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Schizophrenia is a mental disorder condition that causes patients to become distracted from 

reality. Over time, the patient loses his cognitive and social abilities to communicate with 

the outside world. Due to machine learning's strong ability to analyze complicated brain 

data, it has become an increasingly important tool in recent years. This study considers the 

brain's neurologic signals in the resting state in two scenarios to classify schizophrenia 

disease by electroencephalography (EEG). The performed scenarios were to investigate the 

impact of selecting electrodes randomly (5 electrodes and 8 electrodes) and comparing it 

with applying the principal component analysis (PCA), utilizing four algorithms to extract 

features: Fast Fourier Transform (FFT), Approximate Entropy (ApEn), Log Energy Entropy 

(LogEn), and Shannon Entropy (ShnEn). We used publicly available datasets with 19 EEG 

channels consisting of two classes, which are schizophrenia and health control, using a one-

second epoch window size. We applied a band-pass filter to decompose the EEG signals 

into five sub-bands. Also, the L2-normalization method has been applied to the derived 

features, which positively impacted the outcomes. The features were applied to three 

classifiers named K-nearest neighbor (KNN), support vector machine (SVM), and quadratic 

discriminant analysis (QDA). From all the scenarios, the five-electrode with random 

selection showed remarkable results of 99% using the SVM classifier in all evaluation 

metrics with LogEn+ Bandpass features. 
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1. INTRODUCTION

The human nervous system is the main system that 

determines lifestyle and general behaviour, including 

decisions and emotional control. The brain may be exposed to 

various accidents or diseases that lead to abnormalities in the 

brain's neural structure. The severity of the abnormalities 

varies depending on many factors, such as the patient's age, 

the family’s medical history, or the brain injury's location, 

which leads to multiple differences occurring between one 

patient and another in the behaviour and diagnoses. 

Neurological diseases that affect the neural cells, for instance, 

epilepsy, schizophrenia (SZ), Parkinson’s, and Alzheimer's, 

effect different locations of the brain and have a specific effect 

on brain function that is discovered and diagnosed through 

symptoms, tests, and using different tools. One of the worst 

diseases that may completely destroy the neural system in the 

brain is schizophrenia. 

Delusions, hallucinations, depression, and anxiety are just a 

few of the symptoms that come along with schizophrenia, 

which causes a severe behavioral change in character [1]. 

These symptoms can be clearly seen and distinguished 

between the ages of 16 and 30 and can be utilized to determine 

the patient's state, where timely detection is a crucial part of 

the patient's healing process [2, 3]. Besides, according to the 

official data of the World Health Organization, there are 

around 21 million patients, which is around 1% of people 

worldwide who are afflicted with this illness [4]. The 

traditional process of diagnosing schizophrenia is considered 

a complex process, according to some factors such as the 

psychiatrists' experience and the different case responses 

between one patient and another. 

Indeed, the neuroimaging techniques field provided help in 

discovering various brain disorders like schizophrenia, which 

is considered a time-consuming process, encouraging 

scientific researchers to accomplish new medical aims. 

Electroencephalography (EEG) devices have made 

tremendous strides in the diagnosis of nervous system 

disorders in recent years, including epilepsy [5], Alzheimer's 

disease [6-9], and schizophrenia [10, 11].  The non-invasive 

nature of EEG has led to its adoption as the ideal tool for 

recording and collecting the electrical activity of the brain, 

which in turn provides brain dimensions that contain huge 

amounts of data, which gives the capability to diagnose 

different brain diseases. Meanwhile, deep learning and 

machine learning (ML) are the most important methods in the 

medical domain that offer advanced processing and evaluation 

of diverse medical datasets, including brain signals [12]. 

ML used the feature extraction approach to retrieve the 

hidden information of signals from the data, where these 

features provide the possibility of obtaining clearer signals and 

identifying and measuring the most relevant data, which will 
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be used with the frequency domain or the time domain [13, 14]. 

Many studies have addressed the subject of classifying 

schizophrenia based on EEG and analyzing the brain signals 

captured using the global 10-20 electrode system. The analysis 

of the relationship between these electrodes represents the 

nature of neural communication in the brain, which in turn 

leads to the detection of a person's mental health. According 

to the brain regions and the different functions and channels 

associated with them, the features in each channel of EEG are 

analyzed and extracted separately, and these features are 

subsequently linked and then classified. 

Consequently, this study investigates the feasibility and 

importance of electrodes through the model's ability to classify 

schizophrenia without compromising classification accuracy 

by reducing electrodes and selecting electrodes randomly. 

This approach supports the ability of electrodes for non-

sophisticated devices as well as for devices with few 

electrodes, such as Emotiv Insights (5 channels), Muse EEG 

(4-6 channels), Neurosky Mindwave (1 channel), and 

InteraXon Muse S (4 channels). Clinically, random electrode 

reduction offers advantages by mitigating bias related to 

electrode type and placement. Furthermore, the proposed 

methodology simplifies traditionally employed techniques. 

The manuscript is written in the following format: related 

work in Section 2, which included a comparison with the 

literature that has classified schizophrenia using different 

datasets and techniques. In Section 3, we illustrated the 

materials and methods: Firstly, we described the EEG dataset; 

secondly, we mentioned the preprocessing methods used; 

thirdly, we summarized the techniques of feature extraction; 

and finally, the normalization techniques applied to the dataset. 

In Section 4, we explained the classification through the 

description of machine learning classifiers; then in Section 5, 

we presented and discussed the results, and finally, the 

conclusion is clarified in Section 6. 

 

 

2. RELATED WORK 

 

Researchers in the last era increased their work that aimed 

to classify schizophrenia disorder utilizing a variety of 

methods, including MRI [15], eye tracking [16], facial features 

[17, 18], tracking handwriting [19], and schizophrenia EEG 

signal [20]. Various studies have been done on the use of 

several characteristics in machine learning to classify EEG 

data for the diagnosis of schizophrenia. They employed 

several ML models and achieved differing degrees of accuracy. 

Depending on the topic and the data utilized for classification, 

popular machine learning models in these investigations 

include SVM, RF, and Artificial Neural Networks (ANNs), 

with accuracy varying from 70% to over 90% [21]. 

One of these published papers that aimed to classify 

schizophrenia was done by Krishnan et al. [20], using datasets 

obtained from the Repository for Open Data (RepOD) with 

two classes: schizophrenia patients and healthy controls with 

28 subjects. The EEG signals were recorded for 15 minutes, 

using 19 channels. The highest result achieved was by the 

SVM with Radial Basis Function, with an accuracy of up to 

93%. Siuly et al. [22] used an EEG dataset including two 

groups: patients diagnosed with schizophrenia and healthy 

controls. 

