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Electrocardiogram (ECG) signals observed from wearable sensing devices follow a cyclic 

and continuous pattern for detecting heart-related diseases. Signal processing for medical 

psychological vital observation identifies the random or irregular rhythms guided by 

machine learning and artificial intelligence techniques. In this article, a Cross-Interval 

Continuous Unification Model (CICUM) is introduced to identify such irregular rhythms in 

continuous observation intervals. This model is backboned by a two-layer neural network 

for continuity verification and signal correlation. The first layer is used to identify 

discontinuous sequences between fixed signal sensing intervals. The second layer is 

responsible for correlating the peak and lower-order signal pulses with the normal and 

abnormal ECG training inputs. In the first layer, the continuous time interval metric is used 

to identify discontinuities that are converged using identified signal iterations. In the second 

layer, the variations between high and low pulses are used to train the neural network for 

precise abnormal signal detection. Therefore, the proposed model unifies cross intervals and 

signal correlations between abnormal and normal sequences to detect heart-related diseases 

from irregular psychological signals. The CICU improves the sequence classification, 

detection accuracy, and continuity verification by 14.71%, 8.91%, and 11.82% respectively 

for the maximum sequences. 
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1. INTRODUCTION

Advancements in wearable technology have revolutionized 

the acquisition of ECG signals for heart disease detection. 

These sensors enable continuous monitoring, providing 

critical data for early diagnosis [1]. Compact and user-friendly, 

they facilitate non-intrusive tracking of cardiac health. 

Enhanced with wireless capabilities, they ensure real-time data 

transmission to healthcare providers. Wearable ECG sensors 

typically feature high accuracy and reliability, essential for 

detecting subtle cardiac anomalies [2]. The portability and 

convenience of these devices encourage widespread adoption. 

Integration with mobile applications allows for easy access to 

health metrics. Battery life and comfort are also optimized to 

ensure prolonged use [3]. As a result, patients can engage in 

daily activities without disruption. Collecting comprehensive 

ECG data, these sensors contribute significantly to preventive 

cardiology. Continuous innovation in sensor technology 

promises further improvements in diagnostic accuracy. 

Wearable ECG sensors represent a significant leap toward 

proactive heart disease management [4, 5]. 

Processing ECG signals is crucial for identifying irregular 

heart rhythms, which can indicate serious health issues. 

Advanced algorithms analyze these signals to detect 

arrhythmias accurately [6]. Sophisticated filtering techniques 

eliminate noise, ensuring the clarity of ECG data. Signal 

segmentation is employed to isolate relevant cardiac cycles. 

Pattern recognition algorithms then scrutinize these cycles for 

irregularities [7]. Early detection of arrhythmias allows for 

timely medical intervention. The processed ECG data can be 

visualized in various formats for easier interpretation by 

clinicians [8]. Continuous monitoring and real-time 

processing facilitate the immediate detection of abnormal 

rhythms. The technology significantly reduces the risk of 

stroke and other complications associated with irregular 

heartbeats [9]. Developments in signal processing enhance the 

precision and reliability of arrhythmia detection. 

Implementing these advanced methods in wearable devices 

further amplifies their utility [10]. Efficient processing ensures 

that only critical information is flagged, reducing false alarms. 

Ultimately, ECG signal processing is a vital component in 

modern cardiac care [11]. 

Machine learning has transformed ECG signal processing, 

providing powerful tools for detecting heart diseases. 

Algorithms trained on vast datasets can identify complex 

patterns indicative of cardiac conditions. These models 

improve diagnostic accuracy by learning from diverse ECG 

signal variations [12, 13]. Feature extraction techniques play a 

pivotal role in highlighting relevant aspects of the signal. 

Machine learning algorithms, such as neural networks and 

support vector machines, are commonly employed. These 

methods enable the detection of subtle anomalies that might 
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be missed by traditional techniques [14, 15]. Automated 

analysis reduces the workload on healthcare professionals, 

allowing them to focus on critical cases. Continuous learning 

from new data ensures that these models remain up-to-date 

with emerging cardiac trends [16]. Integration with cloud 

computing facilitates extensive data processing and storage. 

The adaptability of machine learning models enhances their 

application across different patient demographics. Precision 

and efficiency in detecting heart diseases are significantly 

boosted [17]. The technologies discussed above leap forward 

in predictive and preventive cardiology-related issues. To 

strengthen these discussions, this article contributes the 

following: 

• To analyze different methods related to ECG-based heart 

disease detection and prediction presented by various 

authors, with a description. 

• To introduce a novel CICUM using a two-layer neural 

network to improve the signal classification and detection  

• To analyze the performance of the proposed model using 

regulated metrics such as classification ratio, detection 

accuracy, variation, etc. 

• To validate the proposed model’s efficiency through a 

comparative analysis considering the existing methods 

and the aforementioned metrics. 

The contributions of the article are: Section 2 discusses the 

different methods/ techniques proposed by various authors 

followed by the proposed model description in Section 3. In 

Section 4 the experimental and comparison analysis results are 

presented. Section 5 concludes the article with the model’s 

summary, findings, and future scope. 

 

 

2. RELATED WORKS 

 

Parupudi et al. [17] developed a smartphone-enabled deep-

learning approach. The model introduces a smartphone-

enabled deep learning system for detecting myocardial 

infarction (MI) from ECG data. The model incorporates 

transfer learning, global average pooling, and Softmax layers, 

achieving high accuracy (99.34%). The deployment on 

Android devices enables cost-effective MI and abnormal heart 

disease detection in IoT-based healthcare applications. 

