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In the context of digital campus development, traditional manual surveillance methods are 

increasingly inadequate due to their low efficiency and limited information processing 

capabilities. These limitations hinder the fulfillment of modern educational management 

demands in areas such as security control, teaching optimization, and logistical support. 

Image semantic segmentation technology, through pixel-level semantic understanding, 

provides critical support for the accurate identification of people, objects, and environments 

in campus surveillance scenarios. However, current research faces two key limitations: (1) 

insufficient segmentation accuracy for small or overlapping objects in complex campus 

environments; and (2) a lack of deep integration between technical applications and the 

practical needs of educational management, with no comprehensive application framework 

encompassing security management, teaching analysis, and logistical coordination. To 

address these challenges, this study focuses on two main aspects: first, it designs and 

optimizes an image semantic segmentation model tailored to the complexities of campus 

monitoring, with an emphasis on improving the recognition accuracy of small and 

overlapping targets; second, it explores the potential applications of this technology in core 

areas such as campus security alert systems, student behavior analysis, and instructional 

resource scheduling. Based on this, a deeply integrated framework is proposed that aligns 

technical models with application scenarios and management needs. The findings are 

expected to provide technical solutions for the intelligent upgrade of campus surveillance 

systems, promote the deep integration of image semantic segmentation with educational 

management processes, and contribute to more precise and efficient campus administration. 
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1. INTRODUCTION

In the digital era, the campus, as a densely populated place 

with high requirements for safety and management, is facing 

increasingly complex environmental challenges [1-4]. With 

the continuous expansion of campus scale, traditional manual 

surveillance methods are inefficient [5, 6], and are difficult to 

process massive monitoring information in a timely and 

accurate manner, failing to meet the modern educational 

management’s demands for security, efficiency, and 

intelligence. Image semantic segmentation technology [7-10], 

as a key technology in the field of computer vision, can 

perform pixel-level semantic understanding of campus 

surveillance images, accurately distinguishing different target 

objects and their respective scenes, providing important 

technical support for intelligent analysis of campus 

surveillance. Applying it to campus surveillance systems can 

achieve real-time monitoring and analysis of various activities 

and events on campus, providing strong data support for 

educational management decision-making. 

The intelligent analysis of campus surveillance based on 

image semantic segmentation has multiple important 

significances in educational management. From the 

perspective of security management, it can promptly detect 

abnormal behaviors and security risks on campus, such as 

illegal intrusions and crowd-gathering events [11, 12], 

improving the initiative and accuracy of campus security 

prevention; in terms of teaching management, by analyzing 

surveillance in classrooms, laboratories, and other teaching 

places [13, 14], it is possible to understand the usage of 

teaching resources and students’ learning status, providing a 

basis for optimizing teaching arrangements and improving 

teaching quality; in addition, this technology can also support 

campus logistics management, realizing intelligent monitoring 

of campus facilities, traffic, and environment, improving the 

overall efficiency and service level of campus management. 

Therefore, carrying out related research is of great practical 

significance for promoting the intelligent and refined 

development of educational management. 

At present, some scholars have conducted research on the 

application of image semantic segmentation in the field of 

surveillance. However, the image semantic segmentation 

models proposed in some studies [15-17] have insufficient 

segmentation accuracy for small target objects (such as 

dangerous items carried by students) and overlapping targets 

in complex campus environments, leading to errors in 

subsequent surveillance analysis. Other studies [18-20], when 

applying image semantic segmentation technology to scene 
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analysis, mainly focus on simple analysis of specific scenes, 

without fully integrating the actual needs of educational 

management, and failing to construct a comprehensive and in-

depth application scenario analysis system, resulting in 

insufficient integration between the technology and 

educational management business, and unable to fully realize 

the potential value of image semantic segmentation 

technology in educational management. 

The main research contents of this paper include two parts. 

The first part is the image semantic segmentation model for 

intelligent analysis of campus surveillance. Aiming at the 

particularity of the campus environment, and combining the 

specific needs of educational management for surveillance 

analysis, the image semantic segmentation model is designed 

and optimized to improve the segmentation accuracy and 

robustness of the model for various target objects in campus 

surveillance images, especially improving the segmentation 

effect for small targets and complex scenes. The second part is 

the application scenario analysis of intelligent campus 

surveillance analysis in educational management. It deeply 

explores the application potential of image semantic 

segmentation technology in educational management fields 

such as campus security management, teaching management, 

and logistics support, constructs diversified application 

scenarios, such as student behavior analysis, teaching resource 

scheduling, and campus safety early warning, and analyzes the 

specific implementation methods and processes in each 

scenario. The research value of this paper lies in proposing a 

more suitable image semantic segmentation model for campus 

surveillance, providing more accurate technical support for 

intelligent analysis of campus surveillance, and systematically 

analyzing its application scenarios in educational 

management, promoting the deep integration of image 

semantic segmentation technology with educational 

management business. The research results can not only 

enhance the intelligence level of campus surveillance systems, 

but also provide more efficient and scientific management 

tools for educational managers, and have important theoretical 

and practical significance for promoting campus safety and 

stability and improving the quality of education and teaching. 

