation in later 

iterations. This adaptive balance ensures efficient search 

across complex, high‐dimensional, and multimodal spaces: λ 
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prevents the population from getting trapped too soon, while δ 

sharpens convergence once promising regions are located. 

Education Phase (Exploration): Candidates are broadly 

guided by an instructor, encouraging them to explore diverse 

regions of the search space without being prematurely trapped 

in local optima. 

Skill Refinement Phase (Exploitation): Candidates 

individually practice and refine their solutions, focusing on 

local improvements based on accumulated experience. The 

dynamic balance between these two phases enables PTBO to 

efficiently traverse complex, high-dimensional, and 

multimodal optimization landscapes. In addition, PTBO 

incorporates adaptive updating strategies, allowing a gradual 

shift from global exploration to fine-grained local exploitation 

as iterations progress. 

Advantages of PTBO: Compared to conventional 

metaheuristics such as Genetic Algorithms (GA), Particle 

Swarm Optimization (PSO), or Differential Evolution (DE), 

PTBO offers several distinct advantages: 

Robust Exploration-Exploitation Tradeoff: Separate and 

clearly defined phases allow PTBO to avoid premature 

convergence, a common limitation in many metaheuristics. 

Intrinsic Adaptivity: The transition between broad 

exploration and localized refinement is naturally embedded, 

requiring minimal external parameter tuning. 

Resilience to Local Minima: The two-phase learning 

structure helps maintain population diversity in early iterations, 

improving the probability of global optimality. 

Ease of Implementation: PTBO's conceptual simplicity and 

minimal parameterization facilitate its application to a wide 

range of optimization problems. 

Suitability of PTBO for Distribution Network Optimization: 

The problem of optimal distributed generator placement and 

DNR is characterized by: 

• Large-scale combinatorial complexity. 

• Nonlinear and nonconvex objective functions. 

• Strict operational constraints (voltage limits, current 

limits, radial topology requirements). 

These characteristics render traditional deterministic 

optimization methods impractical. Metaheuristic approaches 

are thus necessary. PTBO is particularly well-suited for this 

problem domain because: 

• Its education phase provides the necessary global search 

capability to explore diverse DG siting and switch 

reconfiguration options. 

• Its skill refinement phase ensures that the solutions 

converge efficiently to high-quality feasible configurations 

satisfying all constraints. 

• The algorithm's ability to adaptively intensify search 

regions improves its performance in highly constrained 

environments, such as the maintenance of radiality in 

reconfigured networks. 

Therefore, PTBO is selected as the optimization engine for 

both stages of the proposed two-stage framework: (i) DG 

siting and sizing, and (ii) DNR. 

 

3.2 Stage-I: Optimal siting and sizing of distributed 

generators 

 

3.2.1 Decision variables 

Each candidate solution represents: 

A vector of DG bus locations: 𝐵 = [𝑏1, 𝑏2, … , 𝑏𝑛𝐷𝐺] 
A vector of DG sizes: 𝑃𝐷𝐺 = [𝑃1, 𝑃2, … , 𝑃𝑛𝐷𝐺] 

where,  

 

𝑏𝑖 ∈ {set of buses allowed for DG installation} 

𝑃𝑖 ∈  [𝑃𝐷𝐺,𝑚𝑖𝑛,𝑖 , 𝑃𝐷𝐺,𝑚𝑎𝑥,𝑖  ] 

 

The candidate solution is encoded as: 
 

𝑋 = [𝑏1,𝑃1, 𝑏2,𝑃2, … , 𝑏𝑛𝐷𝐺1,𝑃𝑛𝐷𝐺] (9) 

 

3.2.2 Initialization 

Each candidate (painting student) is initialized as: 

 

𝑋𝑘,𝑑 = 𝑋𝑚𝑖𝑛,𝑑 + 𝑟𝑘,𝑑 . (𝑋𝑚𝑎𝑥,𝑑 − 𝑋𝑚𝑖𝑛,𝑑) (10) 

 

where, 

Xk,d is the d-th decision variable of the k-th candidate. 

rk,d is a random number uniformly distributed in [0,1]. 

For bus index variables, results are rounded to the nearest 

integer. 

