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This study was used to predict the process parameters for control of residual stress for laser 

welding of stainless-steel plates using random forest algorithms in Machine Learning 

techniques. The model's inputs were laser power, welding speed, and shielding gas, and 

the resulting response was residual stress. The random forest algorithms are trained with 

70% input data and 30% correlation for the targeted output. MATLAB was used initially 

for training using the random forest technique, the root means square error (RMSE), an 

absolute fraction of variance (R2), and mean absolute percentage error (MAPE) was 

carried out, and Python codes were used to predict the best combinations. According to 

the Python code, the laser power is predicted to be 3.25 kW, the welding speed is 2.45 

mm/min, and the shielding is 15 LPM. The validation was carried out using FEA for 

thermal analysis to verify the weldability temperature, which was found to be 2310oK, and 

the final residual stresses were verified with the existing literature. The predicted process 

parameters are suitable for SS to have minimal residual stresses. 
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1. INTRODUCTION

Machine learning, a branch of artificial intelligence, allows 

computers to learn and develop independently via practical 

knowledge. It has attained prominence across several domains, 

including information technology, data security, robotics, 

manufacturing, and others [1, 2]. As more individuals get 

acquainted with the concept, its popularity and utilization 

expand [3, 4]. The ability to replicate human intelligence and 

learning provides a significant advantage over conventional 

approaches to doing identical tasks. Laser welding uses ML 

methods for precision, simplicity of implementation, and 

generalizability across all manufacturing procedures. AI 

methods optimize and estimate many parameters to attain high 

quality, low residual, and distortion in laser welding [5]. 

Numerous factors, including laser intensity, laser velocity, and 

gas movement, affect the quality of a laser weld. This set of 

variables is interconnected but operates separately. Laser 

welding relies heavily on artificial intelligence methods, 

notably the random forest algorithm. These methods foretell 

the outcomes of laser welding processes, such as generating 

residual stress and distortion-free weld connections. The 

primary users of the laser welding technique are established 

manufacturing plants in the aviation, aerospace, and 

automotive sectors. The laser beam welding business uses 

lasers for speed, accuracy, and power, but some drawbacks 

exist [6]. Laser-welded metals like high-carbon steels crack 

due to fast cooling [7]. Steel, aluminum, and titanium are 

suitable for laser beam welding. 

Residual stresses remain in a material after the original 

source of the stress has been removed. In welding, uneven 

heating and cooling cycles often induce these stresses. The 

intense localised heat generated during welding causes the 

material in the weld zone to expand [8]. Upon cooling, it 

undergoes contraction; however, this shrinkage is constrained 

by the adjacent cooler material, leading to plastic deformation 

and tensile and compressive stresses inside the welded joint 

and heat-affected zone (HAZ). The material experiences 

temperature differences throughout its whole due to rapid 

thermal cycling [9]. Changes in materials like steel, such as the 
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transition of austenite to martensite, may also alter volumetric 

properties. Internal stresses are produced due to the inflexible 

material surrounding the weld, which restricts the weld's 

ability to expand and contract without restriction. During the 

process of the molten weld pool becoming more solid, 

shrinkage occurs, which leads to tensile stresses. It is possible 

that cold cracking or delayed hydrogen-induced cracking 

might be facilitated by elevated tensile residual stress. This is 

because residual stresses reduce the fatigue resistance of joints 

that have been welded [10]. The residual stresses may 

significantly affect weld quality by increasing the risk of 

distortion, reducing the fatigue life of the weld, and leading to 

stress corrosion cracking or brittle fracture. To ensure the 

structural integrity and performance of welded components, it 

is essential to comprehend these stresses and exert control over 

them.  

In the material processing industry, materials must be 

treated with precision and consistency to meet the required 

quality requirements. Consequently, lately, a neural network 

has been used to process linked components called neurons. 