Ma et al. [18] introduced an application of a convolutional 

dendrite net for myocardial infarction (MI) detection. The 

method enhances MI detection speed by converting deep 

features into shallow feature logic with low computational cost. 

Key steps include artefact removal, waveform localization, 

coding via Hilbert curve, and classification using 

Convolutional Dendrite Net. The method achieves 98.95% 

accuracy with an average patient detection time of 2.09 ms on 

the PTB dataset. 

Sinha et al. [19] introduced Data Augmented SMOTE 

Multi-class Classifier (DASMcC). The method preprocesses 

ECG data and extracts features from 12-lead signals to ensure 

high-quality input for classification. Data augmentation 

techniques are employed to enhance the robustness and 

generalizability of the model during training and testing. The 

method assesses five classifiers for predicting cardiovascular 

diseases using metrics such as accuracy, precision, recall, F1 

score, and AUC. 

Peng et al. [20] proposed an ECG signal segmentation 

approach. The ST-Res U-net enhances spatiotemporal feature 

extraction by combining four levels of ST blocks and a Res 

Path. The method includes denoising preprocessing and 

integrates a threshold screening algorithm for accurate R-peak 

localization, ensuring comprehensive signal analysis. 

Validated on MIT-BIH and CPSC2019 databases, the method 

achieves high sensitivity (99.76% and 90.01%, respectively). 

Huang et al. [21] introduced a Snippet Policy Network 

(SPN). SPN utilizes deep reinforcement learning to achieve 

early classification of cardiovascular diseases using varied-

length ECG data. Compared to existing methods, SPN 

enhances precision, recall, F1-score, and harmonic mean 

metrics by at least 7%, highlighting its improved disease 

detection capabilities. The method achieves over 80% 

accuracy in detecting cardiovascular diseases early, 

demonstrating robust performance. 

Rao and Kakollu [22] introduced CB-HDM for classifying 

heart disease using ECG signals. The method proposes an 

improved U-net model named ST-Res U-net for enhanced 

detection of QRS complexes and R-peaks in ECG signals. The 

technique involves data preprocessing, spatiotemporal feature 

extraction using ST-Res U-net, and a threshold screening 

algorithm for accurate R-peak detection. Testing on MIT-BIH, 

CPSC2019, and PTB-XL databases shows accurate detection 

of QRS complexes and R-peaks. 

Iqbal [23] developed a new deep-learning method to detect 

cardiovascular diseases early from ECG signals. The method 

employs a deep convolutional neural network (CNN) fine-

tuned with optimized learning rates for analyzing ECG signals. 

ECG signals are segmented into data sequences, and each 

sequence is evaluated based on centroid points. A clustering 

approach efficiently recognizes and classifies minor variations 

in ECG signal characteristics to enhance detection accuracy. 

González et al. [24] estimate heart failure risk using short 

ECG and long-term HRV data. The method integrates 30-

second ECG recordings with sampled long-term Heart Rate 

Variability (HRV) to improve accuracy in assessing Heart 

Failure (HF) risk. The combination offers a comprehensive 

view of cardiac health, leveraging short-term ECG features 

and long-term HRV trends. To capture the temporal dynamics 

of long-term HRV data, the authors introduced a novel 

survival model named TFM-ResNet. 

Alamatsaz et al. [25] developed a lightweight hybrid CNN-

LSTM model for ECG-based arrhythmia detection. The 

method preprocesses ECG signals with resampling and 

baseline wander removal techniques. An 11-layer neural 

network combines CNN and LSTM architectures to classify 

arrhythmias and normal rhythms. The DL model effectively 

classifies diverse ECG signals, demonstrating robust 

performance and high diagnostic accuracy in arrhythmia 

detection. 

Fatimah et al. [26] proposed ECG arrhythmia detection 

using Fourier decomposition and machine learning. The 

method validates its reliability by testing on data from 

individuals not used in training, ensuring robust generalization 

across patients. It achieves an impressive F1 score of 89.35% 

for detecting super ventricular ectopic beats (SVEB), 

surpassing current benchmarks in accuracy. The method 

improves AI models for real-world use, making notable strides 

in detecting arrhythmias. 

Goud et al. [27] developed an intelligent optimized 

framework for heart disease prediction. The Wolf-based 

Generative Adversarial System (WbGAS) focuses on 

predicting three classes: Normal Sinus Rhythm, Arrhythmia, 

and Congestive Heart Failure. Inspired by wolf behavior, the 

approach optimizes disease classification through feature 

extraction and model training. The method demonstrates 
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superior performance compared to existing ML-based 

approaches for disease prediction. 

Parveen et al. [28] proposed a one-dimensional residual 

deep convolutional auto-encoder (1D-RDCAE) model. The 

model introduces a novel hybrid DL technique combining 

spatiotemporal feature analysis with ML for accurate ECG 

heartbeat classification. The approach detects subtle variations 

in ECG signals that may not be discernible to the human eye. 

The 1D-RDCAE method extracts features from processed 

ECG samples to improve accuracy. 

Kuila et al. [29] developed an ECG signal classification 

method using ELM and CNN. The technique utilizes a 12-

layer deep one-dimensional Convolutional Neural Network 

(CNN) combined with an Extreme Learning Machine (ELM) 

for accurate ECG signal classification. The hybrid approach 

capitalizes on CNN's feature extraction capabilities and ELM's 

precise classification strengths. To further improve 

classification accuracy, the method incorporates a wavelet 

self-adaptive threshold denoising technique. 