 

3.2.3 Fitness function 

The fitness for each candidate is calculated as: 

 

𝑓(𝑋) = 𝑃𝑙𝑜𝑠𝑠(𝑋) (11) 

 

Subject to the constraints: 

 

𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑚𝑎𝑥        ∀𝑖 = 1, … 𝑛𝑏𝑢𝑠 

0 ≤ 𝐼𝑖 ≤ 𝐼𝑚𝑎𝑥,𝑖        ∀𝑖 = 1, … 𝑛𝑏𝑟 

0 ≤ 𝑃𝐷𝐺,𝑖 ≤ 𝑃𝐷𝐺,𝑚𝑎𝑥,𝑖        ∀𝑖 = 1, … 𝑛𝐷𝐺 

 

Violation of any constraint is penalized by adding a large 

penalty term to f(X). 

 

3.2.4 Education phase (Exploration) 

The new candidate position during exploration is generated 

by: 

 

𝑋𝑘
𝑛𝑒𝑤 = 𝑋𝑘 + 𝜆. (𝑋𝑏𝑒𝑠𝑡 − 𝑋𝑘) (12) 

 

where, 

𝜆 ∼ N(0,1) is normally distributed random number. 

𝑋𝑏𝑒𝑠𝑡  is the current best solution. 

 

3.2.5 Skill refinement phase (Exploitation) 

The refinement around the candidate is formulated as: 

 

𝑋𝑘
𝑟𝑒𝑓𝑖𝑛𝑒𝑑

= 𝑋𝑘 + 𝛿. (𝑟𝑎𝑛𝑑 − 0.5) (13) 

 

where, 

rand ∼ U(0,1) is a uniformly random vector. 

𝛿 is a decreasing factor over iterations. 

 

3.2.6 Update and selection 

After each update, if: 

 

𝑓 (𝑋𝑘

𝑛𝑒𝑤
𝑟𝑒𝑓𝑖𝑛𝑒𝑑

) < 𝑓(𝑋𝑘) (14) 

 

Then accept the new solution; otherwise, retain the old one. 

The best solution is updated accordingly. 
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3.3 Stage-II: DNR 

 

3.3.1 Decision variables 

Each candidate solution in this stage represents: A set of 

switches opening decisions  𝑆 = [𝑠1,𝑠2, … , 𝑠𝑛𝑡𝑖𝑒]  where si 

indicates which tie switch is open in each fundamental loop. 

 

3.3.2 Initialization 

Candidates are initialized as random feasible configurations 

ensuring radiality. 

 

3.3.3 Fitness function 

The fitness is again: 

 

𝑓(𝑆) =  𝑃𝑙𝑜𝑠𝑠(𝑆) (15) 

 

Subject to 

✓ Radial structure (validated using depth-first search or 

spanning tree verification) 

✓ 𝑉𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑚𝑎𝑥        ∀𝑖 = 1, … 𝑛𝑏𝑢𝑠 

✓ 0 ≤ 𝐼𝑖 ≤ 𝐼𝑚𝑎𝑥,𝑖        ∀𝑖 = 1, … 𝑛𝑏𝑟 

 

3.3.4 Education and skill refinement 

Similar update formulas as Stage-I are applied: 

Exploration: 

 

𝑆𝑘
𝑛𝑒𝑤 = 𝑆𝑘 + 𝜆. (𝑆𝑏𝑒𝑠𝑡 − 𝑆𝑘) (16) 

 

𝑆𝑘
𝑟𝑒𝑓𝑖𝑛𝑒𝑑

= 𝑆𝑘 + 𝛿. (𝑟𝑎𝑛𝑑 − 0.5) (17) 

 

Discrete rounding is applied to maintain integer switch 

indices, and radiality is rechecked. 

 

Table 1. Summary of PTBO for two-stage optimization 

 
Stage Variables Objective Constraints 

Stage-I (DG Siting 

& Sizing) 

Bus, DG 

Sizes 

Minimize 

Ploss 

Voltage, 

Current, DG 

Capacity 

Stage-II (Network 

Reconfiguration) 

Switch 

Opening 

Decisions 

Minimize 

Ploss 

Voltage, 

Current, 

Radiality 

 

Table 1 summarizes the two-stage PTBO approach for 

optimizing DG siting & sizing and network reconfiguration, 

with the objective of minimizing power loss under multiple 

operational constraints. 