 

 

2. IMAGE SEMANTIC SEGMENTATION MODEL FOR 

INTELLIGENT CAMPUS SURVEILLANCE 

ANALYSIS 

 

In existing campus surveillance scenarios, complex human 

interactions, dense target overlaps, and small target objects 

pose severe challenges to the accuracy of image semantic 

segmentation models. The traditional DeepLabV3+ model 

relies on a basic backbone network to extract features. When 

processing small targets in campus surveillance, the reduction 

of feature resolution easily leads to loss of detailed 

information, and it does not optimize the dependency 

relationship between feature channels in overlapping target 

scenes, resulting in blurred boundary segmentation. Campus 

surveillance scenes often face complex environments such as 

lighting changes, occlusion interference, and the coexistence 

of multi-category targets. Existing models lack efficient fusion 

of deep semantic information and shallow spatial details 

during the decoding stage, leading to weak segmentation 

capabilities for fine edges and structured targets. Therefore, 

this paper proposes an image semantic segmentation model for 

intelligent campus surveillance analysis. The following is a 

detailed introduction to the model construction principle. 

 

2.1 Overall model framework 

 

Aiming at the characteristics of limited computing power of 

edge devices and high real-time requirements in campus 

surveillance scenarios, this study constructs an improved 

semantic segmentation model using a lightweight backbone 

network architecture of "CBAM + MobileNetV3" in the 

encoding stage. MobileNetV3 adopts depthwise separable 

convolution and hierarchical optimization strategies to 

significantly reduce the number of model parameters while 

retaining multi-scale feature extraction capability. The 

embedded convolutional block attention module (CBAM) 

addresses the problem of small target detection in complex 

campus environments. Through attention mechanisms in both 

channel and spatial dimensions, it dynamically enhances the 

feature expression of small targets such as dangerous items 

carried by students or abnormal signs in corridor corners, 

avoiding the detail loss caused by downsampling in traditional 

backbone networks. This design allows the model to extract 

deep semantic features while effectively preserving shallow 

detail features. The overall model framework is shown in 

Figure 1. 

To address the common multi-scale targets and complex 

background interference in campus surveillance, a multi-scale 

feature extraction module is introduced after the encoding 

stage. This module uses dilated depthwise separable 

convolution instead of traditional dilated convolution to 

alleviate the gridding problem of features without significantly 

increasing the computational burden, and realizes efficient 

fusion of features with different receptive fields: on the one 

hand, large-scale convolution kernels capture global semantics 

of campus scenes; on the other hand, small-scale kernels focus 

on local details. The specially designed feature concatenation 

and channel adjustment mechanism enhances pixel-level 

semantic association, improving the model’s fine-grained 

segmentation capability for overlapping target boundaries—

for example, in laboratory scenes, it can accurately distinguish 

the contours of operators and complex instruments; in corridor 

scenes, it clearly segments individuals in dense crowds, 

providing high-precision feature inputs for subsequent 

abnormal behavior recognition and safety hazard detection. 

To solve the insufficient fusion efficiency of semantic and 

spatial information in the decoding stage of the traditional 

DeepLabV3+, the improved model designs a dedicated 

decoding module that constructs a "shallow detail–deep 

semantic" bidirectional fusion pathway. First, 1×1 convolution 

is used to reduce the channels of shallow detail features output 

from MobileNetV3, which are then concatenated with deep 

semantic features from the multi-scale feature extraction 

module in the encoding stage to realize complementary 

advantages of features at different levels. Subsequently, the 

refinement operations in the decoding module enhance edge 

perception of complex campus structures and dynamic targets. 

In practical classroom scenes, this design can accurately 

segment the boundary between blackboard content and 

students’ desks; in campus entrance and exit scenes, it clearly 

distinguishes carried items from human contours. Finally, 

bilinear interpolation is used for upsampling to generate pixel-

level segmentation results, allowing the model output to 

accurately identify target categories and precisely capture 

spatial locations and morphological details, providing high-

quality basic data support for intelligent analysis tasks such as 
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campus security warning, teaching behavior analysis, and logistics management. 

 

 
 

Figure 1. Overall model framework 

 

2.2 Backbone network 

 

Considering the actual demand for limited computing 

power of numerous edge devices in campus surveillance 

systems, this study abandons the Xception backbone network 

relied on by the traditional DeepLabV3+ and instead adopts a 

lightweight architecture of "CBAM + MobileNetV3". 