The signals underwent empirical mode decomposition, and 

the most significant features were then selected using the 

Kruskal-Wallis test. The SVM was then provided with all the 

attributes for classification. The highest percentage achieved 

was 93.21%. De Miras et al. [23] evaluated if machine learning 

methods may be helpful in the diagnosis of the condition. 

Additionally, they have created a pipeline for processing. 

Support vector machines (SVM), k-nearest neighbors (KNN), 

logistic regression (LR), decision trees (DT), and random 

forest (RF), were the five machine-learning techniques that 

they examined. SVM yielded the greatest results 89%. 

Hartini and Rustam [24] proposed fuzzy kernel c-means 

using data from Northwestern University, including 171 

schizophrenia and 221 non-schizophrenia samples. Using 

RBF and polynomial kernel functions, k-fold cross-validation 

was used for evaluation. Results showed that the RBF kernel 

with σ=0.01 and σ=1 performed better than the polynomial 

kernel with similar running time. Furthermore, among the five 

classification strategies employed by Khare et al. [25]-

including SVM, KNN, DA, ensemble methods, and decision 

trees — SVM achieved the highest accuracy of 88%. They 

divide nonstationary EEG signals into Fourier spectrum 

modes, pull out linear and nonlinear time domain features, and 

use the Kruskal-Wallis test to choose highly discriminant 

features. This helps them put people into two groups: healthy 

and those with schizophrenia. 

Hassan et al. [26] used a publicly available EEG signals 

dataset from Warsaw's Institute of Psychiatry and Neurology 

to automate the identification of schizophrenia using a channel 

selection mechanism based on a rigorous performance analysis 

of the Convolutional Neural Network. They used CNN in 

conjunction with other ML classifiers to train the classification 

model. Their highest findings reveal that LR and CNN yield 

98% accuracy. Supakar et al. [27] proposed a DL model using 

RNN-LSTM to analyze the EEG signal data to diagnose 

schizophrenia. EEG signal data of 45 SZ patients and 39 

healthy subjects. They had two scenarios: a complete feature 

set and a reduced feature set, which achieved an accuracy of 

98% and 93%, respectively. 

Moreover, Li et al. [28] introduced an innovative EEG data 

mapping technique using Vision Transformer (LeViT) as both 

a feature extractor and classifier for the early detection of 

schizophrenia. Their data was private, and they achieved 98%. 

Table 1 presents and compares studies using various 

datasets, when all channels are used, with different techniques 

to classify EEG signals with SZ and healthy controls. 

Previous studies have explored the researchers' utilization 

of various methods to categorize schizophrenia disorder and 

various datasets, and the outcomes were inconsistent and fell 

short of expectations. As a result, we examine and compare the 

possibility of improving the diagnostic precision of 

schizophrenia by using an electrode reduction technique with 

PCA as a traditional technique. 
 

Table 1. Classifying schizophrenia utilizing various datasets  
 

Ref. Chan. 
Dataset 

Methods Acc% Spe% Sen% 
SZ Free 

[29] 64 49 32 RF 81 NA NA 

[30] 16 
37M, 

10F 

14M, 

11F 
SVM 90 91 89 

[31] NA 
31M, 

19F 

32M, 

18F 

non-linear 

SVM 
73 56 62 

[32] 16 39 45 
MDC-

CNN 
93 93 93 

[33] 8 48 24 RF 68 NA NA 

[34] 256 
33M, 

37F 

47M, 

28F 
SVM 82 81 82 

Note: M refers to male and F refers to female, chan. refers to channel 
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Table 1. Classifying schizophrenia utilizing various datasets 

(continue)  

 

Ref. Chan. 
Dataset 

Methods Acc% Spe% Sen% 
SZ Free 

[35] 64 
36M, 

18F 

3 M, 

24F 

Hybrid 

DNN 
99 NA NA 

[36] 10 49 32 KNN 99 90 95 

[37] 64 49 32 CNN 92 NA NA 

[38] 20 
37M, 

25F 

38M, 

32F 
KNN 96 98 95 

[39] NA 158 76 Ensemble 87 65 98 

[40] 64 
41M, 

8F 

67M, 

14F 
HDSS 92 91 97 

[2] 16 39 45 CNN 98 NA NA 

[41] 64 13 11 SVM 89 90 88 

[42] 32 310 205 XGB 94 NA NA 

[43] 16 39 45 AdaBoost 99 100 98 

[44] 64 49 32 DT 99 95 95 

[23] 31 
9M, 

20F 

13M, 

7F 
SVM 89 90 63 

[45] 32 
215M, 

97F 

176M, 

144F 
RBF 93 NA NA 

[46] 19 626 516 KNN 97 NA NA 

[47] 16 39 45 CNN 99 99 100 

[48] 64 36 22 CNN 98 98 98 
Note: M refers to male and F refers to female, chan. refers to channel 
 

 
3. MATERIALS AND METHODS 

 

3.1 Dataset 

 

The EEG dataset used was accessible to the public [49]. 

Table 2 presents the details of the total signal used containing 

28 subjects, 14 from each group: schizophrenia and healthy 

controls. The sampling frequency of the EEG dataset 

recording is 250Hz. The montage was executed with a 

conventional 10-20 system. Moreover, the dataset was 

assembled utilizing the subsequent 19 EEG channels: Fp1, Fp2, 

T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, and O2 [50]. 

 
Table 2. The used datasets details 

 
Features Values 

SZ 
♂ 7 

♀ 7 

HC 
♂ 7 

♀ 7 

Mean age (SZ) 28.1±3.7 years 

Mean age (HC) 27.75±3.15 years 

SZ 
Mean age (♂) 27.9±3.3 years 

Mean age (♀) 28.3±4.1 years 

HC 
Mean age (♂) 26.8±2.9 years 

Mean age (♀) 28.7±3.4 years 

EEG segment 15min 

No. of segments 21702 

No. of segments without artefacts 30 

 
3.2 Preprocessing 

 

Preprocessing is a crucial step in ML due to EEG signals 

often containing a combination of noise resulting from several 

different factors, which in turn affects classification accuracy. 

There are several ways to reduce the noise and improve the 

EEG signals, for instance, by applying filters to enhance the 

signal quality. 

