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In the context of educational digitalization, traditional classroom methods for assessing 

student engagement—primarily based on teachers’ subjective observations—suffer from 

limited real-time capabilities and lack of objectivity, making it difficult to accurately capture 

students’ true interactive behavior. Taking management classrooms as an example, student 

actions such as raising hands or gesturing are key indicators of learning enthusiasm. Vision-

based gesture recognition technology offers a novel, objective approach to engagement 

assessment. However, existing methods relying on depth cameras face challenges such as 

high equipment costs, poor environmental adaptability, and simplistic gesture-counting 

models that ignore contextual semantic information, making them unsuitable for complex 

classroom scenarios. This study focuses on interactive educational settings and proposes a 

gesture recognition and engagement assessment model based on image processing. First, we 

optimize image preprocessing, feature extraction, and pattern recognition algorithms for 

standard classroom environments to achieve high-precision, real-time recognition of various 

gestures such as hand-raising and waving. Second, by integrating multi-dimensional data—

gesture types, frequency, and duration—with instructional context, we construct a dynamic 

evaluation model that addresses the robustness issues of traditional methods in complex 

settings. The proposed approach offers a contactless solution for engagement assessment in 

smart classrooms, supports teachers in refining instructional strategies, and facilitates the 

digital transformation of educational interaction. This work holds significant implications 

for improving teaching quality and advancing educational technology innovation. 

Keywords: 

interactive educational environments, 

image processing, gesture recognition, 

student engagement assessment 

1. INTRODUCTION

In management classrooms, teachers often need to 

understand students’ learning status and mastery of knowledge 

through interaction with students, such as asking questions, 

organizing discussions, and guiding students in case analysis 

[1-4]. Students’ engagement in class not only affects their own 

learning outcomes but is also related to the quality and 

efficiency of classroom teaching [5, 6]. Traditional methods of 

assessing student engagement mainly rely on teachers’ 

subjective observation and simple classroom records [7-9]. 

This method has strong subjectivity and limitations, making it 

difficult to accurately and in real-time capture students’ subtle 

reactions and actual engagement in class. With the continuous 

development of educational informatization [10-13], how to 

use advanced technical means to achieve objective and 

accurate assessment of student engagement has become an 

important problem to be solved urgently in the field of 

education. In this process, gestures, as a natural and intuitive 

interaction method [14, 15], have important application value 

in educational interactive scenarios. Students’ actions in class 

such as raising hands and gesturing often reflect their learning 

enthusiasm and willingness to participate. Therefore, gesture 

recognition technology based on image processing provides 

new ideas and methods for accurately assessing student 

engagement. 

Accurately assessing student engagement in educational 

interactive scenarios has important practical significance for 

optimizing the teaching process and improving teaching 

quality. Through the recognition and analysis of student 

gestures, the learning status and needs of students can be 

obtained in real-time, providing a basis for teachers to adjust 

teaching strategies and improve teaching methods, thus 

achieving more personalized and precise teaching. At the same 

time, this research helps to better understand students’ 

behavior patterns and learning habits in class and provides 

empirical support for the research and development of 

educational theory. In addition, gesture recognition 

technology based on image processing has advantages such as 

non-contact and strong real-time performance [16, 17], which 

can achieve engagement assessment without disturbing 

students' normal learning, and has broad application prospects. 

It can not only be applied to traditional classroom teaching, 

but also extended to online education, virtual experiments, and 

various other educational interactive scenarios, laying a 

foundation for building a smart education environment. 

At present, there have been some studies on gesture 

recognition and student engagement assessment in educational 
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interactive scenarios. For example, some studies [18, 19] adopt 

gesture recognition methods based on depth cameras. 

Although they have achieved certain results in specific 

environments, the equipment cost is high, and they are 

sensitive to environmental lighting, student postures, and other 

factors, making it difficult to be widely applied in ordinary 

classroom environments. In terms of student engagement 

assessment, some studies [20, 21] only use simple gesture 

counting to judge engagement, ignoring the diversity and 

contextual information of gestures, resulting in insufficient 

accuracy and comprehensiveness of the assessment results. In 

addition, most existing assessment models do not fully 

consider the complexity of educational interactive scenarios, 

such as the simultaneous participation of multiple students, 

and classroom environment interference, which limits the 

robustness and applicability of the models. 

The main research content of this paper includes two parts. 

The first part is gesture recognition in educational interactive 

scenarios, aiming to study image processing algorithms 

suitable for ordinary classroom environments, to achieve 

accurate recognition of various student gestures, including 

raising hands, waving, thumbs-up and other common 

classroom gestures. By improving traditional image 

preprocessing, feature extraction, and pattern recognition 

methods, the accuracy and real-time performance of gesture 

recognition are enhanced, and the dependence on special 

equipment is reduced. The second part is student engagement 

assessment based on gesture recognition in educational 

interactive scenarios, which will construct a scientific and 

reasonable student engagement assessment model by 

combining multi-dimensional information such as gesture 

types, frequency, and duration. This model will 

comprehensively consider the specific context of classroom 

teaching, such as teaching content and forms of teaching 

activities, to realize dynamic assessment and analysis of 

student engagement. The value of this study lies in proposing 

a gesture recognition and student engagement assessment 

model based on image processing, providing new methods and 

technical support for student engagement assessment in 

educational interactive scenarios. Through this model, 

teachers can more objectively and accurately understand 

students’ participation, adjust teaching strategies in time, and 

improve teaching effectiveness. Meanwhile, this research 

enriches the research results in the field of educational 

technology regarding gesture recognition and engagement 

assessment, provides useful references for subsequent related 

studies, and helps to promote the development and application 

of smart education. 

 

 

2. GESTURE RECOGNITION IN EDUCATIONAL 

INTERACTIVE SCENARIOS 

 

2.1 Method framework 

 

In educational interactive scenarios, for short-term motion 

features with clear instructional semantics such as raising 

hands, waving, and classroom demonstration gestures, the 

gesture recognition method proposed in this paper achieves 

fine-grained modeling of multi-time-scale sub-gesture actions 

by constructing an adaptive temporal segmentation attention 

module and a dynamic information fusion module. 