Karimulla and Patra [30] predict sudden cardiac death early 

using advanced heart rate variability features from ECG 

signals. The study emphasizes early prediction of Sudden 

Cardiac Death (SCD) by extracting features from Heart Rate 

Variability (HRV) signals derived from ECG data. Artifact 

correction is applied to ensure high-quality data for accurate 

feature extraction. Sequential Forward Selection (SFS) is 

utilized to identify the most informative subset of features 

crucial for prediction. 

Mishra and Tiwari [31] developed an IoT-enabled heart 

disease prediction system using three-layer deep learning and 

meta-heuristic algorithms. IoT devices collect ECG signals 

from both healthy individuals and those with heart disease. 

The model utilizes the tunicate swarm algorithm and slime 

mold algorithm to identify relevant features for accurate heart 

disease prediction. Implemented in MATLAB, the 

methodology is validated based on its signal processing and 

machine learning capabilities. 

Gupta et al. [32] proposed a new method to detect 

arrhythmias in ECG signals. The method utilizes Fractional 

Wavelet Transform (FrWT) to effectively preprocess non-

stationary ECG signals. Yule-Walker Autoregressive Analysis 

(YWARA) is employed to extract meaningful features related 

to arrhythmias, leveraging its capability to model time-series 

data. Principal Component Analysis (PCA) is used to further 

enhance feature representation and classification accuracy. 

Zhang et al. [33] developed a hybrid feature fusion method 

to classify short ECG segments in IoT-based healthcare 

systems. The method integrates rich features from 

convolutional neural networks (CNNs) with precise temporal 

information like RR intervals. These fused features are 

inputted into a support vector machine (SVM) classifier for 

training and testing. Effectiveness is evaluated using the F1-

score, which assesses the classifier's balance between 

precision and recall across all classes. 

The advent of machine learning (ML) and artificial 

intelligence (AI) techniques has further revolutionized the 

field by enabling more accurate and efficient analysis of 

signals. However, detecting random or irregular rhythms 

within these continuous observations presents unique 

challenges. The challenges include improper differentiation of 

ECG signal based on frequency and amplitude due to cross-

existence in continuous intervals. Classifying such cross-

interval ECG spikes remains unresolved due to varying 

interrupts and increasing sensing time. This results in 

generating additional variations in detecting the precise 

abnormality. ECG vitals are accounted with time factor and 

the variations are to be measured between successive intervals. 

The methods discussed above rely on monitoring devices such 

as phones/wearables [17] and segmentation models [20, 23, 33] 

to distinguish the variations. Fractional models [26, 32] 

require differential outputs from the observed patterns. The 

zero level patterns observed are less compatible with the 

transform models. Feature based approaches [22, 24, 28, 29] 

requires high level extraction and this relies on diverse 

assessments for which variation normalization is to be added. 

To address this issue, the CICUM is introduced. The proposed 

model assimilates both the regular and irregular signals to 

differentiate signals based on time and amplitude. Such 

differentiations are trained using the learning process 

separately to improve the detection precision. 

 

 

3. CICUM 

 

The detection of heart-related diseases has been 

significantly advanced by the use of Electrocardiogram (ECG) 

signals obtained from wearable sensing devices. These devices 

provide continuous and cyclic data crucial for identifying 

irregular heart rhythms. This article introduces the CICUM, a 

novel approach designed to enhance the identification of such 

irregular rhythms in data. It leverages a two-layer neural 

network structure to ensure continuity verification and precise 

signal correlation. The proposed unification model is 

illustrated in Figure 1. 

The first layer focuses on detecting discontinuities within 

fixed sensing intervals, while the second layer correlates signal 

variations to classify normal and abnormal patterns. This 

innovative model aims to unify cross-interval data and signal 

correlations, providing a robust tool for the early detection of 

heart-related diseases. In ECG monitoring, wearable sensors 

are designed to detect and record the electrical activity of the 

heart over extended periods. These sensors provide a stream 

of continuous data that can be analyzed to detect irregular 

heart rhythms, making them crucial for early diagnosis and 

management of heart-related diseases. The collected data by 

the sensors is transmitted wirelessly to a connected device, 

where it can be processed. The analysis representation of 

wearable sensor data is computed in the equation below: 

 

𝐴 =
∫ 𝑊(𝑡) × 𝑋(𝑡)
𝑇1
𝑇0

, 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠  𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠

∑ [𝐹𝑖(𝑡𝑖) + 𝐺𝑖(𝑡𝑖)]
𝑁
𝑖=1 , 𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒  𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠

}  (1) 

 

From the above equation, the analysis of observation 

intervals in wearable sensors is represented as  𝐴 . The 

continuous analysis focuses on the regular patterns within the 

sensor data over the observation interval. It integrates the 

sensor data which is represented as 𝑋(𝑡), 𝑊(𝑡) is a weighting 

function to emphasize different parts of the interval based on 

their significance. The variables  𝑇0 and 𝑇1  are the start and 

end times of the observation interval, respectively. The 

variable  𝑁  is the total number of discrete analysis points 

within the interval. Discrete analysis involves the validation of 

specific irregular points 𝑡𝑖  within the intervals. The 

parameter 𝐹𝑖(𝑡𝑖) represents the output of the initial analysis 

process at specific time points. Another parameter  𝐺𝑖(𝑡𝑖) 
represents the output of the secondary analysis process at the 

same time points. It combines the outputs from two distinct 
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analysis processes. This component provides detailed insights 

into specific features or events identified by the analysis 

processes. This approach allows for a more focused 

examination of both continuous trends and discrete events 

within the data, enhancing the understanding and 

interpretation of complex physiological signals captured by 

wearable sensors. 

