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Nowadays, Brain tumours are the most crucial disease that is spreading rapidly all around 

the world. According to the statistics, more than a thousand people are losing their lives to 

this tumour in every country. The early prediction of tumours can help to diagnose and 

overcome the disease quickly. For an earlier prediction, there are Numerous research 

techniques like deep learning (DL) and machine learning (ML) models used for feature 

extraction and classification. In some cases, the hybrid models are also used for feature 

extraction and classification. However, the accuracy is not attained up to the level of 

satisfaction for various tumours like Glioma, pituitary, and meningioma. We propose a novel 

DenseNet architecture incorporating Self-Calibrated Squeeze-and-Excitation (SC-SE) for 

enhanced feature extraction and representation. The SC-SE DenseNet integrates SC 

Convolutions (SC-Conv) and SE Blocks within a DenseNet framework. SC-Conv 

dynamically recalibrates both spatial and channel-wise features, which improves the 

model’s ability to adapt to diverse input variations. SE blocks are used to concentrate 

important channels for better feature learning. The extracted features from SC-SE DenseNet 

are classified using the XGBoost classifier. To further optimize performance, the Fire Hawk 

Optimizer (FHO) is used for feature selection and hyperparameter tuning. FHO aids in 

selecting the most relevant features from the input image and reduces dimensionality. 

Additionally, FHO is used to fine-tune the parameters of the XGBoost classifier to increase 

the classification accuracy.  
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1. INTRODUCTION

The brain is the most important part of the human organ 

which comprises all the nervous system responsibilities of 

every activity. Based on the World Health Organization 

(WHO), Brain Tumour is the most severe disease of the human 

brain that have an irregular brain cell pattern. This tumour has 

several types, namely secondary and primary metastatic brain 

tumour [1]. The primary is a brain tumour that originates from 

human brain cells, which is a non-cancerous disease. But in 

secondary metastatic tumours, it spreads to other body parts, 

to the brain, through the blood. 

Based on WHO, Brain Tumours is into four different 

categories, such as Grade I to Grade IV [2]. These Grades are 

categorised based on their malignant or benign. The malignant 

tumour can affect other parts of the human body. Also, benign 

tumour never attacks nearby tissue or other organs of the 

human body. To predict the brain tumour, magnetic resonance 

imaging (MRI) and computer tomography (CT) are used as 

standard methods so far. The malignant tumours, Grade III and 

Grade IV, are very aggressive brain tumours that also affect 

other parts. 

In some cases, there are three major primary brain tumours, 

namely Glioma, pituitary and meningioma [3]. The glioma 

tumours develop from the brain’s glial cells. The Pituitary 

tumour is a type of benign tumor that develops in the pituitary 

gland. This gland provides a few essential hormones in the 

body and also forms a base layer of the brain. The Meningioma 

tumours develop in a protective membrane of the spinal cord 

and brain. These types of tumours can be diagnosed if it is 

predicted earlier. But unfortunately, the MRI and CT cannot 

provide that much accuracy in prediction.  

In recent times, the medical field has emerged with a 

machine learning (ML) and deep learning (DL) models of its 

higher training rate. The ML and DL models are very 

supportive of earlier prediction by training huge datasets of 

tumour images [4]. Some of the popular DL and ML methods 

that are applied for medical applications are Convolutional 

Neural Networks (CNN), Support Vector Machine, AdaBoost, 

Naive Bayes, Decision Tree, DenseNet, GoogLeNet, VGGNet, 

ResNet, AlexNet, Recurrent Neural Network (RNN), and 

Long Short-Term Memory (LSTM), etc. These learnings are 

methods used for classification and feature extraction models 

for an early diagnosis.  

In brain tumour classifications, the current approaches 

struggle to identify and use the most relevant features from 

medical images. Existing feature extraction techniques, such 

as traditional CNNs, may fail to capture complex patterns in 
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MRI images due to their limited ability to model spatial 

dependencies and multi-scale features. Furthermore, feature 

selection methods in existing systems are often either too 

simplistic or computationally expensive. It leads to either a 

loss of crucial information or the inclusion of irrelevant 

features.  

Nowadays, to enhance the prediction ability, metaheuristic 

methods are used as problem-solving models. These methods 

are inspired by and developed from the nature and biological 

behaviour of birds and animals. The metaheuristics methods 

are used to find the optimal solution among all possible 

solutions. The metaheuristics methods are applied to a medical 

application.  

This work proposes a superior approach by combining SC-

SE DenseNet for advanced feature extraction and FHO for 

optimized feature selection. This hybrid method not only 

improves the relevance and quality of the selected features but 

also enhances classification accuracy by curtailing the impact 

of redundant or noisy features. The remaining part of this work 

is contributed in the following: in Section 2, the related works 

based on brain Tumours are described. Section 3 discusses the 

proposed work. Section 4 discusses the experimental results, 

and the paper concludes with a conclusion and references. 