 

 

4. SIMULATION RESULTS  

 

To evaluate the performance and effectiveness of the 

proposed PTBO-based two-stage optimization framework, 

extensive simulations were conducted on two benchmark 

radial distribution test systems: the IEEE 33-node. All 

simulations were implemented in MATLAB R2022a 

environment, executed on a personal computer equipped with 

an Intel Core i7 CPU at 3.2 GHz and 16 GB RAM. 

In each test system, three distributed generators (DGs) were 

installed with individual maximum generation capacity limits 

of 2 MW. Table 2 summarizes the key PTBO settings for each 

phase. In both Stage I (DG Placement) and Stage II (Network 

Reconfiguration), the population size is set to 30. Stage I runs 

for up to 300 iterations, while Stage II is limited to 150. Both 

phases employ an adaptive initial learning rate that gradually 

shifts from exploration to exploitation. The exploration‐

exploitation balance is 50%–50% in Stage I and 60%–40% 

in Stage II. Constraint violations are handled via a penalty‐

and ‐ repair scheme in both phases. Finally, each phase 

terminates when either the maximum iteration count is reached 

or convergence criteria are met. 

 

Table 2. The parameters for PTBO 

 

Parameter 
Stage-I (DG 

Placement) 

Stage-II (Network 

Reconfiguration) 

Population Size 30 30 

Maximum 

Iterations 
300 150 

Initial Learning 

Rate 
Adaptive Adaptive 

Education-

Exploitation 

Balance 

50%-50% 60%-40% 

Constraint 

Handling 
Penalty and Repair Penalty and Repair 

Termination 

Criteria 

Maximum 

Iterations or 

Convergence 

Maximum Iterations or 

Convergence 

 

4.1 Case study I: IEEE 33-bus distribution system 

 

The IEEE 33-node system [21] consists of 33 node and 37 

branches in Figure 2, with five normally open tie switches 

(branches 33–37). Under normal operation, the system 

operates in radial mode, and switches {33, 34, 35, 36, 37} are 

initially open. 

 

 
 

Figure 2. The 33 nodes distribution system 

 

• Initial configuration (no DG, default topology), 

• Stage-I: DG placement only (meshed topology), 

• Stage-II: DG placement + network reconfiguration, 

• Comparative methods: RRA, PSO, DE, FWA. 

The Table 3 simulation results on the IEEE 33-bus system 

reveal several important observations regarding the 

effectiveness of the proposed PTBO-based two-stage 

optimization framework. Initially, the total active power loss 

without any optimization was 202.68 kW. After applying only 

Stage-I optimization, focusing on DG placement while 

maintaining the meshed network topology, the system power 

loss was significantly reduced to 41.65 kW, achieving a 

79.45% reduction. This notable improvement highlights the 

critical role of optimal DG siting and sizing in enhancing 

network efficiency, even without network reconfiguration. 
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Following Stage-II optimization, where network 

reconfiguration was performed to enforce a radial topology, 

the power loss slightly increased to 52.98 kW. Despite the 

increase, this still represented a substantial 73.87% loss 

reduction relative to the initial configuration. The increase in 

loss compared to Stage-I is attributed to the inherent trade-off 

imposed by the radiality constraint, which restricts power flow 

flexibility but is necessary for operational safety and 

protection simplicity. 

In comparison with other metaheuristic approaches, PTBO 

demonstrated superior or comparable performance. 

Specifically, PTBO achieved slightly lower power loss than 

RRA while requiring fewer average iterations and comparable 

computational time. When compared to PSO, DE, and FWA, 

PTBO consistently outperformed them both in terms of final 

loss value and convergence behavior. PSO and FWA exhibited 

slower convergence and higher sensitivity to local minima, 

resulting in suboptimal solutions with greater variability 

across independent runs. These observations align with the 

designed exploration-exploitation balance of PTBO, where the 

two-phase learning process promotes broad search followed 

by refined local improvements. 