 

 

 
 

Figure 1. Proposed CICU model 

 

Psychological vitals reflect the state of an individual's 

physical and mental health. These include metrics such as 

heart rate variability, which can be influenced by stress, and 

other psychological factors. Monitoring psychological vitals 

can enhance the detection of irregular heart rhythms by 

accounting for the influence of psychological stressors on the 

heart's electrical activity. The below equation 𝑃 computes the 

psychological vitals. 

 

𝑃 = [(
1

𝑇
∫ 𝐻(𝑡)𝑑𝑡
𝑇1

𝑇0

) × (∫ 𝐵(𝑡) × 𝑌(𝑡)𝑑𝑡
𝑇1

𝑇0

)] + 𝐴 (2) 

 
Here 𝐻(𝑡) represents the baseline heart rate over time. This 

function can be used to establish a general trend in the heart 

rate, such as the average heart rate over a specific period. The 

normalization is observed by the difference in duration 𝑇 =
𝑇1 − 𝑇0 . Where, 𝐵(𝑡)  represent the instantaneous heart rate 

variability which measures the variations in time intervals 

between consecutive heartbeats. The parameter  𝑌(𝑡) 
represents another cardiac parameter, such as the amplitude of 

the ECG signal, which reflects the strength of the heart’s 

electrical activity. It also incorporates the analysis of wearable 

sensor 𝐴 which is computed previously. This helps to identify 

deviations from the norm and indicate abnormal heart rhythms 

or other cardiac events. 

 
3.1 First layer process 

 
The proposed CICUM considers the wearable sensor input 

observed in continuous intervals. The neural network 

segregates regular and irregular intervals in its first layer. The 

second layer utilizes the training input for feature mapping. 

Based on the feature, low and high signal unification is 

performed. If the unification shows up variations, the 

correlation is identified for disease detection. 

The first layer of the neural network in the CICUM model 

is designed to analyze the ECG signals over continuous time 

intervals to identify regular and irregular rhythms. This layer 

utilizes a continuous time interval metric to detect any 

discontinuities or deviations from the expected rhythmic 

patterns. By comparing the observed data against established 

norms, the neural network can pinpoint intervals where the 

heart's rhythm appears irregular. This process involves 

sophisticated signal processing techniques and iterative 

analysis to ensure that even subtle irregularities are detected 

accurately. The below equation 𝑂(𝑡) computes the processes 

of the first layer of the neural network. Focusing on analyzing 

heart rhythms based on time and rate of change difference. 

 

𝑂(𝑡) = 𝜎 [𝛤 (𝑆(𝑡), ℱ(𝑆(𝑡)), ∆𝑆(𝑡)) + 𝑏] (3) 

 

where, 𝑆(𝑡) signal at time and ℱ(𝑆(𝑡))  is the Fourier 

transform of the signal representing frequency components. 

The computation of ∆𝑆(𝑡) is the rate of change of signal. The 

variable 𝛤 is the function which computes the difference of 

rhythms. The variable  𝑏  represents the bias vector and 𝜎 

activation function. The variable 𝑆̅ is the mean value of the 

signal over the interval. The parameter ℱ̅ is the mean value of 

frequency over the interval. ∆𝑆̅̅̅̅  is the mean value of the rate of 

change over the interval. The variable  𝐾  is the number of 

significant frequency components. 𝑀 is the number of times 

considered for the rate of change and 𝑗 is used to calculate the 

average rate of change in 𝑆(𝑡). The first layer of the neural 

network intakes  𝑃 as input for which transform function layer 

categorizes the baseline and variable  𝑡 . In the first layer 

process the regular and irregular outputs are identified. 

Therefore, this first layer contains 3 components in the first-

half of the architecture. The second layer contains 3 

components for classifying  𝑧(𝑡)  and  𝑂2(𝑡) . The pattern 

matrix layer is responsible for iterating the  𝑆̅ and ∆𝑆̅̅̅̅ . From 

the above equation, the following equation expands the 

efficient difference function, reduces complexity, and is 
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scalable for interpretations.  

 

𝑆(𝑡) =
1

𝑁
∑ |𝑆(𝑡𝑖) − 𝑆̅|
𝑁
𝑖=1

ℱ(𝑆(𝑡)) =
1

𝑁
∑ |ℱ(𝑆(𝑡))

𝐾
− ℱ̅|𝐾

𝐾=1

∆𝑆(𝑡) =
1

𝑀
∑ |∆𝑆(𝑡𝑗) − ∆𝑆̅̅̅̅ |
𝑀
𝑗=1

𝑤ℎ𝑒𝑟𝑒
∆𝑆(𝑡𝑗) = 𝑆(𝑡𝑗+1) − 𝑆(𝑡𝑗) }

  
 

  
 

  (4) 

 

Here, ∆𝑆(𝑡𝑗) = 𝑆(𝑡𝑗+1) − 𝑆(𝑡𝑗)  measures the difference 

between consecutive signal values, providing insight into how 

rapidly the signal is changing. The equation integrates time 

and frequency components to effectively distinguish between 

regular and irregular heart rhythms.  Neural network provides 

real-time monitoring and detection of abnormal heart rhythms, 

facilitating timely medical interventions. The below equation 

𝑅𝑟𝑒𝑔(𝑡) computes the regular rhythmic pattern over time. 

 

𝑅𝑟𝑒𝑔(𝑡) = [(𝑆(𝑡)) × ℱ(𝑆(𝑡))] < 𝜖𝑟𝑒𝑔 (5) 

 

The term 𝑆(𝑡) calculates the average deviation of the ECG 

signal from its mean, indicating how much the signal 

fluctuates around a central value. The variable  ℱ(𝑆(𝑡)) 

measures the stability of the signal's frequency components, 

ensuring that the signal has consistent periodic transform 

characteristics. A predefined small threshold is represented as 

𝜖𝑟𝑒𝑔  ensures that the combined deviations are within 

acceptable limits for a regular rhythm. Based on regular 

rhythmic patterns, the below equation computes the irregular 

rhythmic pattern over time. 
 