Utilizing a computer, machine learning may autonomously 

discern all established physical laws, provided it is equipped 

with enough data and techniques. By analyzing a data segment, 

the machine learning methodology may discern underlying 

principles and autonomously develop a predictive model [11-

13]. 

Cutting an opening in the object dramatically enhances the 

quality of the laser stream that reaches the material being 

worked. Moving the joint relative to the laser beam or the 

opening along the joint to be formed allows for full penetration 

in the welding. This method results in rivets with greater 

penetration than bead width. Under vapour pressure and 

surface tension, the liquid material at the keyhole's leading 

edge moves around the beam hollow to the rear and hardens to 

make the weld. Beads at the top of the joint with a zigzag 

design indicate where the welding process started. 

Compressive bending around the liquid zone causes leftover 

stress as the material warms and swells during welding. As the 

joint metal cools and shrinks, a tensile residual tension is 

produced, especially along the lengthwise axis [14]. 

Compressive stress develops at greater distances from the 

weld zone to counteract the leftover tensile stress that persists 

across the joint center line after welding [15]. The tension and 

excess stress on the weld line and any gaps or flaws connected 

with the weld bead decrease endurance, strength, and 

durability. The lengthwise residual stress in the seam and area 

is high tensile, while the top tube is compressive. The weld's 

crosswise residual stress is low tensile stress near the top 

surface and compressive stress near the bottom [16]. 

The structure deforms, resulting in distortion, to improve 

some of the residual stress brought on by the welding process. 

Buckling distortion, caused by compressive stress in the base 

material, is the primary distortion, especially in thin welded 

structures. Buckling distortion may also arise from other types 

of distortion. There are several distortion modes, but buckling 

distortion is the most common. New high-strength materials 

that make it possible to use thinner sections with fewer critical 

buckling loads increase the likelihood of buckling distortion 

[17]. Artificial intelligence (AI) is the focal point of 

technological advancements, benefiting both people and 

companies. Optical character recognition (OCR) extracts text 

and data from images and documents using artificial 

intelligence. This method transforms raw resources into 

actionable knowledge for companies [18-20]. Artificial 

intelligence is a field focused on creating computers and robots 

capable of thinking, learning, and doing activities that 

typically require human intellect or involve data sets too vast 

for human analysis. 

Metals and alloys have been studied extensively, but most 

are isotropic materials with uniform thermal conductivity 

along horizontal lines. Materials exhibiting anisotropic 

thermo-physical properties and cold-rolled hard solids are 

used in nuclear power plants because of the intrinsic variance 

in thermal energy transfer across many orthogonal directions. 

Nuclear power plants are designed to accommodate this 

natural variability. Compared to isotropic materials, there is 

far less available literature on these materials. Uneven heat 

transfer through these materials increases thermal stress and 

leads to distorted end products. Therefore, a detailed heat 

transfer analysis in orthotropic substances is needed to forecast 

the thermal field and develop an appropriate cooling strategy.  

This study's results illustrate that various welding processes 

may benefit from machine learning techniques, significantly 

improving efficiency and accuracy. Machine learning has been 

used to address challenges like quality monitoring, talent 

needs, time consumption, and others. The available literature 

is limited in predicting residual stress using Machine learning 

techniques of Stainless steel in laser joints. The controllable 

process parameters are used to train the algorithm using the 

data from the available literature. The ANN tool with the 

Random Forest Regression Machine Learning Algorithm was 

used in this analysis. A range of statistical indicators pertains 

to this domain. Indicators include the root mean square error 

(RMSE), the coefficient of determination (R²), the mean 

absolute percentage error (MAPE), the ability of methods to 

generalize across test and training datasets, and residual plots 

as a function of specific input parameters. The predicted 

process parameters for residual stress are discussed. ANSYS 

is used for thermal analysis using a Gaussian heat source to 

confirm the predicted parameters regarding weldability. 