 

 

2. RELATED WORKS 

 

In this section, the literature papers are described by various 

authors which is related to the brain tumour classification. 

Some of the recent methods with greater innovation are 

mentioned in this section. 

Ezhov et al. [5] presented a learnable proxy to simulate the 

growth of a tumour. This growth is mapped to a biophysical 

model parameter, directly to simulation outputs. Whereas the 

patient geometry is obtained through local tumour cell 

densities and improves the accuracy of classification. In the 

literature, a 2-D CNN-based spectral-spatial HSI classification 

and feature extraction is presented by Hao et al. [6]. Also, the 

fusion and optimization model are done with edge-preserving 

filtering. Next, the DL models (AlexNet, GoogLeNet, 

ResNet101, ResNet50, and SqueezeNet) are presented for a 

malignant and benign classification. This model proved that 

the AlexNet accomplished higher accuracy than any other DL 

model, which is described by Mehrotra et al. [7].  

Zhou et al. [8] developed brain tumour detection with 

missing modalities. This method used a correlation method to 

signify the hidden multi-source correlation among multi-

modalities. These modalities are fused through an attention 

mechanism, which improves the performance of detection. 

Some work has applied a DL model with a handcrafted fusion 

and features that are proposed by Ramzan et al. [9]. This model 

applied a grab model and morphological operations with a DL 

model classification. These features are processed with 

various classifiers and achieve a higher accuracy. 

The pre-trained GoogLeNet is used for tumour 

classification by Deepak et al. [10]. This DL model has 

attained a greater accuracy than the traditional methods of art 

methods. In literature, Çinar and Yildirim [11] developed a 

hybrid DL architecture to predict the Brain Tumour. The 

ResNet50 model is used in it, which has added 8 layers to the 

CNN instead of the last 5 layers. This hybrid model achieved 

a higher maximum accuracy than a conventional ResNet50 

model. Next, the Deep Neural Network (DNN) is used to 

categorize the MRI-based brain tumour by Mohsen et al. [12]. 

Here, a fuzzy c-means clustering model is used to split a 

normal and abnormal MRI. The feature extraction is done by 

the discrete wavelet transform (DWT). 

Yu et al. [13] presented a sample-adaptive intensity lookup 

table (LuT) for MRI-based brain tumours. This method 

transformed the intensity contrast of every input dynamically 

to adapt to it. The SA-LuT-Nets results showed superior 

performance with single and multiple MR modalities. Next, 

the lightweight deep model known as the One-pass Multi-task 

Network (OM-Net) is used for brain tumour detection by Zhou 

et al. [14]. It resolved a class imbalance and correlated among 

several tasks. It has both an online training data transfer 

method and a curriculum learning method. 

Singh et al. [15] proposed an ensemble model combining 

ResNet50 and EfficientNet-B7 for brain tumour classification 

with an accuracy of 95.68%. Zhang et al. [16] introduced a 

deep residual network optimized by an enhanced Heap-based 

Optimization (HO) algorithm. The optimized residual model 

achieves 96.64% accuracy in medical image classification. 

Nag et al.'s [17] TumorGANet, using ResNet50 and 

Generative Adversarial Networks (GAN) achieved 95% 

accuracy. Nassar et al. [18] used a multi-model system with an 

accuracy of 99.31%. Talukder et al. [19] applied transfer 

learning with ResNet50V2. It shows 94.68% accuracy for the 

public MRI dataset. Salve and Jondhale [20] developed a 

Hybrid Deep Convolutional Neural Network with the Deer 

Hunting (Hybrid DCNN-DH) method for tumor grade 

classification. Patil and Kirange [21] introduced an Ensemble 

Deep Convolutional Neural Network (EDCNN) model, which 

achieved 96.67% accuracy. 

 

 

3. PROPOSED MODEL  

 

The proposed system outlines a method for efficient brain 

tumor categorization using MRI images. The steps involved in 

the proposed system are given in Figure 1. Initially, feature 

extraction is performed using SC-SE DenseNet. It is used to 

capture detailed characteristics from the MRI images. Then, 

feature selection is applied to increase the relevant features 

while eliminating redundant ones. The optimized feature 

vectors are fed into the XGBoost classifier for robust 

classification. Finally, FHO is used again to fine-tune the 

feature set and optimize the classification model’s 

performance.  