𝑅𝑖𝑟−𝑟𝑒𝑔(𝑡) = [𝑅𝑟𝑒𝑔(𝑡) × ∆𝑆(𝑡)] > 𝜖𝑖𝑟−𝑟𝑒𝑔 (6) 

 

The above equation for irregular rhythm is computed as 

𝑅𝑖𝑟−𝑟𝑒𝑔 indicating the degree of fluctuation in the ECG signals 

same as the regular rhythm  𝑅𝑟𝑒𝑔(𝑡)  . But in the larger 

deviations, indicating unstable periodic characteristics. The 

term ∆𝑆(𝑡) measures the average rate of change in the ECG 

signal, capturing sudden changes or erratic behavior. A larger 

threshold is represented as 𝜖𝑖𝑟−𝑟𝑒𝑔  that identifies significant 

deviations, signalling irregular rhythm. The first layer process 

is described in Figure 2. 

The input P is extracted for 𝑆(1) to 𝑆(𝑡) that is validated 

using ℱ(𝑆(𝑡))  to split H (t) and 𝐵(𝑡). This transform function 

relies on limited t to ensure abnormal variations between 𝑇0  

and 𝑇1 .  If this information is true then 𝑆(𝑡) with ℱ(𝑆(𝑡)) is 

cumulatively analyzed for 2𝐻(𝑡) and 2𝐵(𝑡) variants. In this 

process, <  𝑎𝑛𝑑 ≥   conditions are correlated with ∈𝑟𝑒𝑔  and 

∈𝑖𝑟−𝑟𝑒𝑔 values obtained from clinical observations.  If ≥ is the 

condition then the P is irregular and thus 𝐵(𝑡)  ≥  𝐻(𝑡) for 

which consecutive interval is analyzed. This interval is 

updated for the 𝑆(𝑡 + 1) to verify ∆𝑆̅̅̅̅  . If the condition is <
 then o(t) is terminated by identifying the outcomes as regular 

(Refer to Figure 2). For example, in the scenario where the 

heart signal is monitored for 10 seconds, with the first five 

seconds showing a regular rhythm and the subsequent five 

seconds indicating an irregular rhythm, the detection process 

by the model involves analyzing these temporal patterns. 

Initially, the model captures and processes the signal for both 

regular and irregular rhythms separately over the respective 

time intervals. By comparing these extracted patterns against 

predefined thresholds, the model determines the presence of 

irregularities in the heart signal.  
 

 

𝑖𝑓 ∃𝑟𝑒𝑔> ∃𝑖𝑟−𝑟𝑒𝑔
𝑖𝑓 ∃𝑟𝑒𝑔≤ ∃𝑖𝑟−𝑟𝑒𝑔

} = 𝑅(10)

𝑤ℎ𝑒𝑟𝑒

∃𝑟𝑒𝑔=
1

5
∫ 𝑆(𝑡) × 𝑒𝑥𝑝(−𝛿𝑡)𝑑𝑡
5

0

∃𝑖𝑟−𝑟𝑒𝑔=
1

5
∫ 𝑆(𝑡) × 𝑒𝑥𝑝(−𝛾(𝑡 − 5))𝑑𝑡
10

6 }
 
 

 
 

  (7) 

 

The iterative process of detecting irregularities in heart 

signals over a 10-second interval is represented as 𝑅(10). This 

equation integrates the heart signal 𝑆(𝑡)  over the first 5 

seconds. This transformation effectively emphasizes earlier 

parts of the signal more strongly, capturing essential 

characteristics of regular heart rhythms which are represented 

as ∃𝑟𝑒𝑔 . Over the interval from 6 to 10 seconds, the 

transformation focuses on the latter part of the signal, 

capturing distinct differences associated with irregular heart 

rhythms which are denoted as ∃𝑖𝑟−𝑟𝑒𝑔. The variables 𝛿 𝑎𝑛𝑑 𝛾 

are decay constants. In this specific case, detecting an irregular 

rhythm during the second five-second interval signifies a shift 

from the normal baseline observed in the first interval, 

prompting the model to classify the overall signal as irregular. 

This process highlights the model's ability to dynamically 

assess temporal changes in heart rhythms, crucial for the 

accurate detection of irregularities and timely medical 

intervention. From the analysis of regular and irregular 

rhythmic patterns, the below formulation computes the 

condition of rhythmic patterns. 
 

𝐶1(𝑡) = 𝑅𝑟𝑒𝑔(𝑡) ≤ 𝜖1 ℎ𝑖𝑔ℎ𝑙𝑦 𝑟𝑒𝑔𝑢𝑙𝑎𝑟

𝐶2(𝑡) = 𝜖1 < 𝑅𝑟𝑒𝑔(𝑡) ≤ 𝜖2 𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒𝑙𝑦 𝑟𝑒𝑔𝑢𝑙𝑎𝑟

𝐶3(𝑡) = 𝜖2 < 𝑅𝑖𝑟−𝑟𝑒𝑔(𝑡) ≤ 𝜖3 𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒𝑙𝑦 𝑖𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟

𝐶4(𝑡) = 𝑅𝑖𝑟−𝑟𝑒𝑔(𝑡) > 𝜖3 ℎ𝑖𝑔ℎ𝑙𝑦 𝑖𝑟𝑟𝑒𝑔𝑢𝑙𝑎𝑟 }
 
 

 
 

 (8) 

 

 
 

Figure 2. First layer process illustration for type classification 
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From the above equation, the variable  𝐶1 represents the 

analysis of a very stable heart rhythm with minimal deviations 

in both time and frequency domains. This derivation set is 

useful for confirming normal cardiac function. The variable 𝐶2 

indicates slight variations that are still within acceptable limits. 