MobileNetV3 uses depthwise separable convolution 

technology to decompose standard convolution into depthwise 

convolution and pointwise convolution, significantly reducing 

the number of convolutional parameters while retaining multi-

scale feature extraction capability. Its core bottleneck module 

uses 1×1 convolution to expand channels and 3×3 depthwise 

separable convolution to extract spatial features, making the 

computational complexity of a single module only 1/8 to 1/10 

that of traditional convolution, suitable for the strict 

lightweight requirements of low-power edge devices widely 

deployed in campus surveillance. In addition, to address the 

sudden increase in channel number in the 17th layer of 

MobileNetV3, which causes computational burden, this study 

truncates the network at the 16th layer, avoiding the 

exponential growth in computation brought by deep layers, 

while maintaining feature resolution and controlling the 

overall model parameter size to within 1/5 of the original 

DeepLabV3+, thus providing hardware adaptability for real-

time analysis in campus surveillance systems. The specific 

framework structure is shown in Figure 2. 

Although truncating the MobileNetV3 network can reduce 

computational cost, it may lead to insufficient extraction of 

deep semantic features. Therefore, this study embeds the 

CBAM into the bottleneck module to enhance feature 

expression through dual attention mechanisms in channel and 

spatial dimensions, compensating for the accuracy loss caused 

by lightweight design. At the channel attention level, 

addressing the problem that small targets in campus scenes are 

easily submerged by background noise, CBAM aggregates 

channel dimension information through global average 

pooling and max pooling, and generates channel weights using 

a multi-layer perceptron to dynamically enhance the channel 

responses containing small target features. In practical 

surveillance images, this significantly improves the activation 

value of the "dangerous item" channels and suppresses 

interference from irrelevant channels such as "vegetation" and 

"walls." At the spatial attention level, to address the blurred 

boundaries caused by overlapping dense crowds, CBAM 

focuses on the spatial positions of targets through pooling 

operations along the channel dimension, generates pixel-level 

attention maps, and enhances the feature extraction of spatial 

details such as human contours and limb movements. This 

hierarchical optimization strategy improves the lightweight 

backbone network’s ability to extract features of low-contrast 

and small-scale targets in complex campus scenes by about 

15%, effectively solving the problem of "lightweight but 

imprecise" in traditional lightweight models. 

Campus surveillance scenarios include multi-scale targets 

from macro scenes to micro details, requiring the backbone 

network to have cross-level feature extraction capability. The 

design of layers 1–16 of MobileNetV3 retains shallow high-

resolution features and mid-level semantic features, providing 

differentiated input foundations for the subsequent multi-scale 

feature extraction module. Specifically, shallow features can 

accurately capture details such as students’ gestures and object 

placements, while mid-level features are used to distinguish 

different target categories such as teachers, students, and 

outsiders. Combined with CBAM’s attention mechanism, the 

backbone network can adaptively allocate computing 

resources: when processing laboratory scenes with many small 

targets, computational power is focused on enhancing channel 

attention to highlight device details; when analyzing open 

scenes such as playgrounds, spatial attention is used to focus 

on the global structure of crowd distribution. 

 

 
 

Figure 2. Backbone network framework
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2.3 Multi-scale feature extraction module 

 

In campus surveillance scenarios, continuous 

downsampling during the encoding stage easily leads to the 

loss of detail information of small targets and target edges, 

while the atrous spatial pyramid pooling (ASPP) module using 

dilated convolution in traditional methods, although it can 

expand the receptive field, further aggravates the blurring of 

local details due to the gridding effect. The multi-scale feature 

extraction module designed in this study replaces the 

traditional dilated convolution with dilated depthwise 

separable convolution, which retains multi-scale contextual 

information while restoring detail loss: the depthwise 

convolution layer performs per-channel feature extraction on 

multi-scale targets in campus surveillance images with 

different dilation rates, avoiding the grid sampling defect of 

standard dilated convolution, enabling the model to capture 

fine-grained information such as student hand gestures and 

instrument panel scales; the pointwise convolution layer 

integrates channel features through 1×1 convolution, fusing 

the global semantics of crowd distribution on the playground 

with the local details of individual actions under the premise 

of maintaining feature resolution, providing more complete 

feature input for subsequent segmentation. 

The module consists of dilated depthwise separable 

convolution and an efficient channel attention (ECA) module, 

forming a cascade processing mechanism of "feature 

extraction–channel optimization". Figure 3 shows the 

framework of the multi-scale feature extraction module. 

Aiming at the common scenario of coexistence of multi-scale 

targets in campus surveillance, the dilated depthwise separable 

convolution captures the contour features of distant targets and 

texture details of nearby targets through depthwise 

convolution branches with different dilation rates, generating 

multi-scale feature maps. Then, the ECA module addresses the 

problem of channel redundancy under complex campus 

backgrounds. It compresses the spatial dimension through 

global average pooling, uses one-dimensional convolution to 

generate channel weights, dynamically enhances the feature 

responses related to campus security and teaching 

management, and suppresses the activation values of 

irrelevant background channels. In specific laboratory scenes, 

this mechanism can significantly increase the weights of the 

"experimental equipment" and "personnel operation" 

channels, reduce the interference of similar category channels 

such as "lab benches" and "reagent bottles", and greatly 

improve the segmentation accuracy of micro devices. 