Thus, the bandpass filter was utilized to decompose the 

EEG data into five frequency sub-bands: beta rhythm (31-

31Hz), alpha rhythm (10-14Hz), theta rhythm (5-9Hz), delta 

rhythm (0.1-4Hz), and gamma rhythm (32-100Hz). 

The bandpass filter works on filtering out very high or low 

frequencies, as presented in Figure 1 with the 19 channels of 

the EEG signal after the band-pass filter was applied. 

 

 
 

Figure 1. The impact of band-pass filtering on EEG signals 

 

The brain's electrical activity generates billions of signals, 

so a multitude of electrodes are used to record these signals; 

adding more electrodes has a positive impact on the 

classification outcomes. It is important to note that there is no 

defined minimum or maximum number of electrodes, rules, or 

specific standards that should be used, as this varies depending 

on the kind of disorder being dealt with. 

Hence, we examined our proposed models by the two 

electrode scenarios (8 and 5 electrodes); the electrodes were 

selected randomly to assess the suggested approach and 

determine whether or not it might yield encouraging outcomes. 

Additionally, we evaluated the computational efficiency of the 

classifier's final output, as well as estimated the training and 

speed time. 

 

3.3 Feature extraction techniques 
 

Different feature extraction techniques have been put out in 

the literature, such as entropy, approximate entropy, Shannon 

entropy, fuzzy entropy, fast Fourier transform, etc. Each one 

of these methods has a special mechanism for obtaining the 

feature from the signal. We identified the most commonly 

used methods with brain signals that helped identify subtle 

abnormalities associated with schizophrenia and combined 

these methods with our proposed approach to evaluate their 

effectiveness with varying constraints. 

In this study, four extraction methods were calculated to 

extract the hidden features as presented in the following 

equations: Eq. (1) represents the mathematical formulation of 

Fast Fourier Transform (FFT), approximate entropy (ApEn) as 

shown in Eq. (2), log energy entropy (LogEn) by Eq. (3), and 

Shannon entropy (ShEn) as shown in Eq. (4). 

FFT, LogEn, and ShEn were implemented with the band-

pass filter; ApEn was applied in both cases with and without 

the band-pass filter. We selected these four techniques due to 

their established applications in EEG research and their 
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accurate dealing with brain signals, which are explained in the 

following paragraphs. 

FFT is one of the most important algorithms developed of 

all time, and the real reason for depending on FFT is its quick 

and effective method of denoising data. The FFT features have 

been implemented on the SZ EEG signals to convert the time 

domain to the frequency domain. Thus, it allows one to see the 

most prominent frequencies in the EEG signal and identify 

abnormalities or patterns that may appear in the brain wave 

frequencies [51]. 

 

𝑋(𝐾) = ∑ 𝑋[𝑛]𝑊𝑁
𝑘𝑛

𝑁−1

𝑛=0

= ∑ 𝑥

𝑛 𝑒𝑣𝑒𝑛

(𝑛)𝑛𝑤𝑁
𝑘𝑛 + ∑ 𝑥(𝑛)𝑤𝑁

𝑘𝑛

𝑛 𝑜𝑑𝑑

 

𝐾 = 0,1 … … , 𝑁 − 1, 

(1) 

 

𝐴𝑝𝐸𝑛(𝐸, 𝑟, 𝑁) =
1

(𝑁 − 𝑒 + 1)
∑ log  𝐶𝑖

𝑒 (𝑟)

𝑁−𝑒+1

𝑖−1

−
1

𝑁 − 𝑒
∑ 𝑙𝑜𝑔

𝑁−𝑒

𝑖=1

𝐶𝑖
𝑒+1 (𝑟) 

(2) 

 

ShEn=
𝐻𝑆ℎ

𝑜𝑔 𝑘
 (3) 

 

E=∑ 𝑙𝑜𝑔𝑛 (𝑤𝑖,𝑗
𝑛2) (4) 

 

Entropy is the most frequently used feature to measure time-

domain features. It is also widely used in disease detection by 

capturing any slight or subtle change in the brain signal, which 

assists when dealing with small data sizes. ApEn is defined as 

a measurement of the regularity or randomness of data in a 

time series and is used for short-length data due to its lower 

sensitivity to noise. 

ShnEn is a time-domain complexity metric that does not 

rely on the signal spectrum and is similar to ApEn 

functionality. Since entropy may be used to ascertain the 

degree of randomness in the information, it is employed as the 

feature approach for schizophrenia due to ShEn decreasing 

with decreased neural complexity [52]. 

In signal processing, a common measure called LogEn, is 

used to extract relevant information. Since the frequency 

bands specific to schizophrenia have been identified, these 

bands can provide insights into the underlying neural systems. 

All these feature extraction methods are computed using a 

MATLAB routine. 

 

3.4 Normalization 

 

In general, normalization is the most common technique 

that deals with data in linear transformations. Its role is to 

rescale numerical features to a standard range to avoid larger 

values that may affect and bias the machine learning results. 

Although applying any normalization method is easy to 

implement, each method has strengths and weaknesses. 

Selecting the appropriate normalization method depends on 

some factors, such as the data and what is required from 

machine learning to obtain optimal results. In our work, we 

used L2 normalization to increase and enhance our accuracy 

results. 

 

 

4. CLASSIFICATION 

 

We used three machine learning (ML) classifiers, namely 

SVM, KNN, and QDA, together to classify the features 

computed by four different methods from the EEG signal 

using two scenarios for identifying a patient with 

schizophrenia (SZ). The main goal of our research is to 

achieve the highest possible accuracy regardless of the number 

and the location of the electrodes concerning different brain 

regions and prove that all channels are not necessary to 

achieve satisfactory results. Therefore, we implemented the 5 

electrodes and 8 electrodes first by random selection, and then 

we implemented a traditional method, which is the PCA, as 

shown in Figure 2. 

 

 
 

Figure 2. EEG signal data classification for schizophrenia with two classes: Healthy control and schizophrenia 
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4.1 SVM 

 

In the field of machine learning, SVM is a popular choice 

for dealing with and processing various problems, most 

notably classification, as the strength of this approach lies in 

maximizing the margin separating the different classes, which 

leads to obtaining ideal accuracy in classification regardless of 

the type of data being dealt with. To lower classification error, 

certain unnecessary data are eliminated from the training data 

set at the ultra-optimal level, which affects the class borders. 