This is for monitoring minor changes in heart rhythm. The 

representation  𝐶3  shows moderate deviations, possibly 

signaling early signs of cardiac issues. The variable  𝐶4 

represents significant deviations and instability, suggesting 

potential serious cardiac events. The network can accurately 

classify and monitor heart rhythms, facilitating early detection 

and diagnosis of cardiac conditions. The classifications 

presented in Eq. (8) are correlated with the conditions in Eq. 

(7) and are illustrated in Figure 3. 

 

 

 
 

Figure 3. Correlated classifications based on Eqs. (7) and (8) 

 

The above correlation data is obtained from the clinical data 

correlation used from [34-36]. Based on the information 

extracted, the P waves, abnormality count in the (𝑇0 −
𝑇1) time are presented. Similarly, the visual observation of 

several PR intervals (i.e.) 𝑀 and K are defined based on square 

signals observed in the time interval. Depending on the 

available 𝑆(𝑡)  input, the ratio between P and R defines 

∈𝑟𝑒𝑔  𝑎𝑛𝑑 ∆𝑆̅̅̅̅  from which a 10s interval observation is 

pursued. Therefore the ℱ𝑟𝑒𝑔  are the P, R, and M variables 

observed. The conditions specified in Eq. (7) are validated 

according to the threshold observed in the accounted time 

(Refer to Figure 3). 

 

3.2 Second layer process 

 

The second layer of the neural network receives its input 

from the output generated by the first layer. Essentially, this 

means that the intervals identified as irregular by the first layer 

are passed on to the second layer for further analysis. This 

enhances the precision and efficiency of the overall detection 

process. This layer uses this input to perform more detailed 

signal correlation and analysis, aiming to classify the nature of 

the irregularities identified. 

𝐼(𝑡) = 𝑄 × [
𝑂𝑟𝑒𝑔(𝑡)

𝑂𝑖𝑟−𝑟𝑒𝑔(𝑡)

ℙգ𝑑𝑎𝑡𝑎

] (9) 

 

This equation combines the outputs from layer 1 as regular 

and irregular rhythm 𝑂𝑟𝑒𝑔(𝑡) and 𝑂𝑖𝑟−𝑟𝑒𝑔(𝑡). It also includes 

pre-trained signal patterns which are represented as  ℙգ𝑑𝑎𝑡𝑎 

into a single input vector  𝐼(𝑡)  through a transformation 

matrix  𝑄 . The transformation matrix linearly combines the 

input vectors, which helps in integrating different aspects of 

the heart signal, such as regular and irregular patterns. This 

step prepares the data by mixing the different input sources in 

a structured way, ensuring that both historical patterns and 

current observations are considered. The below equation 𝔽(𝑡) 
computes the classification process of signals. 

 

𝔽(𝑡) = [

𝑒𝑥𝑝(𝐼(𝑡)1⊗ 𝐼(𝑡)2)

log(1 + |𝐼(𝑡)3|)

sin(𝐼(𝑡)4)
] (10) 

 

This equation extracts non-linear classification from the 

transformed input vector 𝐼(𝑡). The term 𝑒𝑥𝑝(𝐼(𝑡)1⊗ 𝐼(𝑡)2) 
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applies an exponential function to the element-wise 

multiplication ⊗  of two parts of the input vector which 

is  𝐼(𝑡)1 and 𝐼(𝑡)2 , capturing multiplicative interactions and

emphasizing significant deviations. The term log(1 +
|𝐼(𝑡)3|) applies a transformation, which compresses the range

of values and emphasizes smaller variations, making the 

model sensitive to subtle changes. The term sin(𝐼(𝑡)4)
introducing periodicity into the classification set, which is 

useful for detecting rhythmic patterns in heart signals These 

transformations are pivotal in capturing nuanced relationships 

and subtle variations within the heart signals. By emphasizing 

multiplicative interactions, compressing value ranges, and 

introducing periodicity, this approach enhances the model's 

ability to discern complex patterns indicative of potential heart 

abnormalities. From the classification, the output of the second 

layer neural network is computed below: 

𝑍(𝑡) = 𝔽(𝑡) + 𝑏2 (11) 

𝑂2(𝑡) = 𝜎2(𝑍(𝑡)) = (∏𝜎2(𝑍𝑖(𝑡)) × √|𝑍𝑖(𝑡)|

𝑁

𝑖=1

) (12) 

Neural network layer 2 contributes significantly to heart 

signal detection by integrating diverse inputs and applying 

robust classification criteria. The bias vector which is 

represented as 𝑏2 helps in adjusting the output and providing

the model with more flexibility. The intermediate output is 

represented as 𝑍(𝑡). Here, 𝜎2  denoted as activation enabling

the model to handle complex relationships in the data. The 

resulting output of the second layer 𝑂2(𝑡)  represents the

processed signal indicating the likelihood of high or low signal 

variations, critical for detecting heart abnormalities. By 

analyzing the amplitude and frequency of these pulses, the 

model can differentiate between normal and abnormal heart 

rhythms. High signals, characterized by significant deviations 

from the norm, indicate potential abnormalities, while low 

signals suggest a stable and normal heart rhythm. The below 

formulation computes the conditions of high and low 

variations in signal. 