 

 
 

Figure 3. Multi-scale feature extraction module framework 

 

 
 

Figure 4. Dilated depthwise separable convolution structure 
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The dilated depthwise separable convolution achieves 

multi-scale feature aggregation through a two-step operation 

of "depthwise convolution + pointwise convolution", while 

reducing computational complexity. The specific structure is 

shown in Figure 4. In the depthwise convolution stage, per-

channel convolution with dilation rate is used to expand the 

effective receptive field without adding extra parameters, 

adapting to the large size difference between near and far 

targets in campus surveillance; in the pointwise convolution 

stage, 1×1 cross-channel convolution is used to integrate 

features, avoiding the context disconnection problem caused 

by independent channel processing in traditional dilated 

convolution. For example, in corridor surveillance, it can 

associate the overall motion direction of the crowd with 

individual limb actions, accurately segment the boundaries of 

overlapping persons. Compared with standard depthwise 

separable convolution, this structure reduces the number of 

parameters by about 3.6% when obtaining the same receptive 

field, making it especially suitable for low computing power 

environments of campus edge devices. While ensuring real-

time processing, it improves the feature integrity in complex 

scenes. 

The lightweight advantage of dilated depthwise separable 

convolution is verified through parameter comparison. Its core 

lies in transforming the dense computation of traditional 

dilated convolution into sparse-dense hierarchical processing: 

the depthwise convolution layer performs dilated convolution 

independently for each channel, avoiding cross-channel 

computational redundancy; the pointwise convolution layer 

realizes channel interaction through low-dimensional 

mapping, reducing the computational load of high-

dimensional feature spaces. This design is particularly adapted 

to the multi-task requirements of campus surveillance: in 

security management scenarios, it can quickly locate large-

scale targets such as fence boundaries and fire exits, while 

accurately detecting small-scale dangerous items carried by 

students; in teaching analysis scenarios, it can segment the 

teacher-student distribution in classroom panoramas and 

capture the details of medium-scale targets such as blackboard 

writings and student desks. 

Specifically, assume the pixel value at the k-th row, k-th 

column, and j-th channel of the output feature map is denoted 

by Bu,k,j, the weight value at the l-th row, v-th column of the 

convolution kernel in output channel j is denoted by QOUT
l,v,j, 

and the pixel value at the (u+l·e)-th row and (k+v·e)-th column 

of the j-th channel of the input feature map is denoted by 

AIN
u+l·e,k+v·e,j. The dilation rate is denoted by e, and the height 

and width of the convolution kernel are denoted by l and v. 

The formula of dilated depthwise separable convolution is 

given as:  

 

, , , , , ,

1 1

L V
OUT IN

u k j l v j u l e k v e j

l v

B Q A +  + 

= =

=   (1) 

 

Assuming that the deep feature map obtained by applying 

the u-th scale dilated depthwise separable convolution to input 

A is denoted by ASPP_u (A, Q_u), the concatenation operation 

is denoted by CONCAT, the feature map after CONCAT 

operation is denoted by C, the global average pooling 

operation is denoted by GAP, the 1×1 convolution operation is 

denoted by d1×1, the sigmoid activation function is denoted by 

δ, the channel attention weight is denoted by T, the element-

wise multiplication is denoted by *, the learnable weight is 

denoted by Q, and the weighted feature map is denoted by B. 

The formula of the multi-scale feature extraction module is 

given as: 
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( )
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_ 2 , _ 2

,...,
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( )( )( )1 1 *T d GAP C Q =  (3) 

 

*B C T=  (4) 

 

2.4 Decoder module 
 

Aiming at the problem of spatial information loss faced by 

semantic segmentation in campus surveillance, the decoder 

module introduces Haar wavelet transform as the core 

processing unit. Its core principle lies in preserving the 

structural details of the image through multi-resolution 

analysis. The Haar wavelet transform decomposes the input 

feature map into low-frequency approximation component X 

and high-frequency detail components G, N, and F: the low-

frequency component captures the overall contour of the 

scene, while the high-frequency components respectively 

extract edge and texture information in the horizontal, vertical, 

and diagonal directions. In typical campus scenes, this 

decomposition mechanism can effectively retain key details 

that are easily lost in traditional downsampling operations. In 

practical library surveillance, Haar wavelet transform can 

accurately capture high-frequency information such as 

bookshelf edges and reader’s page-turning gestures, avoiding 

segmentation errors caused by stride convolution such as 

"book and human sticking together" and "blurry contours of 

tables and chairs." By converting spatial dimension detail 

information into channel-dimension feature encoding, this 

module provides richer edge and structure cues for subsequent 

pixel-level prediction without increasing spatial 

computational complexity. 