Multiple kernel tricks, such as polynomial, Gaussian, radial 

basis function (RBF), Laplace RBF, sigmoid, and Anove RBF, 

are used in SVM, making it a versatile tool. 

 

4.2 K-nearest neighbors (KNN) 

 

KNN is a non-parametric classification technique that finds 

the classifier's nearest neighbors by performing a distance 

check. Distance is calculated using the Euclidean Distance 

equation. During the training phase, the classifier check 

calculates the distance between the specific and the other data 

to categorize it. It gives it a unique label denoting its class, and 

KNN applies this to all of the data until all of the data is. 

 

4.3 Quadratic discriminant analysis (QDA) 

 

A machine learning and statistical classification classifier 

called QDA uses quadric surfaces to categorize two or more 

classes of disparate kinds of data. Compared to a linear 

classifier, this version is more suited. For every class, QDA 

specifically uses a Gaussian distribution. 

 

 

5. RESULTS AND DISCUSSION 

 

By using the public database [49], we explore how 

bandwidth filtering and electrode reduction affect our ability 

to find schizophrenia-related EEG signals. We selected 

electrodes randomly, unlike previous studies that focused on 

identifying brain regions and selecting effective electrodes, 

which introduced monotony into the work and repeated the 

results. Most current studies now use all channels to obtain the 

highest possible classification accuracy to achieve the best 

computational efficiency in less time, which is often not the 

case when the electrodes are reduced. Therefore, our study 

investigates the effect of minimizing the data channel numbers 

in two different scenarios to achieve comparable results to 

studies that used all data channels. 

Random channel selection is computationally inexpensive 

when compared to the traditional method (algorithms used that 

have the ability to rank channels or feature importance 

analysis), which is considered computationally expensive and 

helps to influence without prior knowledge of which are the 

most important channels. 

Our experiments were based on 14 subjects for SZ and 14 

subjects for healthy, so to maximize the data, we used one 

epoch window size for our two scenarios. 

We examined the efficacy of four feature extraction 

methods: FFT, ApEn, LogEn, and ShnEn. Among the features, 

ApEn was applied twice: with and without the band-pass filter 

on the data. Then, the data was standardized using the L2-

normalization approach and fed to three ML classifiers: SVM, 

KNN, and QDA. The original signals were recorded with 19 

channels and a 250Hz frequency. 

5.1 Experiment I: EEG classification based on five 

randomly selected electrodes 

 

The brain's electrical activity generates billions of signals, 

so a multitude of electrodes are used to record these signals, 

and using more electrodes has a favourable impact on the 

classification outcomes. It is important to note that there is no 

defined minimum or maximum number of electrodes that 

should be used, as this varies depending on the kind of disorder 

being dealt with. As a result, there is no guideline, rule or 

specific standard for this. Therefore, we first tested the 

proposed models to evaluate our approach by reducing the 

number of electrodes to five, as the goal of choosing this 

number was to determine whether or not it could lead to 

encouraging results using a very limited electrode setup. And 

demonstrate the ability of the approach to extract and obtain 

information contained in a small set of EEG channels. 

Classification was performed using the SVM, KNN, and 

QDA algorithms on the five electrodes for each class; the 

obtained confusion matrix values for the three classifiers are 

presented in Table 3, and the performance values are listed in 

Table 4. 

Based on Table 4, the results show that when randomly 

selecting five electrodes, EEG signal classification with KNN 

with implementing LogEn outperformed the other two 

classifiers with results of 98%, 98%, and 99% for accuracy, 

sensitivity, and specificity, respectively. 

 

Table 3. The confusion matrix obtained by the three 

classifiers with random 5-electrodes 

 

Feature Name Classes Name 
SVM 

Predicted Class 

FFT+Bandpass 

Actual class 

Sch 1042 13703 

Healthy 12160 869 

ApEn 
Sch 4337 11496 

Healthy 10225 2804 

ApEn+Bandpass 
Sch 5093 10740 

Healthy 11247 1782 

ShnEn+Bandpass 
Sch 7176 8657 

Healthy 13181 963 

LogEn+Bandpass 
Sch 166 15666 

Healthy 12856 174 

Feature Name Classes Name 
KNN 

Predicted Class 

FFT+ Bandpass 

Actual Class 

Sch 1402 13343 

Healthy 12184 845 

ApEn 
Sch 4095 11738 

Healthy 9782 3247 

ApEn+Bandpass 
Sch 8401 7432 

Healthy 12411 588 

ShnEn+Bandpass 
Sch 1297 14536 

Healthy 13312 832 

LogEn+Bandpass 
Sch 196 15636 

Healthy 12872 158 

Feature Name Classes Name 
QDA 

Predicted Class 

FFT+ Bandpass 

Actual Class 

Sch 3580 11165 

Healthy 11804 1225 

ApEn 
Sch 7047 8786 

Healthy 10691 2338 

ApEn+Bandpass 
Sch 8072 7761 

Healthy 12667 362 

ShnEn+Bandpass 
Sch 9355 6478 

Healthy 11342 2802 

LogEn+Bandpass 
Sch 1910 13922 

Healthy 12781 249 
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Table 4. Classification performance results utilizing five 

random electrodes 

 

Filter 

Condition 
Classifiers 

Feature Extraction 

Methods 

Evaluation 

Metrics 

Acc Sen Spe 

With 

Bandpass 

SVM 

FFT 

93 92 94 

KNN 91 89 94 

QDA 82 76 90 

SVM 

ApEn 

76 68 85 

KNN 68 59 92 

QDA 70 61 95 

SVM 

ShEn 

72 64 89 

KNN 92 91 94 

QDA 59 54 69 

SVM 

LogEn 

98 98 98 

KNN 98 98 99 

QDA 92 87 98 

Without 

Bandpass 

SVM 

ApEn 

75 70 80 

KNN 74 70 78 

QDA 67 60 78 

 

In contrast, SVM scored 98%, 98%, and 98%, and QDA 

scored 92%, 87%, and 98%, respectively, for accuracy, 

sensitivity, and specificity. 