𝑆2(𝑡) = {
ℋ(𝑡) = 𝕀[𝑂2(𝑡) > 𝜃ℎ𝑖𝑔ℎ]

ℒ(𝑡) = 𝕀[𝑂2(𝑡) ≤ 𝜃𝑙𝑜𝑤]
(13) 

The variations in signal represented as 𝑆2(𝑡). The indicator

function which is denoted as  𝕀 produces output as 1 if the 

condition is true and 0 otherwise. The variable  𝜃ℎ𝑖𝑔ℎ  is the

threshold value for detecting a high signal which is represented 

as ℋ(𝑡). The variable 𝜃𝑙𝑜𝑤  is the threshold value for detecting

a low signal which is denoted as ℒ(𝑡). These equations serve 

to classify the output 𝑂2(𝑡) from the neural network layer 2

into high or low signal categories based on variations from 

predefined thresholds. Figure 4 presents the process of the 

second neural layer. 

The 𝑂2  (t) process is illustrated in Figure 4 using 𝑆̅ and ∆𝑆̅̅̅̅

inputs from the layer 1. The 4 different types (i.e.) 𝐶1  to 𝐶4  be

validated using 𝐼(𝑡) for ℙ𝑞𝑑𝑎𝑡𝑎  and Q matrix entries. These

entries are validated to find 𝑂2 (𝑡) > 𝑂ℎ𝑖𝑔ℎ ≤

 𝑜𝑟 𝑂𝑙𝑜𝑤  outputs. For both the high and low outputs, 𝑍(𝑡) is
computed by assigning 𝑏2 . After assigning 𝑏2  the 𝐼(𝑡)  is

updated for P and Q entries using ℙ𝑞𝑑𝑎𝑡𝑎  and 𝔽(𝑡) processes.

Depending on the ∈𝑟𝑒𝑔  from the computed clinical values the

M and K are updated for P and Q. Using the updated values 

𝑂𝑟𝑒𝑔 and 𝑂𝑖𝑟−𝑟𝑒𝑔 for 𝑂2 (t) are classified. The conditions are

crucial for heart signal monitoring systems to identify 

abnormalities. It enables the system to automatically flag 

instances where the heart signal deviates significantly from 

normal ranges, prompting further investigation or intervention. 

The below equation 𝔇(𝑡) computes detection of heart disease 

based on the observations of neural network layer 2. 

𝔇(𝑡) = (
ℋ(𝑡)

max(ℋ(𝑡))
) + (1 −

ℒ(𝑡)

max(ℒ(𝑡))
) + (

𝑂2(𝑡)

max(𝑂2(𝑡))
)  (14) 

The above equation integrates multiple factors crucial in 

signal analysis to contribute significantly to the detection of 

heart disease. By incorporating high and low signal 

classifications ℋ(𝑡)  and ℒ(𝑡)  the equation assesses the 

prevalence and absence of abnormal heart rhythms, 

respectively. The detection process is presented in Figure 5. 

The second neural network layer is defined using  ℋ(𝑡) and 

ℒ(𝑡)  outputs from the first neural network. If the 

𝐼 (𝑡1)  ⨂ 𝐼 (𝑡2)  is true, then verification of 𝑅(10) 𝑅𝑖𝑟−𝑟𝑒𝑔 is

tallied.  If the output is true then some abnormalities are 

observed. This defines heart disease as 𝐶1 𝑜𝑟 𝐶2 𝑜𝑟 𝐶3  𝑜𝑟 𝐶4 .
The correlation range is based on the actual clinical range 

defined and utilized. The failing 𝑂2 (𝑡)  are ℱ (𝑆(𝑡))

transformed for nonlinear classification. The 

𝑍 (𝑡) ∀ 𝑅(10)  <  𝑅𝑖𝑟−𝑟𝑒𝑔  generates the max (ℋ(𝑡))  and

max (ℒ(𝑡)) narration. Therefore, the detection is performed 

from 𝑂2 (𝑡) using different first-layer outputs (Figure 5). This

approach utilizes these classifications as indicative markers, 

emphasizing abnormalities that might indicate underlying 

cardiac issues. 

Figure 4. Process of the second neural layer for variation estimation 
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Figure 5. Detection process illustration 

 

Furthermore, it leverages the output 𝑂2(𝑡) from a neural 

network layer, which encapsulates variations in heart signals 

detected through sophisticated data processing. This output 

serves as a comprehensive indicator of signal anomalies, 

providing a nuanced assessment of heart health beyond simple 

classifications. 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Experimental results 
 

This proposed model is validated using an ECG heartbeat 

categorization data set acquired from the study [37]. In this 

dataset arrhythmia classification as either normal or abnormal 

is presented. The abnormal data count is 10k, normal is 4kt, 

from which 8k inputs are used for training and testing. The 

samples are observed at 125 Hz frequency, representing 2 

categories (normal/abnormal) that correlate with 𝐶1  to 𝐶4  
classifications. The vitals are acquired from 126 subjects 

classified for arrhythmia and PTB diagnosis. The maximum 

categories presented are 5, from which 4 are selected for 

analysis. The classes for analysis range from normal to severe 

based on the frequency changes between regular intervals. The 

interval changes from 10s to 60s for abnormal and normal vital 

observation. The dataset considered in this article provides 5 

categories of heart disease classification that suits the unified 

signal differentiation. Besides the variations across different 

intervals, define the type of disease for which multiple training 

input are correlated. These factors are highly correlated with 

the proposed concept due to which the dataset is found to be 

apt. The metrics selected are prompt and are adaptable to the 

concepts provided due to which the comparisons are 

simplified. Besides, the maximum number of comparison 

metrics coincides with the existing works which ease the 

discussion. This information is used to validate the ECG 

signals through MATLAB experiments.  The learning network 

is trained using 2 batches independently for two layers with a 

training rate > 0.5  for both layers. Besides, the number of 

iterations is 800  × 2  for both layers, such that  𝐶1  to  𝐶4 

classifications are iterated under 3 epochs. These 

hyperparameter settings are followed in the experimental 

analysis with linear optimization to enhance the classification 

and detection processes. The experiments are carried out in a 

physical standalone computer fixed with 2×16 GB random 

memory, 25GB storage memory, and a 3.0 GHz clock speed 

processor. A sample input and output representing the 

operations of the proposed model are given in Table 1 and 

Table 2. 