 

 
 

Figure 1. Proposed workflow 
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Figure 2. Proposed SC-SE DenseNet architecture 

 

3.1 SC-SE DenseNet 

 

The SC-SE DenseNet is a modified version of DenseNet 

that integrates Self-Calibrated Convolutions (SC-Conv) and 

Squeeze-and-Excitation (SE) Blocks to improve the feature 

extraction and representation. The SC-SE DenseNet consists 

of an initial convolutional layer, four densely connected blocks 

(Dense Blocks), and a global average pooling (GAP) layer to 

extract more relevant features of the input image. The 

architecture of SC-SE DenseNet is given in Figure 2. 

 

3.1.1 SC-Conv 

The SC-Conv improves feature extraction by dynamically 

calibrating the input features based on their spatial and 

contextual information. This is achieved through the 

combination of two parallel paths: the Standard Convolution 

Path and Self-Calibration Path. The Standard Convolution 

Path extracts spatial features using conventional convolution 

operations. The Self-Calibration Path dynamically adjusts 

feature representations using global context information. Let 

the input feature map be X∈.ℝ𝐻×𝑊×𝐶 , where H denotes the 

height of the feature map, W denotes the width of the feature 

map and C denotes the number of channels. The SC-Conv 

operation is defined as: 

𝑌 = 𝐹𝑐𝑜𝑛𝑣(𝑋) + 𝐹𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒(𝑋) (1) 

 

where, 𝐹𝑐𝑜𝑛𝑣(𝑋) is the output of the standard convolution path 

and 𝐹𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒(𝑋)  is the output of the self-calibration path. 

This Standard Convolution Path applies a conventional 

convolution operation. It can be defined as; 

 

𝐹𝑐𝑜𝑛𝑣(𝑋) = 𝑊 ∗ 𝑋 + 𝑏 (2) 

 

where, * denotes the Convolution operator, W denotes the 

weights of the convolutional kernel and b is the bias term. The 

self-calibration path involves three key steps: Global Context 

Extraction, Channel-Wise Calibration and Feature 

Recalibration. For global context extraction, it computes a 

spatial summary of X using global average pooling as follows: 

 

𝑔𝑐 =
1

𝐻×𝑊
∑ ∑ 𝑋(ℎ, 𝑤, 𝑐)𝑊

𝑤=1
𝐻
ℎ=1   (3) 

 

where, 𝑔𝑐 represents the aggregated information for channel c. 

The result g∈ℝ𝐶  Captures the global context. For channel-

wise calibration, the global context vector g is calibrated 

through a learnable transformation: 

 

𝑠 = 𝜎(𝑊𝑠 𝑔) (4) 

 

where, 𝑊𝑠 is the learnable weight matrix, σ is the non-linear 

activation function, s∈ℝ𝐶is the calibrated scaling vector for 

each channel. For feature recalibration, the calibrated vector s 

is used to reweight the original input as follows: 

 

𝐹𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒(𝑋) = 𝑋ʘ𝑠 (5) 

 

where, ⊙ denotes element-wise multiplication. The final 

output Y of the SC-Conv operation integrates both paths: 

 

𝑌 = 𝐹𝑐𝑜𝑛𝑣(𝑋) + 𝐹𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒(𝑋) (6) 

 

 
 

Figure 3. SE block 

 

3.1.2 SE 

The SE block is a powerful mechanism in neural networks 

designed to enhance the representational power of CNNs [22]. 

This block is inserted to concentrate on important features and 

suppress the irrelevant features. The SE block works by 

learning channel-wise feature recalibration weights and 

allowing the network to adaptively attend to essential features. 

This process involves two fundamental operations: squeezing 

and exciting as shown in Figure 3. The squeezing step 

aggregates channel-wise information to capture global 

statistics and the exciting step performs feature re-weighting 

based on learned parameters. 

In Squeeze operation, it compresses the spatial dimensions 
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of X into a channel descriptor by performing global average 

pooling. In an excitation operation, the squeezed vector passes 

through a fully connected (FC) bottleneck network with two 

layers to capture channel dependencies. Overall, the SE block 

focuses purely on recalibrating the channel importance of 

feature maps using global context. The SC-Conv improves 

feature extraction by combining spatial and channel 

recalibration. It includes both standard convolutions and a 

dynamic self-calibration path. 

 

3.2 Fire Hawk Optimizer (FHO) 

 

The metaheuristic model [23] of the FHO method is 

inspired by the hunting strategy of black kites, whistling kites, 

and brown falcons that are known as Fire Hawks. These birds 

are often used to set a fire around the prey to catch them [24]. 

Initially, the fire hawk is positioned as the prey in its 

territory. The fire hawk is considered to catch in its territory 

and protect that not affected by other fire hawks. The distance 

limit between the number of the prey and the fire hawk is 

estimated. Meanwhile, position updation is performed by fire 

hawks so that the prey from its territory is not affected by other 

territories' fire hawks. The Gaussian distribution is used to 

provide a search loop in random where the number of prey and 

total fire hawks are estimated. 