 

5.2 Experiment II: EEG classification based on eight 

randomly selected electrodes 

 

Table 5. The confusion matrix was obtained by the three 

classifiers with random 8-electrodes 

 

Feature Name Classes Name 
SVM 

Predicted Class 

FFT+ Bandpass 

Actual Class 

Sch 504 15328 

Healthy 12543 486 

ApEn 
Sch 2753 13080 

Healthy 10997 2032 

ApEn+Bandpass 
Sch 1651 11379 

Healthy 11157 4676 

ShnEn+Bandpass 
Sch 4160 11673 

Healthy 12001 1028 

LogEn+Bandpass 
Sch 64 15768 

Healthy 12970 60 

Feature Name Classes Name 
KNN 

Predicted Class 

FFT+ Bandpass 

Actual Class 

Sch 576 15256 

Healthy 12341 688 

ApEn 
Sch 2838 12995 

Healthy 10767 2262 

ApEn+Bandpass 
Sch 1053 11977 

Healthy 8763 7070 

ShnEn+Bandpass 
Sch 644 15189 

Healthy 12352 677 

LogEn+Bandpass 
Sch 96 15736 

Healthy 12979 51 

Feature Name Classes Name 
QDA 

Predicted Class 

FFT+ Bandpass 

Actual Class 

Sch 1511 14321 

Healthy 1192 1037 

ApEn 
Sch 6675 9158 

Healthy 11285 1744 

ApEn+Bandpass 
Sch 216 12814 

Healthy 7386 8447 

ShnEn+Bandpass 
Sch 11097 4736 

Healthy 12858 171 

LogEn+Bandpass 
Sch 1381 14451 

Healthy 12969 61 
 

 

Table 6. Classification performance results utilizing eight 

random electrodes 

 

Filter 

Condition 
Classifiers 

Feature Extraction 

Methods 

Evaluation 

Metrics 

Acc Sen Spe 

With 

Bandpass 

SVM 

FFT 

96 96 96 

KNN 95 95 95 

QDA 91  88  93  

SVM 

ApEn 

78 87 70 

KNN 71 89 62 

QDA 69 97 60 

SVM 

ShEn 

82 74 91 

KNN 95 95 95 

QDA 61 53  96  

SVM 

LogEn 

99 99 99 

KNN 99 99 99 

QDA 95  90 99  

Without 

Bandpass 

SVM 

ApEn 

83 79 86 

KNN 82 79 85 

QDA 70  62  84  

 

In this scenario, we chose eight electrodes as an 

intermediate step between the first scenario of five electrodes 

and the previous studies mentioned in Section 2, which include 

more comprehensive electrodes. Here we verify the proposed 

approach to see if a small increase in the number of electrodes 

leads to a significant improvement in classification 

performance. Table 5 displays the confusion matrix obtained 

by using 8 electrodes, and Table 6 displays the performance 

values. 

For this scenario reduction, the classification accuracy rates 

were 99%, 99%, and 95% for SVM, KNN, and QDA, 

respectively. The corresponding sensitivity and specificity of 

the SVM and KNN classifiers were identical at 99%, while 

QDA got 90% and 99%, respectively. Consequently, SVM 

outperformed the other classifiers. 

 

5.3 Experiment III: EEG classification based on PCA 
 

Finally, we applied the principal component analysis (PCA); 

it preserves the most important features and reduces the 

dimensionality of the data by its formula illustrated in Eq. (5), 

but at the same time, these features may not be the most 

relevant or important for classifying the EEG data. This 

belongs to the PCA's lack of knowledge of the patterns that are 

important and required to function. 

Tables 7 and 8 compare and demonstrate classifying EEG 

data for schizophrenia disorder by the confusion matrix for the 

two PCA scenarios, while Tables 9 and 10 show the 

performance results. 

 

𝑐𝑜𝑣𝑥,𝑦 =
∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

𝑁 − 1
 (5) 

 

Given the earlier studies mentioned in section 2 and our 

study that investigated the limitations of random electrode 

selection and compared them to the PCA feature selection 

methods, this work stands out as a real demonstration of the 

validity of achieving impressive and unexpected results with 

fewer electrodes than expected, which demonstrates the 

existence of substantial discriminative information within this 

restricted grouping. This highlights the need to further explore 

the potential of EEG systems and the extent to which they can 

be extended.
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Table 7. The confusion matrix was obtained using PCA with 

the 5-electrodes 

 

Feature Name Classes Name 
SVM 

Predicted Class 

FFT+ Bandpass 

Actual Class 

Sch 10929 2100 

Healthy 3061 11684 

ApEn 
Sch 7521 5508 

Healthy 4357 11476 

ApEn+Bandpass 
Sch 12744 285 

Healthy 7308 8525 

ShnEn+Bandpass 
Sch 7 14137 

Healthy 6 15827 

LogEn+Bandpass 
Sch 11447 1583 

Healthy 1978 13854 

Feature Name Classes Name 
KNN 

Predicted Class 

FFT+ Bandpass 

Actual Class 

Sch 12274 755 

Healthy 1849 12896 

ApEn 
Sch 9782 3247 

Healthy 5357 10476 

ApEn+Bandpass 
Sch 11659 1370 

Healthy 7762 8071 

ShnEn+Bandpass 
Sch 8937 5207 

Healthy 5494 10339 

LogEn+Bandpass 
Sch 12689 341 

Healthy 448 15384 

Feature Name Classes Name 
QDA 

Predicted Class 

FFT+ Bandpass 

Actual Class 

Sch 11660 1369 

Healthy 6675 8070 

ApEn 
Sch 10587 2442 

Healthy 7190 8643 

ApEn+Bandpass 
Sch 12946 83 

Healthy 8950 6883 

ShnEn+Bandpass 
Sch 14106 38 

Healthy 15797 36 

LogEn+Bandpass 
Sch 11988 1042 

Healthy 4658 11174 

 

By comparing all the results obtained using 8 electrodes 

with the results using 5 electrodes in the two scenarios, our 

proposed methods result confirmed an acceptable balance 

between classification accuracy and the number of effective 

electrodes, taking into account the limited amount of data. We 

can set this random selection of electrodes in small numbers 

as a benchmark for comparison with more advanced electrode 

selection techniques. Where, the model based on PCA 

achieved a lower level of accuracy in identifying individuals 

with schizophrenia based on their EEG data, demonstrating the 

potential of our proposed approach as a valuable tool in the 

automated diagnosis of this mental disorder. 

On the other hand, the datasets used are open-source data 

for all, and the number of subjects from whom data were 

collected was equal, which is an important factor in not biasing 

one group over another in our work. In addition, numerous 

previous studies have utilized the same dataset, as shown in 

Table 11. 

To add reliability and achieve appropriate robustness to our 

approach, we calculated the prediction speed and training time, 

as computational efficiency is one of the indicators relied upon 

to determine the effectiveness of systems. Tables 12 and 13 

show the prediction speed and training time for our approach 

when using 5 electrodes and 8 electrodes, while Tables 14 and 

15 include the PCA prediction speed and training time. 