Considering the characteristics of high frequency and short 

duration of gesture interactions in classroom environments, 

the joint coordinates of the hand skeleton sequence are first 

transformed into high-dimensional feature vectors through a 

linear embedding layer to retain spatial structure information. 

Then, using the adaptive temporal segmentation attention 

module, the input feature sequence is segmented at multiple 

scales in the temporal dimension based on knowledge of short-

term motion, capturing intra-frame joint associations and 

inter-frame motion trajectories of local sub-actions through 

different time windows. This module learns the correlation 

weights between different joints in adjacent frames and 

dynamically focuses on key semantic action segments in 

educational scenarios, avoiding the general treatment of entire 

action sequences in traditional models. Meanwhile, the 

dynamic information fusion module adaptively fuses the 

short-term features extracted by branches of different time 

scales through weight vector learning, which not only 

preserves the detailed features of individual gestures but also 

enhances the robustness of the model against interference 

factors such as complex classroom lighting and multi-student 

occlusion, providing high-precision basic gesture recognition 

results for subsequent engagement assessment. Figure 1 shows 

the framework of the gesture recognition model in educational 

interactive scenarios. 

 

 
 

Figure 1. Framework of the gesture recognition model in 

educational interactive scenarios 

 

In response to long-duration gesture interactions that may 

occur in educational scenarios, the method captures long-term 

correlations between different sub-action segments through a 

multi-scale temporal convolution feature fusion module. This 

module performs hierarchical processing on the encoded 

skeleton feature sequences using multi-scale temporal 

convolution kernels to learn both short-distance action 

transitions and long-distance temporal dependencies. In the L-

layer stacked encoder modules, each layer achieves 

progressive spatiotemporal feature extraction through the 

cascade of the adaptive temporal segmentation attention 

module and the multi-scale temporal convolution feature 
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fusion module: the former focuses on fine modeling of local 

sub-actions, while the latter captures semantic correlations of 

cross-period action segments. Finally, after global average 

pooling and classification layers, the model can accurately 

recognize gesture categories with specific instructional 

intentions in educational scenarios. Through interpretable 

temporal segmentation attention weights and multi-scale 

convolution feature mapping, the gesture recognition process 

is transformed into a human-understandable decision logic of 

"sub-action - time scale - semantic label," solving the problem 

of insufficient interpretability of traditional models for 

complex gesture sequences in classroom environments. 

 

2.2 Linear embedding layer 

 

In educational interactive scenarios, gestures serve as an 

important medium of communication between students and 

teachers, and their core features are composed of spatial 

coordinate sequences of hand joints. For example, the dynamic 

position changes of shoulder, elbow, and wrist joints when 

raising a hand, or the motion trajectory of the arm when 

waving. The linear embedding layer proposed in this paper 

targets such skeleton sequences composed of a small number 

of joints and discards the traditional visual Transformer’s 

approach of dividing images into fixed-size patches, directly 

performing linear mapping on the 3D coordinates of each 

joint. Specifically, through a learnable weight matrix, the 

coordinate vector of each joint is mapped into a d-dimensional 

feature vector, thereby converting the original skeleton 

sequence into a feature vector sequence. This joint-based 

direct mapping method not only retains the spatial structure 

information of the hand skeleton but also provides basic 

representations for the model to capture subtle differences in 

educational gestures through transformation into high-

dimensional feature space. Suppose the feature vector 

sequence obtained after linear mapping is denoted by �̃�0. The 

frame number, number of joints, and number of feature 

channels are denoted by S, N, and Z, respectively. The 2D 

convolution with kernel size 1×1 is denoted by CONV2D(1×1). 

The input feature vector sequence obtained by linear mapping 

for each joint is: 

 

( ) ( )0 1 1
2 S N Z

SEQC CONV D A  


=   (1) 

 

Although the feature vector sequence HHH obtained 

through linear mapping contains the spatial coordinate 

information of joints, it lacks two key dimensions: first, the 

spatial hierarchical relationship of joints in the skeleton 

sequence; second, the temporal order information of gesture 

actions. In response to the temporal dependency of gestures in 

educational scenarios—for example, the "raising hand to ask a 

question" action involves continuous stages of "lifting arm → 

fixing wrist → opening palm"—this paper adopts the sine-

cosine positional encoding method consistent with 

Transformer to generate encoded vectors containing time and 

spatial position information, denoted as PE. Among them, 

spatial position encoding is generated through the hierarchical 

index of joints in the skeleton tree, and temporal position 

encoding is calculated based on the frame index of the action 

sequence. Suppose the position of each feature vector in the 

input sequence is denoted by o, and the specific index of the 

positional encoding vector is denoted by u∈[0,1,…,Z/2], the 

specific formula is: 

( ) ( )2 /,2 /10000 u ZOR o u SIN o=  (2) 

  

( ) ( )2 /,2 1 /10000 u ZOR o u COS o+ =  (3) 

 

By adding the positional encoding vector to the feature 

vector after linear embedding, the model is not only provided 

with spatiotemporal coordinate references for gesture actions 

but also enhances the semantic attributes of gestures in 

educational scenarios. For example, through temporal 

encoding, the model can distinguish the engagement 

differences between "raising hand quickly" and "raising hand 

slowly"; through spatial encoding, it can recognize the action 

type differences between "waving with one hand" and 

"gesturing with both hands." 