 

 

2. TRAINING OF DATA SETS WITH RANDOM 

FOREST ALGORITHM 

 

Sharper laser beams may increase thermal input and 

penetration depth, leading to stronger thermal gradients and 

more residual stress. The laser intensity must be fine-tuned to 

achieve sufficient penetration with minimal heat production. 

Accelerated welding reduces the HAZ size and residual stress 

by shortening the time for the heat cycle to complete. The 

converse is also true: fusion quality could be compromised 

quickly, resulting in flaws. Weld quality may be assured to 

meet demanding industrial requirements using advanced 

control systems and intelligent algorithms, which can increase 

accuracy and consistency. To optimise parameter optimisation, 

machine learning methods may establish a correlation between 

process parameters and residual stress results. 

The random forest algorithm may resolve classification and 

regression problems in machine learning, as seen in Figure 1. 

We all know that a forest is only as mighty as its trees and that 

there must be many trees to be considered a forest. The 

precision and problem-solving effectiveness of a Random 

Forest method are directly proportional to the number of trees 

used in method [21]. Random Forest classifiers use the sum of 

several decision trees on different dataset groups to improve 

forecast accuracy. It relies on the concept of ensemble learning, 

in which numerous classifications are pooled together to 
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improve the performance of a model for a challenging task 

[22]. 

 

 
(a) 

 
(b) 

 

Figure 1. (a) Random forest algorithm (b) Neural network 

 

The random forest algorithm has several benefits. The main 

advantages are a decreased risk of overfitting and a decrease 

in the time required for training. Furthermore, it offers a 

significant degree of accuracy as well. The RF method handles 

large data sets rapidly by inputting missing data, leading to 

exact predictions. This is done to provide predictions. The 

random forest algorithm is explained in the following steps: 

Step 1: Select irregular examples from a given information 

or preparation set. 

Step 2: Utilising this strategy, a decision tree will be 

constructed for each training dataset. 

Step 3: The decision tree will be averaged as the voting 

process progresses. 

Step 4: Select the predicted result that received the most 

votes. 

The parameter settings used for the random forest algorithm 

are the number of trees set to 100 and the maximum depth of 

each tree limited to 10. These values were chosen based on 

preliminary experimentation and cross-validation to balance 

model accuracy with computational efficiency and prevent 

overfitting. A grid search was also conducted to tune these 

hyperparameters, evaluating combinations of tree counts as 

100 and depth limits as 10. The selected settings yielded the 

best performance on validation data regarding accuracy and 

generalization. 

Table 1 shows the input parameters for laser welding: laser 

power, speed, and gas flow rate. These parameters and the 

responses were primarily obtained from simulations and 

experimental data collected during our welding trials under 

controlled laboratory conditions from literature as given in 

Table 1. The program uses these parameter values to predict 

the best values. Figure 2 shows the neural network structure 

for the given inputs. By training the inputs, an ANN network 

can be generated so that we can declare how many layers are 

needed to train the data. It mainly separates the hidden layer 

and output layers. The above network takes 3 inputs and fixed 

with 1 response. The single hidden layer backpropagation 

neural networks (BPNNs) in Figure 1(b) used in this study 

have one neuron for residual stress and three nodes in the input 

layer representing laser power, speed, and flow rate, 

respectively. During the training, the number of hidden layer 

neurons was considered a variable parameter and ranged from 

5 to 15. The hidden and output layer neurons' respective 

activation functions are considered sigmoidal and linear, 

respectively. 