These values are affected by several factors, such as the size 

of the medical dataset to be classified and the complexity of 

the model used. The model’s prediction speed was 

significantly slower using 5 electrodes, indicating faster 

classification and lower computational complexity. In the 8-

electrode scenario, increasing the number of electrodes 

collected more features, enabled the model to make faster 

decisions. Thus, the 5-electrode model is faster in prediction 

but takes longer to train. This is a trade-off between 

performance speed and the actual time required by the system. 

 

Table 8. The confusion matrix was obtained using PCA with 

the 8-electrodes 

 

Feature Name Classes Name 
SVM 

Predicted Class 

FFT+ Bandpass 

Actual 

Class 

Sch 10342 2687 

Healthy 1915 13917 

ApEn 
Sch 10269 2760 

Healthy 5510 10323 

ApEn+Bandpass 
Sch 8471 7361 

Healthy 128 12902 

ShnEn+Bandpass 
Sch 5212 7817 

Healthy 6332 9501 

LogEn+Bandpass 
Sch 10827 2203 

Healthy 5549 10283 

Feature Name Classes Name 
KNN 

Predicted Class 

FFT+ Bandpass 

Actual 

Class 

Sch 11966 1063 

Healthy 427 15405 

ApEn 
Sch 10915 2114 

Healthy 3592 12241 

ApEn+Bandpass 
Sch 8632 7200 

Healthy 1199 11831 

ShnEn+Bandpass 
Sch 7500 5529 

Healthy 3201 12632 

LogEn+Bandpass 
Sch 12806 224 

Healthy 322 15510 

Feature Name Classes Name 
QDA 

Predicted Class 

FFT+ Bandpass 

Actual 

Class 

Sch 11278 1751 

Healthy 4934 10898 

ApEn 
Sch 10916 2113 

Healthy 7482 8351 

ApEn+Bandpass 
Sch 7152 8680 

Healthy 171 12859 

ShnEn+Bandpass 
Sch 12942 87 

Healthy 15629 204 

LogEn+Bandpass 
Sch 12826 204 

Healthy 10258 5574 

 
Table 9. Classification performance results with PCA for 5-

electrodes 

 

Filter 

Condition 
Classifiers 

Feature 

Extraction 

Methods 

Evaluation 

Metrics 

Acc Sen Spe 

With 

Bandpass 

SVM 

FFT 

81 78 84 

KNN 90 86 94 

QDA 71 63 85 

SVM 

ApEn 

73 63 96 

KNN 68 60 85 

QDA 68 59 98 

SVM 

ShEn 

52 53 52 

KNN 64 61 66 

QDA 47 47 48 

SVM 

LogEn 

87 85 89 

KNN 97 96 97 

QDA 80 72 91 

Without 

Bandpass 

SVM 

ApEn 

65 63 67 

KNN 70 64 76 

QDA 66 59 77 
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Table 10. Classification performance results with PCA for 8-electrodes 

 

Filter Condition Classifiers Feature Extraction Methods 
Evaluation Metrics 

Acc Sen Spe 

With Bandpass 

SVM 

FFT 

84 84 83 

KNN 94 96 93 

QDA 76 69 86 

SVM 

ApEn 

74 98 63 

KNN 70 87 62 

QDA 69 97 59 

SVM 

ShEn 

50 45 54 

KNN 69 70 69 

QDA 45 45 70 

SVM 

LogEn 

73 66 82 

KNN 98 97 98 

QDA 63 55 96 

Without Bandpass 

SVM 

ApEn 

71 65 78 

KNN 80 75 85 

QDA 66 59 79 

 

Table 11. Comparing the sensitivity (Sen), specificity (Spe), and accuracy (Acc) values of the studies using the same dataset, 

where Chan. Refer to channels 

 

Study Year Chan. Preprocessing Time Features 
Cross-

Validation 
Methods Acc% Sen% Spe% 

[53] 2019 19 Butterworth filter 25 S Nonlinear Unspecified SVM(RBF) 92.91 NA NA 

[54] 2019 19 Z-score 25 S 11-layer CNN 10 SoftMax 98.07 97.32 98.17 

[55] 2020 19 
Independent Component 

Analysis 
Unspecified nonlinear features 10 AdaBoost 98.77 NA NA 

[56] 2020 19 CWT Unspecified Pre-trained CNNs 10 SVM 98.60 99.65 96.92 

[57] 2020 19 
Independent Component 

Analysis 
Unspecified 

Fast Fourier 

Transformation 
10 RF 96.77 NA NA 

[20] 2020 19 
Multivariate Empirical 

Mode Decomposition 
2 S Several Entropies 10 SVM(RBF) 93 98 93.33 

[58] 2020 19 Band-pass filtered Unspecified Entropy Unspecified RF 89.29 NA NA 

[59] 2021 19 Z-score and L2 25 S 
13-layer   

1D-CNN-LSTM 
5 Sigmoid 99.25 NA NA 

[60] 2021 19 Phase space dynamic 255 S Graphical features 10 KNN 94.8 94.3 95.2 

[61] 2021 19 Iterative Filtering 25 S Several features 5&10 
SVM 

(Cubic) 
98.9 99.1 98.8 

[62] 2021 19 

Katz fractal dimension 

(KFD), approximate 

entropy (ApEn), and time-

domain 

Unspecified 
Several Nonlinear 

features 
2 SVM 99 99 NA 

[63] 2021 19 Wavelet-based 25 S Fourier transform 10 KNN 97.20 96.49 98.06 

[36] 2021 19 Collatz pattern 15 S INCA-based 10 KNN 99 99.20 99.80 

[64] 2022 19 Transfer Entropy  EfficientNetB0-LSTM 10 BT 96.26 95.48 97.02 

[2] 2022 19 CWT 5 S Pre-trained CNNs Unspecified SoftMax 99.5 NA NA 

[65] 2022 19 Bandpass filtering Unspecified Entropy measures 10 KNN 93 NA NA 

[26] 2023 19 
2 nd order Butterworth 

filter 
20 S CNN+ML 10 LR 98 99 97 

[14] 2023 19 
Wavelet Scattering 

Transform 
5 S & 1 S 12 Statistical features 10 DT 97.98 98.2 97.72 

[43] 2023 19 
Histogram of local 

variance (HLV) 

1 Min (60 

S) 