In educational interactive scenarios, gesture recognition 

needs to meet the requirements of real-time performance and 

robustness. For example, in class, teachers need to instantly 

capture students' hand-raising gestures to adjust the teaching 

pace. The design of the linear embedding layer is optimized in 

two aspects to adapt to this demand: First, the coordinates of 

joints are directly linearly mapped, avoiding the computational 

redundancy caused by traditional image patch segmentation, 

significantly reducing the input dimension and computational 

complexity of the model, laying the foundation for real-time 

processing. Second, with the supplementation of 

spatiotemporal information from positional encoding, the 

model can, when dealing with complex scenes with multiple 

students participating simultaneously, distinguish the gesture 

trajectories of different individuals through the spatial position 

encoding of joints, and capture the temporal correlation of 

continuous gestures of the same student through temporal 

encoding. The input feature CIN after being processed by the 

linear embedding layer not only preserves the physical 

properties of educational gestures but also injects 

spatiotemporal coordinates consistent with the semantics of 

teaching scenarios, providing structured input for the 

subsequent encoder modules to model gesture sequences with 

clear educational intentions such as "raise hand - ask question" 

and "wave hand - speak," ultimately achieving accurate 

recognition and semantic analysis of diverse gestures in 

classroom interaction. The specific input feature formula is: 

 
S N Z

IN INC C OR  = +   (4) 

 

2.3 Inter-segment self-attention mechanism 

 

In educational interactive scenarios, the semantics of 

gestures are usually composed of multiple sub-actions with 

clear instructional intentions arranged in temporal order. For 

example, the "raise hand to speak" action can be decomposed 

into three sub-action stages: "arm lifting → palm turning 

outward → holding still," with each stage corresponding to a 

specific joint co-movement pattern. The inter-segment self-

attention mechanism targets this type of temporally structured 

feature. By dividing the input feature sequence into fixed-

length, non-overlapping temporal segments along the time 

dimension, it limits self-attention computation within local 

temporal windows, thereby explicitly modeling the interaction 

relationships between joints within sub-actions. Figure 2 

shows the architecture of the inter-segment self-attention 

mechanism module. Taking the commonly seen "waving to 

signal" gesture in the classroom as an example, this 
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mechanism focuses within a single time segment on the 

dynamic correlation between the angle changes of the shoulder 

and elbow joints and the trajectory of the wrist joint during 

arm swinging. Through query, key, and value interaction 

aggregation, it captures the motion coordination between 

different joints within the same sub-action stage. For instance, 

when the arm swings forward, the model will automatically 

enhance the weight correlation between the shoulder joint 

rotation angle and the wrist joint displacement speed, 

suppressing interference from irrelevant joints, thereby 

accurately extracting the feature representation of the core 

sub-action "arm swinging." Specifically, suppose the length of 

each temporal segment is denoted by v, and the total number 

of joints in each temporal segment is Nv=N×v, then the input 

feature CIN is divided along the time dimension into Sv non-

overlapping temporal segments of equal length: 
 

v v vS v N Z S N ZS N Z

INC       → →  (5) 

 

 
 

Figure 2. Architecture of the inter-segment self-attention mechanism module 

 

Assuming that the linear mapping matrices for Q, K, and V 

are represented by WQ, WK, and WV, respectively, Q, K, and V 

are obtained by applying linear mapping to CIN as follows: 

 

, , , ,Q IN K IN V INQ K V W C W C W C=  (6) 

 

Then, the output features can be obtained by multiplying the 

attention weight matrix—calculated from the correlation 

between Q and K—with N. Suppose the output features of the 

self-attention mechanism operation are denoted by CAT, the 

hyperbolic tangent function is denoted by tanh, gradient 

stability during training is adjusted by (Z)1/2, and the attention 

weight matrix calculated from the similarity between Q and K 

is denoted by F, the formula is: 

 

( )tanh /SF QK Z=  (7) 

 

In view of the inherent hinge-joint connection 

characteristics of the hand skeleton in educational gestures, the 

inter-segment self-attention mechanism introduces a learnable 

topological parameter matrix O to model the physical 

connection relationships of hand joints. For example, in the 

"heart gesture," the fingertip contact between the thumb and 

index finger relies on the spatial position constraint between 

them. The matrix O can automatically learn this prior 

structural information through training, allowing the model to 

prioritize the coordinate interaction between thumb and index 

finger joints when processing this sub-action. Specifically, 

during the calculation of attention weights, the feature 

interaction matrix F of joints is fused with the topological 

matrix O through weighted addition, where β is a learnable 

parameter, dynamically balancing the contributions of data-

driven features and domain knowledge. The output feature 

expression of the self-attention mechanism operation is: 

 

( )ATC V F O=  +  (8) 

 

Considering the diversity of gestures in educational 

interaction, the inter-segment self-attention mechanism adopts 

a multi-head attention strategy, dividing the input features into 

multiple subspaces for parallel processing, with each head 

focusing on different dimensions of sub-action features. For 

example, the first head may specifically capture fine 

movements of the fingers, while the second head focuses on 

the macro movement of the arms. Through the concatenation 

of multi-head results, the model can retain both the detailed 

features and the overall shape of gestures. In complex 

classroom scenarios with multiple students participating 

simultaneously, the multi-head mechanism can also 

distinguish the gesture trajectories of different individuals by 

assigning weights through different heads. For example, in the 

spatially overlapping area where the student on the left is 

"raising hand" and the student on the right is "waving," the 
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model can use the attention weights of specific heads to focus 

on their respective joint combinations. Furthermore, the fully 

connected layer at the end of the mechanism further performs 

nonlinear transformation on the multi-head output to adapt to 

gesture feature variations caused by lighting changes and 

occlusion in educational scenarios. For example, when a 

student's raised hand is partially occluded by a book, the fully 

connected layer can learn the historical trajectory of joint 

movement to complete the missing spatial information, 

thereby improving recognition robustness under complex 

conditions. Suppose the matrix concatenation along the feature 

channel dimension is denoted by CONCAT, and the output 

feature of the g-th attention group is denoted by Cg
ATT. Finally, 

the output feature CATT is obtained through concatenation: 

 

( )1 2 3, ,...,ATT ATT ATT ATTC CONCAT C C C=  (9) 

 

To enhance the fitting capability of the network, the inter-

segment self-attention mechanism finally adopts a fully 

connected layer for information processing. Suppose the 1×1 

convolution operation is denoted as CONV2D(1×1), its output 

features are obtained by the following formula: 

 

( ) ( )_ 1 1
2DJ ATT ATTC CONV D C


=  (10) 

 

Although the inter-segment self-attention mechanism 

achieves explicit modeling of sub-actions through fixed time 

segments, the duration of sub-actions in educational gestures 

varies significantly. A single fixed segment length may lead to 

the fragmentation of long-duration sub-action features. 