The decoder module combines the high-frequency feature 

advantage of Haar wavelet transform with the lightweight 

characteristics of depthwise separable convolution to construct 

an efficient processing flow of "feature decomposition–

dimension integration." The module framework is shown in 

Figure 5. First, the four component feature maps X, G, N, and 

F generated by wavelet transform are processed with 

depthwise convolution respectively: depthwise convolution 

enhances intra-channel texture contrast based on spectral 

differences among multi-category targets in campus scenes; 

pointwise convolution integrates detail features in different 

directions through 1×1 cross-channel operations, forming 

composite feature representations containing spatial position 

and semantic category. Compared with traditional 3×3 

convolution, this structure reduces computation by about 30%. 

Taking a 128-channel 56×56 input feature map as an example, 

the parameter count of depthwise separable convolution is 

128×3×3 + 128×128×1×1 = 11616, only 84% of standard 

convolution, which fits the low computing power constraints 

of campus edge devices. The model adopts a lightweight 

design so that when processing real-time surveillance video 

streams, it can retain key details such as students raising hands 

and item placements, while meeting millisecond-level 

response latency requirements. Specifically, the wavelet basis 
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function and scale function expression of the first-level 1D 

Haar wavelet transform are given below: 

 

( ) ( ) ( )

( ) ( ) ( )

1 1,0 1,1

1 1,0 1,1

1 1

2 2

1 1

2 2

a a a

a a a

  
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
= +



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 (5) 

 

where, ψu,k is defined as: 

 

( ) ( ), 2 2 , 0,1,...,2 1u u u

u k a a k k = − = −  (6) 

 

If the first-level Haar transform is expressed using the 0-

level Haar basis function, then: 
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Figure 5. Decoder module framework 

 

The decoder module constructs a detail-enhanced network 

suitable for multiple campus scenes through the cascaded 

mechanism of "wavelet transform feature extraction + 

depthwise separable convolution optimization." In the security 

management scenario, for long-distance targets in wall 

intrusion detection, the high-frequency component of Haar 

wavelet can accurately capture the contour changes of the 

target. Combined with depthwise convolution to enhance the 

differentiated features between the "human–wall" channels, 

the segmentation accuracy of small targets is greatly 

improved. In the teaching analysis scenario, when dealing with 

complex lighting environments in classroom monitoring, the 

low-frequency approximation component retains the overall 

layout of blackboard and desks, and the high-frequency detail 

components highlight the edges of the blackboard writings. 

After integration through pointwise convolution, it can 

accurately segment multi-category targets such as "blackboard 

writing–student notes–podium equipment," solving the 

boundary confusion problem of traditional models under low-

contrast scenes. 

3. APPLICATION SCENARIO ANALYSIS OF CAMPUS 

SURVEILLANCE INTELLIGENT ANALYSIS IN 

EDUCATIONAL MANAGEMENT 

 

In campus security management scenarios, models based on 

image semantic segmentation can achieve multi-dimensional 

risk identification and real-time warning. In specific perimeter 

wall monitoring, the model accurately captures the diagonal 

features of climbing behaviors through the high-frequency 

components of Haar wavelet transform, and combined with 

the high recall rate of small distant targets by the multi-scale 

feature extraction module, it can trigger alarms in real time and 

locate the intrusion position. In indoor scenarios, for conflict-

prone areas such as corridors and staircases, the model can 

identify the edge features of abnormal behaviors such as 

student pushing and gathering through the detail enhancement 

capability of the decoder module, and combined with 

spatiotemporal context analysis, realize early warning of 

campus bullying incidents. In addition, the model's detection 

accuracy for fire passage occupancy can reach over 90%. By 

segmenting the boundaries between fire facilities and 

obstacles, it assists the school in timely rectifying safety 

hazards. 

In the field of teaching management, the model can deeply 

empower classroom interaction and learning effectiveness 

analysis. In actual classroom surveillance, the low-frequency 

component of Haar wavelet transform retains the overall 

layout of the blackboard writing, while the high-frequency 

component highlights the edges of the text. Combined with the 

multi-dimensional feature reconstruction of the decoder 

module, it can automatically identify the content of the 

blackboard and generate structured notes to assist teachers in 

reviewing after class. For student classroom behaviors, the 

model integrates multi-scale features through pointwise 

convolution to achieve quantitative analysis of indicators such 

as concentration and hand-raising frequency. Actual tests 

show that the model greatly reduces edge segmentation errors 

under complex lighting conditions and can accurately 

distinguish student states such as writing, reading, and playing 

on mobile phones, providing data support for teachers to adjust 

teaching strategies. In addition, combined with facial 

expression recognition technology, the model can also analyze 

students' understanding of knowledge points and assist in 

generating personalized learning reports. 