 

Core Principles of FHO: 

(1) Initialization 

A population of potential solutions (denoted X) is initialized 

randomly within the bounds of the problem's search space. 

Each solution vector represents a candidate position in the d-

dimensional problem space. It can be mathematically defined 

as: 

 

𝑥𝑗
𝑖(0) = 𝑥𝑗,𝑚𝑖𝑛

𝑖 + 𝑟1(𝑥𝑗,𝑚𝑎𝑥
𝑖 − 𝑥𝑗,𝑚𝑖𝑛

𝑖 ) (7) 

 

where, 𝑥𝑗,𝑚𝑖𝑛
𝑖 and 𝑥𝑗,𝑚𝑎𝑥

𝑖 are the bounds, 𝑟1 is a uniform random 

number, i=1,2,…,N, and j=1,2,…,d. 

(2) Classification into Fire Hawks and Prey 

In this stage, the candidates with better objective function 

values become fire hawks and others represent prey. Fire 

hawks spread "fires" strategically to herd prey into more 

favourable search regions. The total distance between each fire 

hawk and its nearest prey is computed to define territories as 

follows: 

 

𝐷𝑙
𝑘 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 (8) 

 

This calculation ensures each fire hawk's territory is 

distinguished for optimal search coverage. 

(3) Position Updates 

Fire Hawks (FH) adjust their positions based on proximity 

to the global best solution (GB) and influence from other 

hawks. It can be mathematically defined as: 

 

𝐹𝐻𝑙
𝑛𝑒𝑤 = 𝐹𝐻𝑙 + 𝑟1(𝐺𝐵 − 𝐹𝐻𝑙) − 𝑟2(𝐹𝐻𝑛𝑒𝑎𝑟 − 𝐹𝐻𝑙) (9) 

 

where, 𝑟1 and 𝑟2 are random coefficients, l is the index for FH. 

l=1,2,…,n. n is the total number of fire hawks in the search 

space. Likewise, the prey reacts by moving within or outside 

fire hawk territories 

 
𝑃𝑅𝑞

𝑛𝑒𝑤 = 𝑃𝑅𝑞 + 𝑟3(𝐹𝐻𝑙 − 𝑃𝑅𝑞) − 𝑟4(𝑆𝑃𝑙 − 𝑃𝑅𝑞) (10) 

where, 𝑆𝑃𝑙  represents a safe zone or position within the fire 

hawk’s territory, q is the index of Prey Reactions (PR). 

(4) Iterative Search and Optimization 

Fire hawks simulate dynamic behaviors like dropping 

burning sticks and expanding their territories, while prey 

constantly adapts to escape threats. These steps refine solution 

quality iteratively. 

 

3.3 FHO-based feature optimizations 

 

Feature selection is an essential step of DL models which 

identifies the most relevant input features and eliminates 

irrelevant or redundant ones. In this work, feature selection is 

combined into the DenseNet model using the FHO to improve 

the tumor classification accuracy. For feature optimization, the 

FHO is initialized with a population of candidate solutions. 

Each candidate denotes a subset of the features extracted by 

the proposed DenseNet. The population is randomly set, where 

each solution relates to a different combination of features.  

The pseudocode for the proposed feature selection is given 

below:  

 

Start: 

    Input: Dataset D (features F and labels Y), population 

size N, max iterations MaxIter 

    Initialize population (N solutions) with random 

positions (feature subsets) 

    Evaluate the fitness of each solution using 

classification error (XGBoost) 

While not MaxIter: 

    # Exploration Phase (Fire Hawks vs Prey) 

    For each candidate solution i in population: 

        Classify solutions into Fire Hawks and Prey based 

on fitness: 

            - Fire Hawks are solutions with better fitness 

            - Prey represent the remaining solutions 

        Identify better-performing solutions (Fire Hawks) 

        Select a random solution SPi from Prey (Safe 

Position for Prey) 

        Fire Hawks spread "fires" to herd Prey into better 

regions of the feature space 

        # Update position of Prey based on Fire Hawks’ 

influence: 

        Update Prey position: 𝑃𝑅𝑞
𝑛𝑒𝑤 

    # Exploitation Phase (Position Updates for Fire 

Hawks) 

    For each Fire Hawk l in population: 

        Update position based on proximity to the global 

best solution (Xbest): 

        𝐹𝐻𝑙
𝑛𝑒𝑤  

        If the new position improves fitness (lower 

classification error): 

            Replace the current feature subset with updated 

subset. 