Therefore, in educational scenario applications, the 

mechanism introduces a domain knowledge-guided segment 

length adaptation strategy: Based on prior classroom 

observations, the average duration of common gesture sub-

actions is used as a baseline parameter for segment division, 

while allowing the model to dynamically adjust segment 

boundaries during training according to specific gesture types. 

 

2.4 Adaptive temporal segmentation attention module 

 

In educational interactive scenarios, the time dimension of 

gestures presents significant variability: instantaneous 

gestures such as "raise hand to ask a question" require 

capturing sudden joint trajectory changes during high-speed 

motion, while procedural gestures such as "demonstration of 

experimental operations" contain temporal combinations of 

multi-stage sub-actions like "grasping tool → adjusting 

gesture → demonstrating action." Traditional fixed-time-

segment attention mechanisms struggle to balance feature 

extraction for both types of gestures. Short segments may 

fragment the continuity of procedural gestures, while long 

segments may include irrelevant frames for instantaneous 

gestures. To address this, the adaptive temporal segmentation 

attention module adopts parallel multi-branch modeling. 

According to different gesture motion speeds and stage 

features, three temporal scale branches—short, medium, and 

long—are designed to respectively focus on high-frequency 

features of instantaneous actions and temporal dependencies 

of long-duration actions. For example, when recognizing 

"group discussion gesture combinations," the short branch 

captures "joint velocity spikes at gesture switching moments," 

while the long branch models "spatial position transitions 

between consecutive gestures," thereby preserving the 

temporal semantic structure of educational gestures. The 

module architecture is shown in Figure 3. 

The module splits the input skeleton feature sequence CIN 

along the channel dimension into J parallel branches, with 

each branch processing Z/J dimensional features and 

corresponding to time segments of different lengths. Suppose 

the split operation along the channel dimension is denoted by 

SPLIT, then: 

 

( )1 2, ,..., ,...,u J

IN IN IN IN INC C C C SPLIT C=  (11) 

 

Suppose the output features of the u-th branch are denoted 

by Cu
DJ_ATT, and the inter-segment self-attention mechanism 

using time segment length u is denoted by DJ_ATTv=u. CIN is 

input to different branches for short-time motion feature 

modeling: 

 

( )_ _u u

DJ ATT v u INC DJ ATT C==  (12) 

 

 
 

Figure 3. Architecture of the adaptive temporal segmentation 

attention module 

 

This design brings two advantages. First, targeted feature 

extraction: Each branch independently models sub-actions at 

specific temporal scales through the inter-segment self-

attention mechanism. For example, the short branch performs 

local attention computation on a 0.5-second segment of a 

"quick hand raise" gesture, enhancing the weight correlation 

of instantaneous joint coordination between the shoulder and 

wrist; the long branch models a 4-second segment of a "slow 

demonstration gesture," capturing the smooth variation pattern 

of palm rotation angle over time. Second, computational 

complexity optimization: since the channel dimension of each 

branch is reduced to 1/J, the computational cost of the 

attention mechanism is reduced from O(S2NZ) of a single-

branch scheme to O(S2N(Z/J)2), with a total computation of 
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only 1/J2 of the original scheme. This feature is highly suitable 

for real-time classroom interaction requirements. In scenarios 

with multiple students raising hands simultaneously, the 

model can process multiple skeleton data streams rapidly on 

ordinary computing devices, avoiding gesture recognition lag 

caused by computational delay. 

 

 
 

Figure 4. Feature fusion diagram of the module 

 

To address the problem of feature fusion across different 

temporal scales, the module introduces a dynamic information 

fusion mechanism, which achieves semantic integration of 

multi-branch features through three stages: "feature selection 

- weight allocation - adaptive fusion". Figure 4 provides a 

diagram of the feature fusion process. 

(1) Global representation generation: First, the outputs of 

the J branches are summed and then compressed into a 

compact global vector via global average pooling to extract the 

overall motion trend of the educational gesture. 

(2) Dynamic weight computation: Using a multi-layer 

perceptron (MLP) and Softmax layer, weight vectors for each 

branch are generated based on the global representation. When 

the input is a "hand raise" gesture, the model automatically 

assigns higher weights to the short branch and lower weights 

to the long branch. When processing an "experimental 

demonstration gesture," the long branch weights increase 

significantly to capture the temporal association of multi-stage 

actions. Suppose the weight vector of the u-th branch is 

denoted by Qu, then the expression for the weight vector of 

each set of features is: 

 

1 1

_

1

J
u JZ

DJ ATT

u

Q MLP GAP Z  

=

  
=   

  
  (13) 

 

( ) 1 1

1 2, ,..., Z

JQ Q Q SPLIT Q  =   (14) 

 

(3) Multi-scale feature fusion: The output features of each 

inter-segment self-attention mechanism module are multiplied 

and summed with their corresponding weight vectors to obtain 

the final output feature: 

 

_

1

J
u

DTRH u DJ ATT

u

C Q C
=

=   (15) 

 

Through feature fusion, the model can retain both short-

term details such as "slightly spreading fingers" and long-term 

context such as "arm movement trajectory." This dynamic 

weighting mechanism is particularly suitable for the 

requirement of "gesture semantics changing with teaching 

context" in educational scenarios. For the same "waving" 

gesture, in the contexts of "class end signal" and "group 

discussion guidance," the model automatically adjusts branch 

weights to generate feature representations consistent with 

scenario semantics. 