Weighted local binary 

patterns (SLBP) 
10 AdaBoost 99.36 98.8 100 

[44] 2023 19 Fourier transform 4 S look ahead pattern Unspecified boosted trees 96.12 95.20 96.99 

[66] 2024 19 Min–max normalization Unspecified 
Marine predator 

algorithm (MPA) 
10 DT 99 NA NA 

[67] 2024 6 

Artifact subspace 

reconstruction (ASR) and 

fast, independent 

component analysis (Fast 

ICA) 

Unspecified 

Selected channels 

(Penalized sequential 

dictionary learning 

(PSDL)) 

Unspecified PSDL 89.12 NA NA 

Ours 2025 

5 

Bandpass filter 1 S 
FFT, ApEn, LogEn, 

and ShEn 
10 

SVM 98 98 98 

KNN 98 98 99 

QDA 92 87 98 

8 

SVM 99 99 99 

KNN 99 99 99 

QDA 95 90 99 
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Table 12. The computational efficiency utilizing 5 electrodes 

 
Filter Condition Classifiers Feature Extraction Prediction Speed (sec) Training Time (sec) 

With Bandpass 

SVM 

FFT 

21892 445.2 

KNN 1561.5 701.5 

QDA 198823.6 2.8 

SVM 

ApEn 

5095.1 820.3 

KNN 2679.4 2679.4 

QDA 259110.1 2.6 

SVM 

ShEn 

4463.7 2725.7 

KNN 2099.7 2791.5 

QDA 221274.4 14.1 

SVM 

LogEn 

36298 27454.4 

KNN 1262.8 1120.5 

QDA 67659.2 23.1 

Without Bandpass 

SVM 

ApEn 

4826.5 446.9 

KNN 15037.7 728.7 

QDA 315467.5 21.6 

 

Table 13. The computational efficiency utilizing 8 electrodes 

 

Filter 

Condition 
Classifiers 

Feature 

Extraction 

Prediction 

Speed (sec) 

Training 

Time 

(sec) 

With 

Bandpass 

SVM 

FFT 

39702.4 218.4 

KNN 936 673.9 

QDA 162248.9 17 

SVM 

ApEn 

3550.2 1202.3 

KNN 915.3 1727.3 

QDA 97039.2 28.1 

SVM 

ShEn 

7728.6 858.4 

KNN 2131.6 1789.2 

QDA 173752.5 3 

SVM 

LogEn 

79433.4 197.3 

KNN 2924.3 383 

QDA 176420.4 4.44 

Without 

Bandpass 

SVM 

ApEn 

6937.4 553.12 

KNN 14667.6 591.23 

QDA 272336.9 28.24 

 

Table 14. PCA computational efficiency utilizing 5 

electrodes 

 
Filter 

Condition 
Classifiers 

Feature 

Extraction 

Prediction 

Speed (sec) 

Training 

Time (sec) 

With 

Bandpass 

SVM 

FFT 

8653.217 91.90725 

KNN 3795.987 77.97983 

QDA 47966.05 9.484103 

SVM 

ApEn 

5288.737 137.3424 

KNN 3286.784 80.33712 

QDA 33422.95 12.59305 

SVM 

ShEn 

4394.708 113.8068 

KNN 25778.1 93.64905 

QDA 63068.43 8.791682 

SVM 

LogEn 

13111.01 79.90283 

KNN 4923.825 73.03309 

QDA 50694.2 11.28417 

Without 

Bandpass 

SVM 

ApEn 

4538.36 121.9812 

KNN 9167.939 97.13916 

QDA 50401.99 11.33394 

 

It is important to note that successful classification of 

machine learning-based data in MATLAB, such as 

neuroimaging, also depends on memory management, as 

dealing with such data is a challenge due to the large memory 

resources required for loading, preprocessing, feature 

extraction, and model training. Tables 16 and 17 show the 

memory utilization in megabytes for the random selection for 

each of the three ML models (SVM, KNN, and QDA) during 

the execution. In contrast, Tables 18 and 19 present the 

memory utilization values by PCA. 

Upon calculating both M.A for all arrays and M.U by 

MATLAB for the model, the SVM model with random 

selection showed the highest memory usage when using five 

electrodes at 7356MB, while the KNN model with eight 

random electrodes required the most memory at 320MB. 

These results strengthen our conclusions and provide a more 

comprehensive understanding of the approaches for EEG-

based schizophrenia classification. 

 

Table 15. PCA computational efficiency utilizing 8 

electrodes 

 

Filter 

Condition 
Classifiers 

Feature 

Extraction 

Prediction 

Speed (sec) 

Training 

Time 

(sec) 

With 

Bandpass 

SVM 

FFT 

5216.988 150.1511 

KNN 1679.254 128.1679 

QDA 27115.5 16.29031 

SVM 

ApEn 

2520.788 87.73264 

KNN 4312.89 171.1056 

QDA 45278.55 13.39469 

SVM 

ShEn 

3378.736 143.4718 

KNN 15538.8 106.7791 

QDA 37936.46 12.65391 

SVM 

LogEn 

9768.915 102.6538 

KNN 2490.387 97.01666 

QDA 37183.76 13.4246 

Without 

Bandpass 

SVM 

ApEn 

5196.502 136.0106 

KNN 5977.845 102.8758 

QDA 46429.98 10.30246 

 

Table 16. Summarizing the memory usage for the five 

electrodes, where M.A refers to memory availability and 

M.U refers to memory usage 
 

Memory Usage 

(MB) 
Features Used 

5 Electrodes 

SVM KNN QDA 

M.A for all arrays 
FFT+Bandpass 

5284 3708 4389 

M.U / MATLAB 6979 6920 6899 

M.A for all arrays 
ApEn 

4634 4326 3979 

M.U / MATLAB 6157 6251 6325 

M.A for all arrays 
ApEn+Bandpass 

4914 3582 3902 

M.U / MATLAB 6804 6752 6749 

M.A for all arrays 
ShEn+Bandpass 

8101 4965 5056 

M.U / MATLAB 7356 7269 7233 

M.A for all arrays 
LogEn+Bandpass 

5249 5216 5513 

M.U / MATLAB 7144 7105 7094 
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Table 17. Summarizing the memory usage for the eight 