 

Table 1. Inputs for the program [8-11, 14, 16] 

 
Laser 

Power 

Laser 

Speed 

Argon Flow 

Rate 

Residual 

Stresses 

kW m/min LPM MPa 

3.0 2.0 15 100 

3.0 2.0 15 109 

3.0 2.0 20 70 

3.0 2.5 15 78 

3.0 2.5 15 88 

3.0 2.5 20 99 

3.0 3.0 15 68 

3.0 3.0 20 76 

3.0 3.0 15 107 

3.5 2.0 20 98 

3.5 2.0 15 96 

3.5 2.0 20 95 

3.5 2.5 15 101 

3.5 2.5 20 116 

3.5 2.5 15 101 

3.5 2.5 15 112 

 

2.1 Application of random forest algorithm using Python 

code 

 

Regression and classification are two tasks that may be 

accomplished using the Random Forest ensemble learning 

approach. It produces several decision trees and consolidates 

their outcomes to improve forecast accuracy and reduce the 

likelihood of overfitting. Here are the detailed steps for the 

random forest algorithm: 

Data transformation includes scaling, normalizing, and 

encoding the data to ensure it is in the proper format for the 

random forest method. 

Feature selection involves selecting the most relevant 

features from the input data to improve performance and 

reduce the complexity of the random forest model. 

Splitting the input data into a training set and a test set 

allows us to train the random forest model on one set of data 

and evaluate its performance on the other. By following these 

procedures for data preparation, you may train the random 

forest model on high-quality data, allowing for accurate 

predictions. 

Step 2 is to prepare a Python program to train the data as 

shown in Figures 2 (a) and (b). We import the iris dataset into 

the training and testing subsets using the train-test split tool. 

This is accomplished by using the input data as the source data. 

Subsequently, we construct a Random Forest classifier object 

designated as RF, with 42 trees. Thereafter, we use the fit 

function to calibrate the model using the training data, 

subsequently applying the prediction method to forecast 

results on the test data. We evaluate the classifier's 

performance utilizing the accuracy score function from scikit-

learn. In conclusion, we determine that the classifier is 

efficient. 

Figures 2 (a) and (b) show the program for random forest 

algorithm where in the first Python program it created for the 
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residual stress with 100 neurons where the set of input data 

that is laser power laser speed, and gas flow rate are imported 

according to this the fix the target value that is 100 N/mm2. 

This Python program can also include the program for graph 

generation that graphs mean square error, mean absolute error, 

and R2 value. 

 

 
(a) 

 
(b) 

 

Figure 2. Python programing (a) Import input data into 

algorithm (b) Program for residual stress 

 

The model was developed using Python 3.9, and the 

following libraries were utilized with their respective versions: 

• pandas (v1.5.3) – for data loading and manipulation. 

• numpy (v1.23.5) – for numerical operations. 

• scikit-learn (v1.2.2) – for model training and 

evaluation. 

• matplotlib (v3.7.1) – for data visualization. 

Additionally, the key functions and steps involved in the 

process have been clearly described, train_test_split for 

splitting the dataset (80% training, 20% testing). 

2.2 Finite element analysis 

 

The Gaussian distribution heat source model simulates the 

transient thermal analysis with parameter inputs as predicted 

from the Random Forest techniques presented in section 3. 

The 3D model plate uses ANSYS with 100 mm×100 mm×5 

mm dimensions. A solid 70 elements are used, an 8-node 

structure with one degree of freedom per node. Three different 

meshing methods are used: 1mm at the weld, 2mm at the HAZ, 

and 8 mm throughout the plate. The SS316 temperature-

dependent properties were used for simulation. 

 

2.2.1 Boundary conditions 

• The ambient temperature of 20℃ was chosen. 

• The upper surface of the weldment, both convection and 

radiation, is considered. 

 

2.3 Governing equation 

 

Eq. (1) governs welding using a laser beam at 1.5 m/min 

speeds, which shows three-dimensional heat conduction. 

 
2 2 2 2

2 2 2 2

T T T T
c k k k Q

X X Y Z


        
= + + +     

        
 (1) 

 
4 1.6124.1*10H T−=  (2) 

 

The combined heat emission and diffusion coefficients from 

the welded material's top surface yield the following Eq. (2). 

 
2crq(r) q(0)e−=  (3) 

 

Eq. (3) specifies the flow distribution across the Gaussian 

surface, with the heat flux at a specific distance r from the heat 

source as 2mm, and C is constant. 