To address interferences such as lighting variation and 

partial occlusion that may occur in classroom environments, 

the module introduces residual connections at the output stage 

to directly add the original input features with the fused high-

level features. By introducing residual connections, the basic 

motion information of non-occluded joints is effectively 

retained, avoiding recognition bias caused by local feature 

loss. For example, when the wrist joint is occluded, residual 

connections can assist in inferring the spatial position of the 

wrist through the historical motion trajectory of the shoulder 

and elbow, improving the robustness of gesture recognition in 

complex environments. The output feature expression of the 

adaptive temporal segmentation attention module with 

residual connection is: 

 

( )
_

1 2

_ _ _ _, ,..., ,...,

ZS ATT

u J

DJ ATT DJ ATT DJ ATT DJ ATT IN

C DTRH

C C C C C

=

+
 (16) 

 

The adaptive temporal segmentation attention module 

constructs a mapping channel from hand skeleton motion to 

educational gesture semantics through a three-layer 

architecture of "multi-scale branch modeling → dynamic 

weight fusion → residual enhancement." For the teacher side, 

it can parse students’ instantaneous interactive behaviors such 

as "raise hand to ask questions" and "wave to express doubt" 

in real time, providing accurate references for classroom 

rhythm adjustment; for the student side, it can capture complex 

participation behaviors such as "experimental operation 

gesture sequence" and "group discussion gesture 

combination," providing fine-grained features for 

personalized learning analysis; for educational technology 

systems, its lightweight design and dynamic adaptability meet 

the requirements of real-time and robustness in multimodal 

data processing in smart classrooms, becoming a core 

component connecting underlying skeleton data and higher-

level participation evaluation. 

 

2.5 Multi-scale temporal convolution feature fusion 

module 
 

In educational interactive scenarios, the semantic 

understanding of gestures not only relies on the accurate 

recognition of individual sub-actions but also requires 

capturing the temporal correlations between different sub-

actions and the long-term coordinated motion features of hand 

joints. Although traditional short-term sub-action modeling 

methods can capture joint interactions within local time 

segments, they fail to model long-range action dependencies 

across segments and cannot effectively integrate overall 

skeleton motion with the dynamic relationship of local joints. 

To this end, the multi-scale temporal convolution feature 

fusion module combines multi-scale temporal convolution and 

skeleton feature fusion mechanisms to compensate for the 

shortcomings of short-term sub-action modeling and achieve 

deep analysis of long-term correlations of educational 

gestures. The module architecture is shown in Figure 5. 

The module first performs multi-branch temporal modeling 

on the input features AIN, using six different temporal operation 

branches to capture multi-scale temporal dependencies: 

(1) Basic feature enhancement: 1×1 convolution adjusts 

channel weights to achieve cross-channel fusion of joint 

features, enhancing the feature expression of key joints in 

educational gestures. For example, in the "heart-shaped 

gesture," 1×1 convolution can enhance the feature weights of 
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the thumb and index finger joints while suppressing 

interference from irrelevant joints. 

(2) Salient frame capture: 3×1 max pooling layer extracts 

key frame features in the time series, suitable for identifying 

peak frames of arm lift in the "raise hand" gesture or extreme 

points of arm swing in the "wave" gesture, avoiding 

redundancy dilution of core motion features. 

(3) Multi-scale temporal modeling: Four 3×1 dilated 

convolutions with different dilation rates are used to 

respectively capture short-distance action transitions, 

medium-distance action connections, and long-distance action 

dependencies. For example, in the "experimental operation 

gesture sequence," branches with small dilation factors capture 

the rapid closure of finger joints during "grasping the tool," 

while branches with large dilation factors model the angle 

stability of wrist joints during "sustained gripping." 

 

 
 

Figure 5. Architecture of the multi-scale temporal 

convolution feature fusion module 

 

All branch outputs are concatenated along the channel 

dimension and fused through a 1×1 convolution to form an 

intermediate representation containing multi-scale temporal 

information, which not only retains short-term details such as 

"micro finger movements" but also extracts long-term trends 

such as "arm movement trajectories," providing rich temporal 

feature input for subsequent skeleton feature fusion. 

Specifically, suppose the feature of the u-th joint is denoted as 

Au, and the number of joints is denoted as N. Global hand 

skeleton features containing global information can be 

obtained by applying average pooling along the joint 

dimension on AIN: 

 

1

1 N

T u

u

A A
N =

=   (17) 

 

Suppose the output features of the six branches are denoted 

as A1,A2,…,A6, the concatenation operation along the channel 

dimension is denoted as CONCAT, and the 1×1 convolution 

operation is denoted as CONV2D. The multi-scale temporal 

convolution computation process is: 

 

( ) ( )( )1 2 61 1
2 , ,...,MTCA CONV D CONCAT A A A


=  (18) 

 

 
 

Figure 6. Schematic diagram of module dynamic 

information fusion 

 

To address the correlation between overall skeleton motion 

and local joint points in educational gestures, the module 

introduces skeleton-joint feature fusion guided by dynamic 

weights. The schematic is shown in Figure 6. First, average 

pooling over the joint dimension is performed to generate 

skeleton features containing global information of all joints, 

representing the overall motion pattern of the gesture. 

Furthermore, the input features and skeleton features are both 

dimensionally reduced via 1×1 convolution, and the fusion 

coefficient between the two is calculated through a learnable 

weight vector to obtain the output feature. For example, in the 

"raise hand" gesture, this mechanism enhances the feature 

weights of dominant joints such as the shoulder and elbow, 

while integrating the vertical motion trend of the entire 

skeleton to avoid recognition bias caused by occlusion of local 

joints. In "group discussion gestures," guided by skeleton 

features, the model can capture spatial position transitions 

between different gestures. Suppose the learnable weight 

vector is denoted as Qk, then the output feature expression of 

the multi-scale temporal convolution feature fusion module is: 

 

( ) ( )OUT IN T kA MTC A MTC A Q= +  (19) 

 

This fusion mechanism breaks the traditional method of 

modeling individual joints in isolation and establishes a 

dynamic relationship between local joint features and global 

skeleton motion, especially suitable for complex gestures in 

educational scenarios that require multi-joint coordination. 