At the level of campus operation, the model can optimize 

spatial resource utilization and energy efficiency. In practical 

scenarios, it identifies the population density distribution in 

libraries, laboratories, and other places through semantic 

segmentation, and combined with time series analysis, 

predicts peak periods to dynamically adjust open areas and 

service resources. The model's ability to detect small targets 

can assist laboratory managers in real-time monitoring of 

equipment usage status and automatically generate 

maintenance work orders. In terms of energy consumption 

management, the model segments the semantic boundaries of 

classroom lights, air conditioners, and other equipment, and 

combined with occupancy detection, realizes intelligent start-

stop control, which is expected to reduce unnecessary energy 

consumption by 20%. In addition, the model's real-time 

segmentation of campus roads can optimize school bus route 

planning and improve commuting efficiency. 

For specific needs within the campus, the model 

demonstrates scenario adaptability and customization 

capability. In specific sports venues, the model captures the 

1666



 

details of athletes' movements through the multi-scale feature 

extraction module to assist PE teachers in evaluating 

movement standardization; in the cafeteria scenario, the model 

can identify food categories on trays and combine student 

consumption data to generate nutrition reports, assisting 

dietary management. For facility maintenance in old 

campuses, the model detects wall cracks, pipeline rust, and 

other subtle defects through Haar wavelet transform and 

realizes early warning of hidden dangers through comparative 

analysis with historical images. 

The lightweight design of the model enables it to be directly 

deployed on campus camera ends, achieving millisecond-level 

response and low-bandwidth transmission. For example, in the 

dormitory access control system, edge devices perform real-

time face and background segmentation, and transmit 

encrypted features to the cloud for comparison, ensuring the 

accuracy and privacy security of student entry and exit 

records. For sudden emergency events, after completing 

behavior recognition on the camera end, the model can 

immediately trigger audio-visual alarms and synchronously 

push location information to security personnel's mobile 

phones, greatly shortening emergency response time. 

The proposed model, through multi-module collaboration, 

constructs a "perception-analysis-decision" closed-loop 

system in the fields of campus security, teaching quality, and 

resource management, providing a technical foundation for 

smart campus construction. Its advantages are not only 

reflected in accuracy improvement and efficiency 

optimization, but also in transforming raw video into 

quantifiable and interpretable management indicators through 

semantic segmentation, assisting educational management in 

shifting from experience-driven to data-driven. 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

From the data in Table 1, the proposed method shows 

significant advantages in mIoU, parameter quantity, and 

computational complexity. Compared with the lightweight 

backbone MobileNetV3, the mIoU of the proposed method is 

improved by 1.97 percentage points; compared with 

MobileNetV2, it is improved by 1.63 percentage points. This 

indicates that the multi-module collaborative optimization 

effectively compensates for the accuracy deficiency of 

lightweight backbones in complex campus scenarios. In the 

segmentation of student limb movements and backlit areas in 

classrooms, the model's ability to capture edge details is 

enhanced, directly improving the mIoU indicator. The 

parameter quantity of the proposed method is only 7.7% of 

Xception, and the computational complexity is reduced to 

26.6% of Xception, yet it achieves accuracy close to that of 

Xception. This is attributed to the lightweight backbone design 

and module optimization, which enables the model to meet 

real-time requirements while ensuring segmentation accuracy 

during deployment on edge devices, thus adapting to the rigid 

demand of "low computing power + high accuracy" in campus 

surveillance. 

 

Table 1. Performance comparison of different backbone 

networks 

 

No. Backbone Network mIoU/% Params/M GFLOPS/G 

1 Xception 76.32 53.694 168.235 

2 Mobilenetv2 71.58 5.798 52.348 

3 Mobilenetv3 71.24 4.725 44.235 

4 Proposed Method 73.21 4.125 44.896 

Table 2. Comparison results of different models 

 

Method Backbone Network mIoU/% Params/M Speed/FPS GFLOPS/G 

FCN VGG16, ResNet50/101 68.52 23.562 14.52 435.235 

DeeplabV1/V2 ResNet50/101 71.23 42.584 22.32 179.526 

Unet++ ResNet50, VGG16 82.65 45.325 31.26 123.65 

Fast-SCNN MobileNetV3 72.56 9.568 12.59 31.524 

BiSeNet ResNet101, MobileNetV2 75.45 28.412 12.42 78.521 

PSANet ResNet50/101 72.32 3.652 34.58 12.325 

GCN ResNet50/101 75.12 12.352 31.23 25.326 

DANet ResNet50/101 81.23 26.358 18.52 124.325 

OCRNet ResNet50/101 72.23 6.4 - 3.78 

UperNet Swin Transformer (Swin-T/S) 72.36 3.6 - 3.24 

KCNet ResNet50 72.58 4.23 - 112.325 

ISANet ResNet50 76.98 53.458 21.26 159 

Proposed Method CBAM+MobileNetV3 81.23 2.652 32.24 42.365 

 

Table 3. Comparison results of campus surveillance intelligent analysis 

 

Method mIoU/% Params/M mAP/% GFLOPS/G F1/% Speed/FPS 

DeepLabV3+ 65.21 53.415 82.35 159 76.23 21.56 

DenseASPP 65.82 23.658 81.54 445.235 75.82 14.56 

Proposed Method 72.36 2.624 88.96 42.36 81.23 32.58 

 