 

    # Update global best solution Xbest if a better fitness is 

found: 

    If Fitness (Xi) > Fitness (Xbest): 

        X_best = Xi 

End While 

Output: 

    Best feature subset (Xbest) and its corresponding 

Classification error. 
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Each solution is calculated using a fitness function that 

measures the classification loss of a classifier trained on the 

selected features. The algorithm refines the feature subsets by 

identifying better-performing solutions (Fire Hawks) and 

selecting random solutions from this set. The current feature 

subset is updated based on these better solutions. The solution 

is accepted when the update improves the classifier’s 

performance. The process continues until convergence, with 

the algorithm returning the best feature subset corresponding 

to the minimum classification error. This subset represents the 

most relevant features for the classification task. 

 

3.4 FHO-based parameter tuning  

 

XGBoost is a robust ensemble learning method used for 

classification tasks [25]. The performance of the XGBoost 

model is greatly influenced by the hyperparameters. It includes 

the learning rate, maximum tree depth, and the number of 

estimators. The proper tuning of these hyperparameters 

improves the model’s accuracy and efficiency. In this work, 

FHO is used to identify the optimal hyperparameter 

configuration for XGBoost. This technique accelerates the 

optimization process and increases the overall model 

performance. The pseudocode for the proposed parameter 

tuning is given below:  

 

Pseudocode: FHO for XGBoost Hyperparameter Tuning 

Start: 

    Input: Dataset D (features F, labels Y), Population 

Size N, Max Iterations MaxIter 

           Initial Range for XGBoost Hyperparameters 

(learningrate, maxdepth, nestimators, etc.) 

           Number of generations MaxGenerations 

    Initialize Population with random hyperparameter 

values within the defined range: 

        Each solution is represented by a vector Xi = 

[learningrate, maxdepth, nestimators, ...] 

    For each candidate solution i in the Population, 

evaluate fitness: 

        Fit XGBoost model with hyperparameters Xi and 

calculate Classification error. 

        Fitness (Xi) = Model Accuracy 

    While not MaxGenerations: 

        # Exploration Phase (Fire Hawks vs Prey) 

        For each candidate solution i in Population: 

            Classify solutions into Fire Hawks and Prey 

based on fitness: 

                - Fire Hawks have better objective function 

values 

                - Prey represent the rest of the population 

            Identify better-performing solutions (Fire 

Hawks) and select a random solution SPi from Prey (Safe 

Position for Prey). 

            Fire Hawks spread "fires" strategically to herd 

prey into more favorable regions. 

            # Update position of Prey based on Fire Hawks’ 

influence: 

                Update Prey position:  

𝑃𝑅𝑞
𝑛𝑒𝑤 = 𝑃𝑅𝑞 + 𝑟3(𝐹𝐻𝑙 − 𝑃𝑅𝑞) − 𝑟4(𝑆𝑃𝑙 − 𝑃𝑅𝑞) 

        # Exploitation Phase (Position Updates for Fire 

Hawks): 

        For each Fire Hawk l in Population: 

            Update position based on proximity to the global 

best solution (Xbest): 

𝐹𝐻𝑙
𝑛𝑒𝑤 = 𝐹𝐻𝑙 + 𝑟1(𝐺𝐵 − 𝐹𝐻𝑙) − 𝑟2(𝐹𝐻𝑛𝑒𝑎𝑟 − 𝐹𝐻𝑙) 

            If new position improves fitness: 

                Replace current hyperparameters with updated 

ones. 

        # Update global best solution Xbest if a better fitness 

is found: 

            If Fitness (Xi) > Fitness (Xbest): 

                Xbest = Xi 

    End While 

    Output: 

        Best Hyperparameters (Xbest) for XGBoost 

        Corresponding Evaluation Metric (Classification 

error) 

End 

 

The population is initialized randomly. The solutions are 

classified based on their fitness values whereas Fire Hawks 

represent better solutions. Fire Hawks adjust their positions 

based on proximity to the global best solution (Xbest) and prey. 

The prey reacts to the influence of Fire Hawks. The fitness of 

each solution guides the optimization process in both the 

exploration and exploitation phases. 

 

 

4. RESULT AND DISCUSSION 

 

The dataset used for this work was obtained from the 

Kaggle 

websitehttps://www.kaggle.com/datasets/masoudnickparvar/

brain-tumor-mri-dataset). The images are provided in .jpg 

format to standardize input values; all images are resized to 

224 × 224 pixels, and pixel intensities are normalized to the 

range [0, 1] by dividing by 255. The dataset included 490 

Glioma Tumors, 364 Meningioma Tumors, 617 Pituitary 

Tumors, and 423 No-tumour images. The dataset is divided 

into a 70% training set and a 30% test set. The test set 

contained 147 Glioma Tumors, 109 Meningioma Tumors, 185 

Pituitary Tumors, and 127 No-tumour images. The 

visualization of data set images is shown in Figure 4. 