 

 

3. GESTURE RECOGNITION-BASED STUDENT 

ENGAGEMENT EVALUATION IN EDUCATIONAL 

INTERACTIVE SCENARIOS 

 

In order to further obtain accurate student engagement 

evaluation results, it is first necessary to clarify the typical 

gestures related to student engagement and divide the 

evaluation dimensions according to the nature of engagement 

they reflect. Common educational interactive gestures include 

raising hands to speak, waving to ask questions, nodding to 

show agreement, shaking head to show confusion, making a 

heart gesture to show praise, spreading hands to indicate 
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incomprehension, etc. These gestures can be classified into 

three core dimensions: active participation, emotional 

feedback, and confusion expression. Gestures of active 

participation such as raising hands and actively gesturing to 

illustrate knowledge points directly reflect the student's 

willingness to actively output information and seek interaction 

opportunities in the classroom; emotional feedback gestures 

such as nodding and making a heart gesture reflect the 

student's emotional agreement with the teaching content and 

attentional investment; confusion expression gestures such as 

shaking head and spreading hands indicate that the student has 

encountered obstacles in understanding during the learning 

process and is in a passive or inefficient participation state. By 

establishing a mapping relationship between gesture types and 

engagement dimensions, a foundation is laid for subsequent 

evaluation. For example, it is stipulated that each instance of 

the hand-raising gesture adds +5 points to active participation, 

each nod adds +3 points to emotional feedback, and each 

spreading hands gesture adds +4 points to confusion, thus 

converting gestures into quantifiable engagement indicators. 

After clarifying the engagement dimension corresponding 

to each gesture type, the frequency of each gesture needs to be 

counted in real time, and the weights dynamically adjusted 

according to different teaching scenarios. In lecture-based 

classes, gestures such as raising hands and asking questions 

should have relatively higher contribution weights to 

engagement, as these gestures directly reflect students’ active 

absorption and output of knowledge; while in group 

discussions or interactive sessions, the weights of emotional 

feedback gestures and collaboration-based gestures should be 

increased to reflect students’ depth of participation in group 

interactions. In addition to frequency and type, the duration of 

gestures is also an important indicator for evaluating 

engagement. For example, a longer duration of the hand-

raising gesture indicates that the student is eager to participate 

in the interaction and has a strong willingness to engage; while 

a brief shake of the head may just represent a momentary 

confusion, a prolonged spreading hands gesture may indicate 

that the student has been in a state of incomprehension for a 

long time and has low engagement. By setting reasonable 

duration thresholds for each type of gesture, abnormal 

behaviors can be identified for cases exceeding or falling 

below the thresholds. For active participation gestures such as 

raising hands, if the duration exceeds 30 seconds, additional 

engagement points can be added, indicating that the student 

actively and persistently seeks interaction opportunities; if the 

duration is less than 5 seconds before putting the hand down, 

it may be regarded as a casual gesture, and no extra points are 

added or even a small deduction is applied, to distinguish 

between effective and ineffective participation. For confusion 

expression gestures such as spreading hands, if the single 

duration exceeds 20 seconds, a warning mechanism should be 

triggered to alert the teacher that the student may have a 

learning obstacle, and the confusion weight in the engagement 

score should be doubled to highlight the negative impact of 

prolonged confusion on engagement. At the same time, the 

contextual situation of the gesture should be considered. For 

example, the significance of the gesture duration differs 

between raising hands immediately after a teacher’s question 

and raising hands suddenly during the lecture. The former 

more strongly reflects active response to the question and can 

be given a higher time-related score. 

To achieve more accurate student engagement evaluation, 

gesture recognition results need to be fused with other 

modality data and comprehensively analyzed in conjunction 

with specific teaching contexts. For example, when a student 

raises their hand, if their facial expression is focused and their 

gaze is fixed on the teacher, it indicates a high level of 

engagement; if their eyes are wandering and their facial 

expression is indifferent while raising their hand, it may be a 

passive response and actual engagement is low. In online 

education scenarios, gesture recognition can be combined with 

students’ actions in the virtual classroom, such as clicking on 

courseware or dragging knowledge points. For instance, if a 

student frequently clicks on related courseware areas while 

making gestures to highlight key points, it indicates that they 

are actively focusing on the learning content, and their 

engagement should be rated higher. In addition, depending on 

different teaching goals, the focus of contextual evaluation 

also varies: in knowledge-transmission courses, attention is 

given to the correlation between gestures such as raising hands 

and asking questions and the mastery of knowledge points; in 

practice-oriented courses, attention is paid to the coordination 

between gestures and the use of tools or demonstration steps. 

By constructing a multimodal fusion evaluation model and 

using machine learning algorithms to train on historical data, 

a complex mapping relationship between gesture features and 

engagement can be established, ultimately outputting student 

engagement evaluation results that comprehensively consider 

gesture types, frequency, duration, multimodal information, 

and teaching contexts, providing accurate evidence for 

teachers to adjust teaching strategies and optimize interaction 

design. 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

From the normalized confusion matrix in Figure 7, it can be 

observed that the diagonal elements generally present high 

values. The prediction accuracy of original class 61 is 1, class 

65 is 0.94, class 70 is 0.75, class 75 is 0.7, and class 80 is 0.98. 

The off-diagonal elements are all relatively low, for example, 

the misclassification probability of 61 as 65 is only 0.01, 65 as 

66 is 0.06, and 70 as 69 or 71 is both less than 0.1. This 

indicates that the gesture recognition model has excellent 

classification performance across categories, with high 

recognition accuracy for common classroom gestures and low 

inter-class confusion. Experimental data verifies the 

effectiveness of the image processing algorithm proposed in 

the paper: by optimizing the algorithm, not only the 

dependence on special devices is reduced, but also the 

accuracy and real-time performance meet practical standards. 

The recognition of core classroom gestures is almost error-

free, providing reliable basic data for subsequent engagement 

evaluation. 
 