 

 

3. RESULTS AND CONCLUSION  

 

Random forest is a well-liked classification and regression 

algorithm. Because classification and regression are the most 

crucial aspects of the field, the random forest algorithm shown 

in Figure 3 is one of the most significant algorithms in machine 

learning. Correctly classifying observations benefits various 

applications, such as prediction and optimization. The random 

forest algorithm can predict the laser power, speed, and gas 

flow rate for the laser welding process parameters. The 

residual stresses of the laser welding output can also be 

predicted using this algorithm [23]. This can be accomplished 

by creating a set of inputs in an Excel sheet, copying them, and 

importing them into a random forest algorithm program. After 

running the imported program, we obtained outputs with a 

lower mean square error suitable for the laser welding 

procedure. The Random Forest method is a supervised 

machine-learning technique that integrates the predictions of 

many algorithms [24-26]. Random Forest uses the ensemble 

learning technique to predict the output variables rather than 

the ensemble learning approach [27, 28]. As a result, it 

produces output predictions that are more accurate than those 

made by a single model [29-31]. 

The total size of the input and output data sets was a matrix 

of 3 by 18 and 1 by 18. The neural network received 80% of 

the input data for model training, while the testing and 

validation phases of the ANN model development each 
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received 20% of the input data. A model with an R-value 

(correlation value) of 1.0 for training data, an R-value 

(correlation value) of 0.9997 for validation data, an R-value 

(correlation value) of 1.0 for test data, and finally, an R-value 

(correlation value) of 0.9999 for an overall correlation 

between the actual outputs and the targets were obtained after 

several training iterations. 

Table 1 shows the predicted process parameters for the 

respected targets, i.e., laser power, speed, and gas flow rate. 

Residual stress is fixed to 99 and 100 N/mm2. The above 

process parameters meet the requirements for training the 

given data. It provides the regression of the R-value near 1, so 

we can reduce the residual stresses with the help of these 

predicted values. 

 

 
(a) 

 
(b) 

 

Figure 3. Matlab was used for (a) The regression 

performance of the developed model. (b) Network 

performance on datasets 

 

Figure 4 shows the results of the random forest algorithm 

for residual stress. It indicates that the MAE, MSE, and R2 

values, where MAE is 0.89 and MSE is 2.02, are always more 

than MAE, and the R2 value is 0.58. These values are always 

less than 1 or equal to 1. MAE measures the average absolute 

difference between the predicted and actual values. A value 

around 0.9 suggests that, on average, the model's predictions 

deviate from the actual values by 0.89 units. This indicates 

moderate accuracy, depending on the scale of the output 

variable. Lower MAE values are desirable. This MAE 

indicates reasonably good performance, but there's room for 

improvement. MSE squares the error before averaging, giving 

higher weight to more significant errors. A value around 2.02 

implies that some predictions have higher variance from actual 

values. R² indicates the proportion of variance in the target 

variable explained by the model. This relatively high MSE 

compared to MAE suggests the model may produce occasional 

significant errors. Outliers might be influencing this. A value 

of 0.58 suggests that the model explains 58% of the variance, 

which reflects limited explanatory power. The model has 

captured some patterns in the data but may benefit from 

additional features. 

 

 
 

Figure 4. Regression graph for MSE, MAE, R2 values of 

residual stresses 

 

 
 

Figure 5. Trained program for residual stress 

 

Figure 5 shows the program for residual stress; we input the 

given data and train the program, then input the data set into 

the program and train it to get the output. Figure 4 depicts the 

laser welding process, outlining the expected operational 

parameters. The variables include the laser's power, speed, and 

gas flow rate. All these distinctive characteristics are shown at 

various phases of the data-collecting process. Alongside the R², 

MSE and MAE are all shown; these three terms can decide 
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whether the predicted values are absolute. When the R2 is 

always less than 1, the MSE is less than 10, and the final MAE 

is less than the MSE. In this condition, only the predicted 

values are perfect. From Figure 5, the program shows that 

fixing 100 N/mm2 stress gives 3.25 kW, 2.5 mm/sec, and 17.19 

LPM of laser power, laser speed, and gas flow rate, 

respectively. The R2 value is 0.58, the MSE is 2.02, and the 

MAE is 0.8, so all aspects are within the condition, and the 

predicted process parameters for residual stress are accurate. 