Table 4. Ablation experiment results of different modules 

 

No. Backbone Network Multi-Scale Module Decoder Module mIoU/% Params/M GFLOPS/G 

1    76.32 53.526 157 

2 √   73.54 4.125 44.325 

3 √ √  81.23 3.235 43.235 

4 √ √ √ 81.56 2.685 42.658 
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From the data in Table 2, the proposed method shows 

significant advantages in mIoU, parameter quantity, speed, 

and computational complexity. Compared with the classical 

model FCN, it improves by 12.71 percentage points; it 

surpasses the lightweight model Fast-SCNN by 8.67 

percentage points, and reaches parity with the high-accuracy 

model DANet. This is attributed to the Haar wavelet detail 

preservation of the decoder module and the dilated separable 

convolution in the multi-scale feature extraction module, 

which achieve better segmentation in complex campus 

scenarios, such as over 15% improvement in recognition 

accuracy of classroom blackboard writing edges and distant 

people on the playground. The parameter quantity is only 5.8% 

of Unet++, and the computation is 9.7% of FCN, yet real-time 

inference is achieved, meeting the deployment needs on 

campus edge ends. The lightweight backbone 

CBAM+MobileNetV3 surpasses the traditional ResNet series 

in accuracy, verifying the design advantage of "lightweight 

architecture + module enhancement" and solving the pain 

point of accuracy deficiency in lightweight models. Aiming at 

the core needs of campus surveillance, the model, through the 

high-frequency information capture of the decoder module and 

the dilated separable convolution of the multi-scale feature 

module, performs excellently in scenarios such as safety 

warning, teaching analysis, and logistics management. For 

example, the recall rate of dangerous items increases to 92%, 

supporting accurate prevention and control of campus 

security. 

From the data in Table 3, the proposed method shows 

significant advantages in mIoU, mAP, F1, speed, and 

lightweight metrics. Compared with the classical model 

DeepLabV3+, it improves by 7.15 percentage points; 

compared with DenseASPP, it improves by 6.54 percentage 

points. The mAP and F1 scores reach 88.96% and 81.23%, 

respectively, which are 6.61% and 4.93% higher than 

DeepLabV3+, and 7.52% and 5.41% higher than DenseASPP. 

This indicates that the model has stronger segmentation 

accuracy and class balance ability for multi-category targets in 

campus environments, especially in small target and complex 

edge recognition. Through the Haar wavelet detail 

preservation of the decoder module and the dilated separable 

convolution of the multi-scale feature extraction module, it 

effectively reduces misjudgment, enhances scenario 

generalization, and meets the "fine-grained, multi-scale" 

segmentation needs of campus surveillance. The parameter 

quantity is only 4.9% of DeepLabV3+, the computational 

complexity drops to 26.6% of it, and the speed improves by 

51% (32.58 FPS vs. 21.56 FPS). The lightweight design 

enables the model to be deployed on campus edge devices, 

supporting real-time intelligent analysis and meeting the low-

latency needs of scenarios such as safety warning and teaching 

interaction. Although DenseASPP has a relatively low 

parameter quantity, its computational complexity is 10.5 times 

that of the proposed method, and its speed is only 14.56 FPS, 

which cannot meet real-time requirements. This verifies the 

proposed method’s optimal balance between efficiency and 

accuracy, achieving a triple breakthrough of "lightweight 

deployment, real-time analysis, high-precision segmentation." 

Table 4 shows the contributions of each component to 

model performance through progressively adding the multi-

scale feature extraction module and decoder module. The 

single backbone network is the baseline with mIoU of 76.32%, 

but very high parameters and computation, unsuitable for 

lightweight campus edge devices, and insufficient in small 

target and complex edge segmentation—hard to support real-

time scenarios like campus security alerts. With the multi-

scale module added, parameters drop sharply to 4.12 M, 

computation to 44.32 G, and mIoU becomes 73.54%. This 

module, using dilated separable convolution, reduces 

computation redundancy while enhancing context aggregation 

for multi-scale campus targets, solving grid-like losses from 

traditional dilated convolution, and improving boundary 

segmentation accuracy by 12% in dense-overlap areas—

providing clearer spatial features for security behavior 

analysis. With the decoder module added, mIoU jumps to 

81.23%, parameters down to 3.23 M, computation to 43.23 G. 

The decoder’s Haar wavelet transform encodes spatial details 

into channel features, recovering information lost during 

downsampling; especially in low-light classrooms, edge 

segmentation error reduces by 22%, clarifying semantic 

boundaries of “blackboard–wall–desk,” directly enhancing the 

accuracy of teaching resource identification and student 

behavior analysis. The full model yields mIoU 81.56%, 

parameters 2.68 M, computation 42.65 G. The modules work 

synergistically—multi-scale for context, decoder for detail—

jointly optimizing campus surveillance’s core challenges. 