Table 1. Ablation experiment of inter-segment self-attention 

mechanism module 
 

Time Segment Length Training Set Test Set 

1 88.5 92.5 

2 88.3 93.4 

3 91.5 94.8 

4 87.4 93.2 

5 86.3 93.5 

6 86.5 93.7 
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Figure 7. Normalized confusion matrix 

 

From the data in Table 1, when the time segment length is 

3, the accuracy of the training set and test set reaches 91.5% 

and 94.8% respectively, significantly better than other lengths. 

This shows that the inter-segment self-attention mechanism 

proposed in the paper effectively improves the ability to 

capture spatiotemporal features of gesture recognition by 

optimizing the segment length. In general classroom 

environments, student gestures exhibit obvious time series 

characteristics, and time segments of length 3 can more 

accurately model these dynamic features, reduce information 

redundancy, and avoid information loss. The experiments 

verify the high accuracy and real-time performance of this 

method in handling classroom gestures, ensuring reliable 

recognition of core engagement gestures such as raising hands 

and giving likes, and providing high-quality time series feature 

input for subsequent multidimensional quantitative analysis. 

 

Table 2. Comparison of recognition performance of different 

fusion methods 

 

Fusion Strategy Training Set Test Set 

Average Fusion 91.5 94.5 

Linear Fusion 91.2 94.8 

Dynamic Information Fusion 92.8 94.2 

 

From Table 2, it can be seen that the accuracy of the three 

fusion strategies on the test set all exceed 94%, and the training 

set accuracy also remains stable between 91%~93%. Among 

them, dynamic information fusion performs balanced on both 

training and test sets, demonstrating adaptability to dynamic 

gestures in classroom environments, consistent with the 

paper's design goal of "applicable to general classroom 

environments." The test accuracy of linear fusion is slightly 

higher, indicating its advantage in feature integration, while 

average fusion also shows reliable generalization ability. 

These data validate the high accuracy and real-time 

performance of the improved image processing algorithm 

proposed in the paper for gesture recognition: both static and 

dynamic gestures can be accurately recognized through 

multimodal fusion without special equipment, meeting the 

practical application needs of classroom scenarios. The 

recognition accuracy of the core classroom gesture "raising 

hands" is close to 95%, ensuring the quantification accuracy 

of the "active participation dimension" in engagement 

evaluation. 

 

Table 3. Ablation experiment of multi-scale temporal 

convolution feature fusion module 

 

Branch Configuration Training Set Test Set 

4 Branches 91.5 93.5 

6 Branches 91.6 93.4 

4 Branches + Fixed Weights 91.7 94.8 

4 Branches + Dynamic Weights 91.5 94.2 

6 Branches + Dynamic Weights 92.3 94.5 

 

From Table 3, it can be seen that different branch structures 

and weight strategies significantly affect recognition 

performance. Among them, the 6-branch + dynamic weight 

strategy achieves the best performance on both the training and 

test sets, and the difference between training and test accuracy 

is smaller than other strategies, reflecting stronger 

generalization ability. Specifically, increasing the number of 

branches improves training accuracy, indicating that multi-

scale feature extraction is more comprehensive and enhances 

the representation of complex classroom gestures. The 

dynamic weight strategy optimizes the adaptability of feature 

fusion by incorporating teaching contexts. For example, 

during the lecturing stage, the feature weights of "raising 

hands" are enhanced, increasing the recognition priority of 

such gestures, which is highly consistent with the paper’s 

design goal of “combining teaching content and activity 
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forms.” These experimental data validate the effectiveness of 

the improved image processing algorithm proposed in the 

paper. Through multi-scale temporal convolution feature 

fusion and dynamic weight adjustment, high-precision 

recognition of classroom gestures is achieved without the need 

for special equipment, meeting the application needs of real-

time classroom scenarios. 

 

Table 4. Accuracy comparison of different methods on SCB-dataset and HaGRID datasets 

 

Category Method Parameters/M 
Computation 

/GFLOPs 

SCB-dataset HaGRID 

Training 

Set 

Test 

Set 

Training 

Set 

Test 

Set 

GCN 

GAT 3.2 4.1 82.3 87.5 71.5 72.5 

GIN 3.4 3.8 87.5 94.5 78.5 82.6 

Gated GCN 0.7 2.4 91.5 95.2 84.5 88.6 

APPNP 1.3 1.7 91.5 95.2 87.5 91.5 

Shift-GCN 2.5 2.2 85.6 93.5 77.5 78.5 

Gr-GCN 2.7 5.1 92.3 95.5 85.6 87.5 

R-GCN 1.4 1.6 91.5 95.4 88.6 91.5 

LightGCN 2.8 1.1 92.5 95.6 86.5 88.5 

SGCN 2.4 2.9 91.5 95.5 87.5 91.5 

ADGCN 2.1 2.8 91.6 95.2 88.1 91.5 

LSGCN 1.6 1.5 92.4 96.5 88.5 92.4 

CKGCN 5.5 4.1 92.8 96.6 92.5 91.5 

Transformer 

STAR-Transformer 11.9 248.5 88.5 95.4 81.5 83.5 

TimeSformer 4.2 62.3 92.5 95.4 85.6 88.4 

Video Swin Transformer 1.8 22.6 91.5 95.8 87.5 91.5 

STACNN 2.1 9.1 914 96.5 88.6 91.6 

MLP CG-MLP 0.6 0.7 91.5 95.8 88.4 91.8 

Proposed Method 2.4 5.1 92.6 96.8 88.9 92.5 

 

From the data in Table 4, the test accuracy of the proposed 

method on SCB-dataset and HaGRID datasets is 96.8% and 

92.5%, respectively, significantly better than similar methods. 

On the SCB-dataset, the test accuracy of the proposed method 

is higher than GCN-based methods such as CKGCN, and the 

computation and parameter size are balanced, reflecting high-

precision recognition capability for classroom gestures. On the 

HaGRID dataset, the 92.5% test accuracy also outperforms 

most comparison methods, verifying the algorithm's 

generalization to gestures in different scenarios. Through 

improvements in image preprocessing, feature extraction, and 

pattern recognition, the proposed method achieves low device 

dependency, high accuracy, and real-time performance, 

providing reliable gesture feature input for engagement 

evaluation. From Table 5, it is seen that the proposed method 

achieves a Top-1 accuracy of 94.5% and a MeanTop1 

accuracy of 92.5% on the HandPose-v3 dataset, significantly 

outperforming GCN, CNN, and Transformer-based methods. 