electrodes, where M.A refers to memory availability, and 

M.U refers to memory usage 
 

Memory Usage 

(MB) 
Features Used 

8 Electrodes 

SVM KNN QDA 

M.A for all arrays 
FFT+Bandpass 

5541 5374 5490 

M.U / MATLAB 6888 6936 6957 

M.A for all arrays 
ApEn 

6097 5991 6242 

M.U / MATLAB 6046 6281 6133 

M.A for all arrays 
ApEn+Bandpass 

6196 6046 5857 

M.U / MATLAB 6652 6694 6696 

M.A for all arrays 
ShEn+Bandpass 

5238 4820 5306 

M.U / MATLAB 7358 7409 7368 

M.A for all arrays 
LogEn+Bandpass 

5352 5268 5188 

M.U / MATLAB 7134 7160 7172 
 

Lastly, the visual examination aids clinicians in identifying 

the disorder's signal and location inside the brain. Figure 3 

displays the power spectral density, highlighting the disparity 

between the signals of a patient with schizophrenia and those 

of a healthy individual. The healthy signals are mostly uniform 

and stable, whereas the patient signals display irregularities 

and unusual rhythms. Furthermore, a topographical picture 

delineates the electrode's position, enabling physicians to 

ascertain the etiology of the neurological issue more precisely 

and identify the indicators of schizophrenia. 

Above all, the five random electrodes using KNN with 

LogEn features outperformed the performances of the two 

other classifiers (SVM and QDA). Whereas SVM with LogEn 

achieved the best performance compared with KNN and QDA 

in the eight-electrode scenario. To conclude, the two random 

scenarios, based on the findings, indicate that superior 

outcomes may be achieved with a reduced number of 

electrodes. 

In this study, some limitations are listed below: 

(1) The dataset used was publicly available and not 

privately collected for this study. 

(2) The one-epoch window size technique was an advantage 

that allowed us to cover and provide a much bigger amount of 

the data, with an overlap was 50%, which was fed into the 

machine-learning models. 

 

Table 18. PCA memory usage with the five electrodes, 

where M.A refers to memory availability, and M.U refers to 

memory usage 

 
Memory Usage 

(MB) 
Features Used 

5 Electrodes 

SVM KNN QDA 

M.A for all arrays 
FFT+ Bandpass 

4409 4473 4173 

M.U / MATLAB 6139 6143 6135 

M.A for all arrays 
ApEn 

4711 4744 4470 

M.U / MATLAB 5795 5876 5919 

M.A for all arrays 
ApEn+Bandpass 

3881 3877 4075 

M.U / MATLAB 6321 6320 6327 

M.A for all arrays 
ShEn+Bandpass 

4227 4088 4346 

M.U / MATLAB 6489 6497 6491 

M.A for all arrays 
LogEn+Bandpass 

4298 4266 4179 

M.U / MATLAB 6423 6413 6426 

 

 
 

Figure 3. Visualisation method for power spectrum density and topography image, whereas A represents the Schizophrenia 

person and B represents the patient 
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(3) The model processed the data and diagnosed 

schizophrenia, not its three severity stages (early, active, or 

residual). 

(4) The study results may lack the ability to generalize to 

patients with schizophrenia for several reasons that may be due 

to some characteristics of the data, such as age and gender. 

 

Table 19. PCA memory usage with the eight electrodes, 

where M.A refers to memory availability and M.U refers to 

memory usage 

 
Memory Usage 

(MB) 
Features Used 

8 Electrodes 

SVM KNN QDA 

M.A for all arrays 
FFT+Bandpass 

4773 4796 4931 

M.U / MATLAB 6717 6712 6722 

M.A for all arrays 
ApEn 

4002 4009 4065 

M.U / MATLAB 6505 6499 6515 

M.A for all arrays 
ApEn+Bandpass 

5059 4834 3829 

M.U / MATLAB 6666 6661 6679 

M.A for all arrays 
ShEn+Bandpass 

5597 5270 4755 

M.U / MATLAB 6777 6777 6787 

M.A for all arrays 
LogEn+ Bandpass 

4773 4660 4874 

M.U / MATLAB 6762 6752 6754 

 

 

6. CONCLUSION 

 

The person's life and behavior are influenced by the 

changing electrical activity of the brain, which can be 

observed through an electroencephalogram (EEG). It can be 

asserted that a healthy brain functions more actively compared 

to a brain affected by schizophrenia. In this study, we proposed 

a method to classify schizophrenia using an EEG signal dataset 

containing 28 subjects: 14 individuals suffering from 

schizophrenia and 14 healthy controls. Due to the variations in 

the EEG signal, we applied a band-pass filter to decompose 

the EEG signal into five sub-bands. Next, we implemented 

four feature extraction methodologies. We applied the first 

three methods (FFT, ApEn, LogEn, and ShnEn) to the band-

pass filter, and then we used ApEn again without band-pass 

filters to compare the impact of the filter on the results. 

Normalization was applied to all features to ensure they 

were on the same scale, using the L2 normalization technique. 

Consequently, we fed the features into the SVM, KNN, and 

QDA classifiers. 

The hypothesis in this work demonstrates the ability to use 

a smaller number of electrodes, a randomly selected subset, 

that can achieve classification accuracy similar to all data 

electrodes. We provide support to EEG-based diagnostic tools 

that are less sophisticated and have fewer electrode numbers, 

such as Emotiv Insight, Muse EEG, Neurosky Mindwave, and 

InteraXon Muse S. 

Our proposed approach was simple and effective with the 

most imposed constraints. First, we reduced the number of 

channels to 5 electrodes, which means we decreased by 

(5/19=73.68%). Then, we used 8 electrodes to 8, which means 

increased by (8/19=57.89%), which in turn increased the 

accuracy by 1% using the random channel selection. Thus, 

both experiments showed remarkable classification 

performance despite reducing the number of electrodes. 

The results show that our approach provides a clear and 

significant improvement in accuracy compared to the PCA 

conventional methods. In addition, recent advances indicate 

that using EEG with fewer electrodes could completely 

transform the usability and affordability of the technology. 

This technique simplifies electrode preparation, which not 

only saves time and reduces complexity but also improves 

mobility, allowing EEG to be used in a variety of contexts 

outside of clinical laboratories. 

According to the study limitation mentioned above, future 

work may include: 

(1) Combining EEG data with other neuroimaging methods 

(such as fMRI and PET) may provide a more comprehensive 

understanding of brain changes caused by schizophrenia. 

(2) Implement techniques to enhance the dataset, improve 

model robustness, and mitigate overfitting. 

(3) Utilize the Graph Neural Networks (GNNs) for 

analyzing brain networks. 
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