 

Table 5. Weight experiments for multi-loss coordination 

training 

 

α β MioU (%) AF (%) OA (%) 

0.1 0.9 66.32 77.58 88.62 

0.2 0.8 67.52 77.52 88.54 

0.3 0.7 65.48 76.32 86.52 

0.4 0.6 65.31 76.41 86.31 

 

Table 5 shows the impact of weight parameters in multi-loss 

coordination training. When α = 0.1 and β = 0.9, the model 

achieves optimal performance: mIoU 66.32%, AF 77.58%, 

OA 88.62%. This indicates that a segmentation-loss-dominant 

weight distribution is more suitable for campus monitoring 

semantic segmentation: dense small targets and low-contrast 

edges are common. A high β weight focuses the model on 

optimizing segmentation loss; combined with the Haar 

wavelet decoding module, it enhances detail capture, reduces 

small-target misses, and improves complex edge accuracy. AF 

and OA are optimal at α = 0.1, indicating stronger class 

consistency across multiple campus categories. In real 

playground scenarios, segmentation error for “student,” 

“sports equipment,” and “greening area” is ≤ 5%, supporting 

crowd flow analysis and resource scheduling, verifying model 

robustness in complex lighting and multi-scale campus scenes. 

The confusion matrix in Figure 6 shows the model’s 

segmentation performance for six core campus categories. 

Diagonal values in both training and test sets are high: accurate 

segmentation for normal student activities, abnormal behavior 

events, and teaching facilities indicates strong recognition 

capability, supporting classroom behavior analysis and 

resource scheduling. In classroom monitoring, distinctions 

between “student writing–reading–playing smartphone” 

reached ≥ 90% accuracy, enabling data support for teaching 

quality evaluation. Segmentation accuracy for safety 

equipment and environmental regions shows semantic 

understanding of low-contrast, multi-scale targets, reducing 

false alarms in security warnings. Improvements in logistics 

devices indicate better capture of small targets and edge detail, 

supporting preventive facility maintenance. Test-set 

performance close to training-set performance verifies model 
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robustness across varied campus environments, suitable for 

large-scale deployment, ensuring cross-scene consistency in 

scenarios like security alerts and teaching analysis. Diagonal 

confusion matrix values are all ≥ 0.72, with people-related 

categories ≥ 0.90, and teaching facilities ≥ 0.88—showing 

precise segmentation of key campus objects. Through the 

decoder’s Haar wavelet detail retention and the multi-scale 

module’s dilated separable convolution, the model performs 

excellently on small-target and complex-edge segmentation, 

addressing traditional model shortcomings in detail loss and 

class confusion, laying the foundation for pixel-level semantic 

analysis. Stable test-set performance indicates strong 

adaptability to unseen campus scenarios, supporting 

standardized, intelligent deployment for educational 

management. 

 

 
(a) Training set 

 

 
(b) Test set 

 

Figure 6. Confusion matrix 

 

 

5. CONCLUSION 

 

This study constructed a complete “model optimization–

scenario deployment” technical chain around intelligent 

campus surveillance and educational management demands. 

In model design, targeting small-target density, complex 

edges, and edge-device computing constraints in campus 

scenes, it proposed an improved DeepLabV3+ model 

integrating MobileNetV3 and Haar wavelet transform: 

embedding CBAM-enhanced lightweight backbone reduces 

parameters by 92.3% compared to Xception while enhancing 

small-target feature extraction; using dilated separable 

convolution repairs grid defects of standard dilated 

convolution, improving context aggregation for multi-scale 

targets; and employing Haar wavelet transform to encode 

spatial detail into channel features combined with separable 

convolution delivers lightweight detail enhancement, reducing 

edge segmentation errors by 22% and increasing small-target 

recall by 18%. On the application side, it built a three-

dimensional scenario system across security management, 

teaching management, and logistics, forming a “feature 

extraction–semantic segmentation–intelligent decision” 

closed-loop solution, offering full-chain support from 

technology to practice for educational management. 

The research results show significant value in merging 

technology and educational management. Technically, the 

modular innovation of “attention mechanism + wavelet + 

separable convolution” achieves the balance of lightweight 

and high accuracy, breaking through computing bottlenecks 

for edge-device deployment, and offering a feasible scheme 
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for large-scale real-time surveillance system upgrades. In 

educational management, high-precision semantic 

segmentation enables security alerts, teaching analysis, and 

logistics optimization, driving management from experience-

driven to data-driven. However, limitations remain in dataset 

coverage, insufficient use of temporal information, and lack of 

multimodal fusion. Future research will focus on cross-modal 

data fusion, temporal feature modeling, self-supervised 

learning optimization, and edge-cloud collaborative 

architectures to further enhance system robustness and 

intelligence, providing more comprehensive technical support 

for smart campus construction and promoting deep digital and 

precise transformation of educational management. 
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