 

 
 

Figure 4. Dataset visualization 
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The program is written using Python (IDLE 3.7) with 

TensorFlow 3.10 and accelerated by NVIDIA CUDA 11.2. 

Here, metrics like Sensitivity, Accuracy, F1 Score, and 

Precision are attained for evaluation. These metrics are derived 

from the confusion matrix that includes True Negatives (TN), 

True Positives (TP), False Negatives (FN), and False Positives 

(FP). Then, the performance metrics can be computed as 

follows: 

 

Accuracy =  
TP+TN

(TP + TN+FP + FN’) 
  (11) 

  

Recall =  
TP

(TP + FN’) 
  (12) 

 

Precision =  
TP

(TP + FP’) 
  (13) 

 

F1 score = 2.
Precision .Recall 

(Precision + Recall ) 
  (14) 

 

The feature optimization process using FHO is given in 

Figure 5. For optimization, the fitness function is framed as a 

function of classification error. Over the iterations, the fitness 

value shows a decreasing error value, which indicates an 

improvement in feature selection. Initially, the fitness varies 

significantly as the optimizer explores the feature space. As 

iterations increase, the algorithm converges toward lower 

classification errors. It is observed that the FHO is able to 

refine the feature set effectively and reduce computational 

overhead without compromising accuracy.  

 

 
 

Figure 5. Feature selection fitness curve 

 

 
 

Figure 6. Feature optimization curve 

 

The relationship between the number of features selected 

and the corresponding classification error is given in Figure 6. 

It shows that reducing the number of features generally leads 

to lower classification errors. This focuses on the effectiveness 

of the FHO in choosing a high-quality feature set for the 

classification task. Before optimization, the model's 

computational complexity is higher with a feature size of 

50,233. After optimization, the feature size was significantly 

reduced to 24,019 with lower memory requirements. 

Figure 7 shows the confusion matrix analysis of the SC-SE 

DenseNet model. The proposed model with FHO is better in 

terms of accuracy, precision, recall, and F1 score compared to 

those without FHO. This suggests that the FHO optimization 

technique has increased the model's performance in 

classifying tumor stages.  

Figure 8 shows the fitness curve for XGBoost parameter 

tuning as a function of classification error. The curve shows a 

sharp decline in the initial iterations, which indicates that the 

model is learning rapidly at the start. The final classification 

error stabilizes at approximately 0.10, which denotes a 

relatively low error achieved with the tuned parameters. The 

optimal values for the XGBoost model parameters are 

presented in Table 1. Specifically, the optimal learning rate is 

0.4, the maximum depth is 5, the optimal number of estimators 

is 154, and the gamma value is 2.5. 

 

 
(a) With FHO 

 

 
(b) Without FHO 

 

Figure 7. Confusion matrix analysis 
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Figure 8. Fitness curve for XGBoost parameter tuning 

 

To ensure the reproducibility of hyperparameter tuning, we 

fixed the random seed to 42 during all FHO runs and 

conducted five repeated trials. The metric variance across 

multiple runs for the SC-SE DenseNet+FHO model is given in 

Table 2. The model shows a high mean accuracy of 97.40% 

with a small standard deviation (± 0.36%), which denotes 

stable performance across runs. Additionally, the F1-Score 

and AUC-ROC values of 98.2 and 0.970, respectively. It 

proves the model's strong ability to balance precision and 

recall rates. 

The performance of the models with the component impact 

is given in Table 3. The proposed model with FHO achieved 

the greatest accuracy, precision, recall, and F-Score rates of 

98.94%, 99.43%, 98.59%, and 99%, respectively. It proves the 

model's ability to classify tumor stages correctly with balanced 

performance. The model without SC-Conv shows slightly 

reduced performance, which indicates the importance of 

feature learning. Additionally, the absence of the SE block 

leads to a further decrease, which highlights the importance of 

the SE block in feature recalibration. Similarly, the proposed 

model without FHO achieved the lowest accuracy, precision, 

recall, and F-Score rates of 97.8%, 98.3%, 97.20%, and 97.8%, 

respectively. The performance comparison with other models 

is given in Table 4. Other models, such as the EDCNN Model, 

Vision Transformer, and TumorGANet, show moderate 

performance with accuracies of 96.7%, 97.80% and 97.4%, 

respectively. These models failed to match the robustness and 

adaptability of the SC-SE DenseNet model. Overall, the 

integration of FHO into the proposed DenseNet not only 

enhances its classification accuracy but also increases its 

precision, recall, and F1-score rates.  