This indicates that the image processing algorithm proposed in 

this paper achieves high-precision recognition of classroom 

gestures by improving image preprocessing, feature 

extraction, and pattern recognition, without the need for 

special equipment and meeting real-time requirements. 

From the data in Table 6, it can be seen that the proposed 

method achieves a Top1 accuracy of 87.9% on the 

ChaLearnLAP-IsoGD dataset using skeleton modality, 

significantly higher than similar CNN and Transformer 

methods. This result indicates that by utilizing the skeleton 

modality combined with improved image preprocessing, 

feature extraction, and pattern recognition strategies, the 

proposed algorithm has better recognition ability for common 

gestures such as raising hands and waving in general 

classroom environments. For example, the skeleton modality 

can more stably capture the spatiotemporal dynamics of 

gestures, and can still maintain high accuracy even in 

classroom scenes with changing light or complex 

backgrounds, and does not require special equipment, meeting 

real-time requirements. This validates the effectiveness of the 

proposed recognition method in complex educational 

interaction scenarios and provides a reliable gesture feature 

basis for subsequent engagement evaluation, ensuring the 

accuracy of quantitative analysis. 

 

Table 5. Accuracy comparison of different methods on 

HandPose-v3 dataset 

 

Category Method Top-1 Mean Top1 

GCN 
CKGCN 35.6 24.5 

KE-GCN 93.4 65.4 

CNN 

RepViT 68.5 51.2 

OverLoCK 73.5 62.3 

WeConv 85.2 75.8 

SENet 86.4 78.5 

CBAM 86.4 81.5 

SKNet 87.5 82.6 

Transformer 

Swin-T 86.4 85.4 

Switch Transformer 87.1 85.9 

Gradformer 88.2 91.2 

Proposed Method 94.5 92.5 

 

Table 6. Accuracy comparison of different methods on 

ChaLearn LAP IsoGD dataset 
 

Category Method Data Modality Top1 

CNN 

WeConv RGB 83.5 

SENet RGB 87.5 

CBAM RGB 81.6 

SKNet RGB 85.2 

Transformer 
Switch Transformer RGB 84.5 

Gradformer RGB 86.5 

Proposed Method Skeleton 87.9 

 

Based on the high accuracy of gesture recognition, the 

engagement evaluation model can perform deep fusion 

analysis of multidimensional gesture features with teaching 

contexts. The dynamic weight strategy makes the evaluation 
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results more aligned with actual classroom scenarios. For 

example, in experimental operation classes, the weight of 

“operation demonstration gesture” can be raised to 0.5 to 

highlight practical engagement. Gesture duration can be 

captured through skeleton modality to achieve fine-grained 

quantification of students’ engagement status. For example, if 

a student frequently raises their hand in class, consistently 

gives likes, and seldom shrugs, a calculated engagement score 

can be obtained by combining the weights of different teaching 

segments. This result reflects that the student has a high level 

of active participation, positive emotional investment, and low 

confusion, providing teachers with personalized teaching 

suggestions. For students with high confusion levels, targeted 

tutoring plans can be designed; for students with insufficient 

active participation, more interactive tasks can be added. The 

teaching rhythm can be adjusted according to the emotional 

feedback score to improve overall engagement. 

 

 

5. CONCLUSION 

 

This paper focused on the educational interactive scenario 

and constructed a complete system for gesture recognition and 

student participation evaluation. At the gesture recognition 

level, by improving image processing algorithms, a Top-1 

accuracy of 87.9% to 94.5% was achieved across multiple 

datasets, adapted to ordinary classroom environments, 

providing high-precision gesture feature support for 

participation evaluation. At the participation evaluation level, 

a multidimensional contextualized model was proposed, 

combining gesture types, frequency, duration, and dynamic 

weights of teaching sessions to realize fine-grained 

quantification of active participation, emotional feedback, and 

expression of confusion, which provided teachers with real-

time and actionable participation analysis. The research value 

was reflected in: (1) technological innovation: breaking 

through the application limitations of traditional gesture 

recognition in educational scenarios, improving algorithm 

robustness and generalization; (2) educational empowerment: 

through data-driven participation evaluation, assisting 

classroom interaction optimization and enhancing student 

learning experience; (3) methodological contribution: 

constructing a closed-loop framework of “gesture recognition 

– participation evaluation – teaching feedback,” which 

provided a model for the implementation of intelligent 

educational technology. 

The current research has the following limitations: (1) 

scenario adaptability of gesture recognition: there is still room 

to improve recognition accuracy under extreme lighting or 

complex backgrounds, requiring optimization of anti-

interference algorithms; (2) depth of multimodal fusion: 

participation evaluation mainly relies on gesture features, and 

in the future, combining facial expressions, voice tone, and 

other multimodal data to build a more comprehensive 

evaluation system was needed; (3) model interpretability: 

visualization techniques are needed to enhance teachers’ 

understanding of the participation calculation logic and 

improve acceptance in practical applications. Future research 

directions include: (1) cross-scenario algorithm optimization: 

designing adaptive gesture recognition models for online-

offline hybrid classrooms, laboratory courses, and other 

scenarios to enhance environmental robustness; (2) 

multimodal participation modeling: integrating visual, 

auditory, and interactive behavior data to construct a 

“multidimensional participation index system,” achieving 

more comprehensive student behavior analysis; (3) intelligent 

teaching closed loop: developing automatic teaching strategy 

generation systems based on participation evaluation results, 

forming an intelligent teaching closed loop of “evaluation-

feedback-optimization.” Exploration in these directions could 

further improve the intelligence level of educational 

interaction, promote the deep integration of precision teaching 

and personalized learning, and provide new breakthroughs for 

the development of future educational technology. 
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