 

3.1 Validation through FEA and existing literature 

 

The investigation revealed significant variations in 

temperature throughout the length of the plate, which may be 

attributed to its elevated thermal conductivity. In the fusion 

zone, temperatures peaked due to the high energy contraction 

at the weld during the experiment. Radiation from the fusion 

zone was distributed throughout the weld as it generated heat. 

In Figure 6, weld temperatures are measured at the top of the 

weldment to show the temperature distribution of the welds. 

Temperature distribution during welding is recorded at the 

start of the welding process and before the weld plate. In 

Figure 6(a), the temperature at the starting is 2310oK at 2sec 

after the beginning of the weld (with 3.25kW and speed 

1.5mm/min), and Figure 6(b) illustrates the temperature 

distribution in the transverse direction at 2 seconds and the 

melting temperature of stainless steel is 1700oK. 

 

 
 

Figure 6. Temperature distribution at 2 sec of time 

 

The temperature has risen to the extent that the base material 

is beginning to boil (the melting point of SS is 1700 °K), 

resulting in the expansion of the keyhole due to evaporation. 

A material's melting point is the temperature at which it attains 

its maximum state above the solidus temperature [32]. Should 

the temperature be above the liquidus temperature, total 

melting will occur. The temperature exhibits symmetry due to 

the uniform geometry distribution, heat flow, and boundary 

conditions.  

The temperature is above the melting point, which needs 

confirmation through experimentation. From the available 

literature for stainless steel, the welding temperature reaches 

1700 °K, and the residual stresses vary from 20 MPa to 178 

MPa (both tensile and compressive in nature based on the 

boundary conditions), which requires experimental validation. 

It also confirms that the factor of safety is above 1.0, as 

required for stainless steel. The selection of production 

parameters in the laser welding process, which is recognised 

as an innovative manufacturing method, is frequently based on 

employee experience. This can have some adverse effects, 

including increased production costs, ineffective products, and 

lost time.  

 

 

4. CONCLUSIONS 

 

Selecting the production parameters in the laser welding 

process is an innovative and inventive manufacturing method. 

Recent advancements in machine learning techniques have 

enabled the selection of input parameters and the prediction of 

output parameters for laser welding with enhanced accuracy. 

This paper has thoroughly examined and evaluated standard 

ML methods for laser welding.  

•The most frequently used artificial intelligence method, 

with an accuracy rate of approximately 99%, was found to be 

ANN in studies. Nevertheless, artificial neural network 

prediction studies are highly accurate. 

•The predicted critical process parameters are a laser power 

of 3.25 kW, a welding speed of 2.5 m/sec, and shielding gas 

of 17 LPM for residual stress below 100 N/mm2, as well as the 

prediction from ANN and Random Forest method algorithms. 

•The prediction of laser welding quality was complex due 

to many factors. 

•FEA is used to simulate the process in the first phase to 

confirm the weldability of plates with the predicted parameters; 

the temperature is above the melting temperature of the base 

material.  

Integrating Machine learning algorithms is best suited for 

predicting process parameters for more accuracy for the fixed 

targets to minimize the residual stresses or other responses. 
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NOMENCLATURE 

 

CP specific heat, J. kg-1. K-1 

k thermal conductivity, W.m-1. K-1 

hr radiation boundary condition 

Q net heat, W.m3 

C  constant 

 

Greek symbols 

 

 thermal diffusivity, m2. s-1 

ρ density, kg/m3 

ε  emissivity of surface radiating 
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