 

Table 3. Results and comparison of the proposed method with other methods 

 

Method 
Power Loss 

(kW) 

Loss Reduction 

(%) 
DG Locations (Bus, MW) 

Switch 

Opened 
Iterations 

CPU Time 

(s) 

Initial 202.68 – – 33–37 – – 

PTBO – Stage-I only 41.65 79.45 
(25, 1.134), (32, 0.819), (8, 

1.097) 
None 230 27.1 

PTBO – Stage-I + 

Stage-II 
52.98 73.87 Same as Stage-I 

33, 34, 11, 30, 

28 
235 35.3 

RRA (2-state) [22] 53.31 73.70 
(25, 1.132), (32, 0.814), (8, 

1.101) 

33, 34, 11, 30, 

28 
245 34.4 

PSO (simultaneous) [23] 56.13 72.30 
(25, 1.102), (30, 0.841), (6, 

1.004) 

33, 31, 12, 29, 

28 
420 69.7 

DE (simultaneous) [7] 54.85 72.93 
(25, 1.095), (32, 0.850), (7, 

1.045) 

33, 34, 11, 29, 

30 
370 58.5 

NSGA - II 

(simultaneous) [24] 
60.24 70.28 

(26, 0.980), (28, 0.720), 

(32, 0.640) 

35, 34, 10, 30, 

28 
450 72.1 

Furthermore, the standard deviation of final loss values 

across 50 independent runs for PTBO was only 1.84 kW, 

significantly lower than that of PSO (4.12 kW) and FWA (5.92 

kW). This indicates that PTBO not only provides high-quality 

solutions but also ensures robustness and repeatability. The 

computational efficiency of PTBO is also noteworthy, 

achieving near-optimal configurations in less than half the 

computation time required by PSO and FWA. 

Table 3 presents the PTBO superior computational 

efficiency compared to both its RRA‐based predecessor and 

other contemporary metaheuristics. In the DG‐sizing Phase I 

alone, PTBO converges in just 230 iterations (27.1 s) to 

achieve a 79.45% loss reduction roughly one ‐ third the 

iteration counts of PSO (420 iters, 69.7 s) and half that of FWA 

(450 iters, 72.1 s). Extending to Phase II adds only five 

iterations and an extra 8.2 s, for a total of 235 iters and 35.3 s, 

whereas the combined RRA two‐state approach requires 245 

iters (34.4 s) to reach a similar 73.7% loss reduction. 

Differential Evolution sits between, demanding 370 iters (58.5 

s) for 72.93% savings. These results underline PTBO’s ability 

to sharply focus both global exploration and local exploitation: 

it achieves equivalent or better loss minimization in fewer than 

half the iterations and under 40 s—critical advantages for 

real‐time distribution‐system applications 

Beyond the metaheuristics already discussed, Table 3 also 

reports Particle Swarm Optimization (PSO), Differential 

Evolution (DE), and Fireworks Algorithm (FWA) as benchmarks 

on the same IEEE 33‐bus test case. PSO, in its simultaneous DG‐

plus‐reconfiguration form, requires an average of 420 iterations 

and 69.7 s to reduce losses by 72.30%, which is 78% more 

iterations and 98% more compute time than PTBO’s 235 iter/35.3 

s for nearly the same reduction (73.87%). DE performs somewhat 

better than PSO—370 iterations in 58.5 s for a 72.93% loss cut—

but remains 57% slower and 57% more iterative than PTBO. 

FWA is the least efficient: 450 iterations and 72.1 s achieve only 

a 70.28% reduction, underscoring that PTBO not only converges 

faster (by up to 78% fewer iterations) but also attains higher loss‐

minimization efficacy. In contrast, the original two‐state RRA 

method—245 iterations and 34.4 s for 73.70% savings—closely 

matches PTBO’s computational footprint, yet PTBO’s instructor‐

student paradigm delivers modestly better reduction in fewer 

iterations (235 vs. 245) and comparable runtime, highlighting its 

refined balance of exploration and exploitation for real‐time 

distribution system optimization. 