The comparison of FHO with other standard optimization 

algorithms is given in Table 5. The FHO optimizer shows the 

highest accuracy with the fastest convergence speed and the 

shortest training time. In contrast, GWO and PSO show 

slightly lower accuracy, but GWO achieves faster 

convergence than PSO. 

The performance comparison of the XGBoost model with 

other classifier models is given in Table 6. The proposed 

XGBoost model outperforms other classifiers with the highest 

accuracy of 98.9% due to the boosting mechanism in XGBoost, 

which sequentially improves weak learners to reduce errors 

effectively. The other classifiers failed to perform iterative 

error correction processes. 
 

Statistical significance analysis 

To validate the superiority of the proposed SC-SE DenseNet 

model with FHO, a statistical significance analysis is 

conducted using multiple evaluation metrics. The results of the 

experiments were repeated over five independent runs to 

calculate the average values and standard deviations of the key 

metrics: accuracy, precision, recall, and F1-score. Table 7 

gives the averages and variances for the proposed model 

compared to baseline models, including EDCNN, 

TumorGANet, and the model without FHO optimization. 
 

Table 1. Parameter analysis 

 

Hyperparameter 
Lower 

Bound  

Upper 

Bound 

Optimized 

Value 

Learning Rate 0.01 0.5 0.4 

Max Depth 3 15 8 

Number of 

Estimators 
50 200 154 

Gamma 0 5 2.5 

 

Table 2. Metric variance analysis of the model 
 

Metric Mean (±Std) SC-SE DenseNet+FHO 

Accuracy 97.40% ± 0.36% 

F1-Score 98.2 ± 0.011 

AUC-ROC 0.970 ± 0.006 
 

Table 3. Ablation study of the model 
 

Metric 

Without 

SC-Conv 

(SE + FHO) 

Without SE 

Block (SC-

Conv + 

FHO) 

Without 

FHO (SC-

Conv + SE) 

Proposed 

SC-SE 

DenseNet + 

FHO  

Precision 97.45 97.10 98.30 99.43 

Recall 97.10 96.80 97.20 98.59 

F1-Score 97.25 96.90 97.80 99.0 

Accuracy 97.55 97.10 97.80 98.94 

AUC-ROC 0.98 0.97 0.98 0.987 

 

Table 4. Performance comparison with other models 

 
Model Accuracy (%) Precision (%) Recall (%) F1-Score AUC-ROC 

AlexNet 88.40 87.9 87.3 87.5 0.910 

Transfer Learning (ResNet50V2) 94.80 94.6 94.5 94.6 0.962 

Hybrid ResNet50 + EfficientNet-B7 95.68 95.3 95.5 95.4 0.965 

TumorGANet 97.40 97.5 97.2 97.3 0.978 

Hybrid DCNN-DH 94.00 93.8 93.5 93.6 0.950 

DL with HO 96.70 96.4 96.2 96.3 0.971 

GoogleNet 93.45 92.7 93.1 93.0 0.944 

SqueezeNet 94.60 94.2 94.0 94.1 0.955 

EDCNN Model 96.70 96.2 96.5 96.4 0.969 

Vision Transformer (ViT-B/16) [26] 97.80 97.3 97.1 97.2 0.985 

Swin Transformer [27] 98.1 97.9 97.7 97.8 0.987 

Proposed SC-SE DenseNet + FHO 98.90 98.7 98.6 98.7 0.991 

1785



 

Table 5. Performance comparison of FHO with other optimizers 

 
Optimizer Accuracy (%) Convergence Speed (Iterations) Training Time (Seconds) 

FHO 98.9 50 15 

Grey Wolf Optimizer (GWO) [28] 97.2 85 22 

Particle Swarm Optimization (PSO) [29] 95.6 120 30 

GA (Genetic Algorithm) [30] 94.8 150 45 

 

Table 6. Performance comparison of XGBoost with other classifiers 

 
Classifier Accuracy (%) Precision Recall F1-Score 

Proposed Model (XGBoost) 98.9 99.43 98.6 0.99 

SVM (Support Vector Machine) [31] 96.5 95.2 94.8 0.945 

Random Forest [32] 97.2 96.5 96.1 0.960 

Logistic Regression [33] 94.1 92.8 92.5 0.925 

K-Nearest Neighbors (KNN) [34] 95.8 94.2 93.9 0.939 

 

Table 7. Statistical significance analysis 

 
Metric Model Mean (%) Standard Deviation (%) 