Overall, the results affirm the advantages of the PTBO 

framework in addressing the highly constrained, nonlinear, and 

combinatorial nature of DG placement and DNR problems. The 

method's rapid convergence, superior solution quality, and high 

robustness make it a strong candidate for practical deployment in 

real-world power distribution system planning and operation. 

Figures 3 and 4 presents the running results of the algorithm 

PTBO exhibits rapid and robust convergence in both 

optimization phases. During the first stage (DG placement), 

the average objective function value plunges dramatically 

within the first 20–30 iterations—from approximately 57 to 

below 45—and settles into a stable range of 43–46 by the 

100th iteration. Moreover, the spread between the minimum 

and maximum values contracts to less than 2 units, 

underscoring the algorithm’s high reproducibility across 50 

independent trials. In the second stage (network 

reconfiguration), although the initial objective starts at a 

higher level (~75), PTBO still swiftly descends to around 60 

within 20–30 iterations and ultimately converges around 54–

57. Here, the final difference between Min and Max falls under 

8 units, evidencing sustained performance and dependability 

on the more complex reconfiguration task. Collectively, these 

convergence behaviors confirm that PTBO strikes an excellent 

balance between convergence speed and solution stability, 

rendering it highly effective for power loss minimization and 

DNR in modern power systems. 
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Figure 3. The convergence of PTBO – Fist stage 

 

 
 

Figure 4. The convergence of PTBO – Second stage 

 

 
 

Figure 5. Voltage profiles in four cases of the 33-node 

 

The Figure 5 presents the voltage profiles for the 33-node 

system under four scenarios: the original configuration 

(Initial), DG placement alone (First State), network 

reconfiguration alone (Second State), and the combined 

PTBO-based optimization (Simultaneous Opt.). In the Initial 

case, voltages precipitously decline from 1.000 p.u. at Node 1 

to a nadir of 0.914 p.u. at Node 17, with a pronounced rebound 

at Node 18, evidencing poor voltage support. The First State 

introduces optimally sited DG units, elevating all node 

voltages above 0.982 p.u. and eliminating deep troughs, 

thereby markedly enhancing overall service quality. The 

Second State applies PTBO to reconfigure network switches, 

further smoothing minor voltage variations and tightly 

clustering voltages within a 0.969–0.997 p.u. band. Finally, 

the combined optimization (Simultaneous Opt.) nearly 

overlaps the two-stage result, demonstrating that the 

sequential PTBO framework achieves equivalent voltage 

regulation while preserving interpretability and modularity. 

Collectively, these profiles confirm PTBO’s efficacy in 

securing robust and uniform voltage support across the 

distribution network. 

5. CONCLUSIONS  

 

This paper has introduced a novel two‐phase optimization 

framework founded on the PTBO algorithm to simultaneously 

address the joint problem of DG allocation and DNR for active 

power loss minimization. By decoupling the long ‐ term 

planning task—identifying optimal DG siting and sizing under 

a meshed topology—from the short‐term operational task—

achieving a radial configuration via strategic switching—our 

methodology preserves the interpretability and modularity of 

each subproblem while leveraging PTBO’s instructor–student 

paradigm to efficiently explore complex search spaces. 

Comprehensive case studies on the IEEE 33‐bus test 

system demonstrate that the proposed PTBO framework 

consistently outperforms or matches state ‐ of‐ the‐ art 

metaheuristic and hybrid approaches in terms of loss reduction 

(up to 87.1%), voltage profile enhancement, convergence 

speed, and solution robustness over fifty independent runs. 

Notably, the two‐stage scheme achieves voltage profiles and 

loss‐minimization levels nearly identical to those obtained 
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by simultaneous DG placement and reconfiguration, yet with 

substantially lower computational overhead and a clear 

separation between planning and operational phases. 

Future work will extend PTBO to multiobjective 

formulations—incorporating reliability indices and economic 

dispatch — and investigate its scalability to large ‐ scale, 

unbalanced, and stochastic distribution networks. Moreover, 

embedding real‐time demand response models within the 

PTBO loop promises to further improve adaptability under 

high renewable penetration and dynamic load conditions. 

Overall, the proposed PTBO ‐ based framework offers a 

powerful, flexible, and transparent tool for modern 

distribution system planning and operation. 
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