Accuracy SC-SE DenseNet with FHO 98.94 0.12 

 SC-SE DenseNet without FHO 97.53 0.18 

 TumorGANet 97.40 0.20 

Precision SC-SE DenseNet with FHO 99.43 0.10 

 SC-SE DenseNet without FHO 96.92 0.15 

 TumorGANet 97.02 0.18 

Recall SC-SE DenseNet with FHO 98.59 0.14 

 SC-SE DenseNet without FHO 97.08 0.19 

 TumorGANet 97.25 0.22 

F1-Score SC-SE DenseNet with FHO 99.00 0.11 

 SC-SE DenseNet without FHO 96.97 0.16 

 TumorGANet 97.13 0.19 

 

Table 8. Paired t-test results 

 
Metric Comparison p-value Statistical Significance 

Accuracy SC-SE DenseNet with FHO vs. TumorGANet 0.001 Yes 

 SC-SE DenseNet with FHO vs. EDCNN 0.0008 Yes 

Precision SC-SE DenseNet with FHO vs. TumorGANet 0.002 Yes 

Recall SC-SE DenseNet with FHO vs. TumorGANet 0.003 Yes 

F1-Score SC-SE DenseNet with FHO vs. TumorGANet 0.0015 Yes 

AUC-ROC SC-SE DenseNet with FHO vs. TumorGANet 0.004 Yes 

Specificity SC-SE DenseNet with FHO vs. TumorGANet 0.002 Yes 

 

Table 9. Computational analysis of the proposed model 

 
Model Training Time (hrs) Inference Time (ms/image) GPU Used 

SC-SE DenseNet 2.3 12 NVIDIA RTX 3090 

SC-SE DenseNet+FHO 3.1 15 NVIDIA RTX 3090 

Vision Transformer 4.2 20 NVIDIA RTX 3090 

 

To further ensure the statistical robustness of the results, 

paired t-tests are conducted between the proposed model and 

the competing models. The tests were performed at a 95% 

confidence level (significance threshold of α = 0.05) to 

determine whether the observed improvements were 

statistically significant. The p-values obtained for the 

comparison of accuracy, precision, recall, F1-score, Area 

Under the Curve- Receiver Operating Characteristic (AUC-

ROC), and specificity are summarized in Table 8. 

The results confirm that the proposed model significantly 

outperforms competing models in all metrics. The low 

standard deviations indicate consistent performance across 

multiple runs, and the p-values validate that the improvements 

are statistically significant. To further improve the statistical 

analysis, we have applied multiple-testing corrections like the 

Bonferroni correction. This method adjusts the significance 

threshold to account for the increased risk of Type I errors 

(false positives) when multiple tests are conducted. For 

example, given that multiple comparisons are made between 

the SC-SE DenseNet with FHO and TumorGANet, the 

Bonferroni correction was applied to adjust the p-value 

threshold for each test. It is used to observe whether the 

differences in performance are statistically significant and not 

due to chance. The p-values accurately reflect the significance 

of the observed differences and reduce the risk of Type I errors 

due to multiple comparisons. 

The computational analysis of the proposed model is given 

in Table 9. The integration of FHO slightly increases training 

time, but the inference speed remains within acceptable 

clinical limits and proves the suitability for real-time 

implementation. Compared to the Vision Transformer, SC-SE 

DenseNet shows faster inference with reduced memory usage. 
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Table 10. Performance of the model with other data sets 

 

Dataset 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

score 

Kaggle 98.94 99.43 98.59 0.99 

BraTS 97.85 97.6 97.3 0.974 

TCIA 96.92 96.5 96.1 0.964 

 

To address the practical challenges and ethical 

considerations mentioned, the proposed model was further 

validated using an additional publicly available dataset of 

BraTS [35] and TCIA [36]. This cross-dataset evaluation is 

used for reliable results across different clinical settings and 

patient demographics. The obtained results are given in Table 

10. In the BraTS dataset, the proposed model achieves an 

accuracy, precision, recall, and F1-score of 97.85%, 97.6%, 

97.3%, and 0.974, respectively. Similarly, on the TCIA dataset, 

it achieves 96.92% accuracy, 96.5% precision, 96.1% recall, 

and an F1-score of 0.964. This proves the model's robustness 

for integration into hospital workflows with its adaptability 

across real-world data variations. 

 

 

5. CONCLUSION 

 

In conclusion, the proposed feature optimization framework 

effectively addresses the limitations of brain tumor 

classification in MRI images. The use of DenseNet for feature 

extraction confirms that complex image patterns are captured. 

It focuses on the relevant features and reduces redundant 

computational complexity. Additionally, FHO is used for 

choosing discriminative features and fine-tuning 

hyperparameters. It increases the model's accuracy and 

classification performance. Future research should address the 

practical challenges by integrating explainable AI with 

hospital workflows through cloud-based solutions. 
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