 

Table 1. Sample input and ℙ𝑞𝑑𝑎𝑡𝑎 

 

Input ℙ𝒒𝒅𝒂𝒕𝒂  
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Table 2. Detected output representation 

𝔽 (𝒕) Type 

Normal 

Abnormal 
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Figure 6. Accuracy analysis under 𝐻(𝑡) and 𝐵(𝑡) time 

 

 
 

Figure 7. Δ𝑆̅̅̅̅  analysis for (𝑇0 − 𝑇1 ) and 𝑏 

 

 
 

Figure 8. Confusion matrix for ∆𝑠 and ∆𝑆̅̅̅̅  ∀𝔽(𝑡) 
 

Along with the experiment analysis, the accuracy is 

analyzed for the  𝐻(𝑡)  and  𝐵(𝑡)  under different 𝜋  (t) as 

presented in Figure 6. 

Compared to 𝐵(𝑡) the 𝐻(𝑡) is a short-lived period using the 

variable sensors. The challenging process is the 𝔽(𝑡) 
classification using the two neural network layers. In the first 

layer, 𝑅𝑟𝑒𝑔 (𝑡) and 𝑅 𝑖𝑟−𝑟𝑒𝑔 (𝑡)  is classified and is iterated 

based on. This requires a Δ𝑆̅̅̅̅   suppression under limited t. The 

second layer is responsible for detecting ℋ(𝑡) and ℒ(𝑡) 
between the ∈𝑟𝑒𝑔  entries. Hence in this case iterations are 

pursued for ℙ𝑞𝑑𝑎𝑡𝑎  and𝐹𝑖  (𝑡𝑖). In this process the  Δ𝑆̅̅̅̅  and b 

are balanced accordingly to maximize accuracy without the 

least 𝔽(𝑡) (Figure 6). This process fundamentally relies on Δ𝑆 

detection between (𝑡0  𝑎𝑛𝑑 𝑡1) intervals. As the learning 

iterations increased, the Δ𝑆̅̅̅̅  reduces by mitigating 𝐼(𝑡) 

omissions. This Δ𝑆 analysis b presented in Figure 7 for the 

(𝑇0 − 𝑇1) interval, b, and the increasing iterations. 

In Figure 7 the Δ𝑆̅̅̅̅  variation suppression under (𝑇0 − 𝑇1) 
and b improvements. As the iterations increase, Δ𝑆̅̅̅̅ (𝑡) and ≥
(𝑡) are the iteration-causing factors. This Δ𝑆̅̅̅̅  are variation and 

high/low sensed information is identified for distinguishable P. 

Thus the 𝐻(𝑡) and 𝐵(𝑡) differentiations are optimal such that 

𝜎  balances the bias in the 𝑡𝑖 . Therefore, the two combined 

layers differentiate the available ∃𝑟𝑒𝑔 to identify abnormal and 

normal P. Thus, this classification is set as a benchmark for 

reducing Δ𝑆̅̅̅̅  for different 𝜎 and S. The confusion matrix for 

 ∆𝑠 and ∆𝑆̅̅̅̅  under 𝔽(𝑡) is presented in Figure 8. 

The confusion matrix for the (∆𝑠, ∆𝑆) pairs under 𝔽(𝑡) is 

presented in the above Figure 8. The ∃𝑟𝑒𝑔 for all 𝑃 inputs are 

achieved as differentia table such that the maximum 
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intervention of ∆𝑆  and  ∆𝑆̅̅̅̅  are distinguished. In particular, 

 𝐼(𝑡1)⨂𝐼(𝑡2) are the verification intensive classifiers such that 

 ℋ(𝑡)  and  ℒ(𝑡)  ensures the abnormality detection. The 

learning for 𝑆2(𝑡)  as 𝜃ℎ𝑖𝑔ℎ  or 𝜃𝑙𝑜𝑤  with  𝑏2  adjusts the 𝔽(𝑡) 

such that 𝑂𝑟𝑒𝑔(𝑡) and 𝑂𝑖𝑟−𝑟𝑒𝑔(𝐸) are the false rate reducing 

factors. The first layer is responsible for identifying multiple 

constraints in detecting abnormalities. The learning is 

referenced through  𝔽(𝑡)  provided the transform matrix 

ensures minimal difference using  ℙ𝑞𝑑𝑎𝑡𝑎 . Thus the  ∆𝑆  and 

 ∆𝑆  variations for different  𝔽(𝑡)  is validated for any  𝑃  as 

represented above. 

4.2 Comparison results 

 

The comparison results are discussed using sequence 

classification, detection accuracy, classification time, 

variation error, and continuity verification metrics. This is 

analyzed for a varying sensing interval between 10s and 110s 

for a maximum sequence (/Hr) of 8. To validate the proposed 

model’s efficacy, it is compared with the 3L-DL+MHA [31], 

1D-RDCAE [28], and TFM-ResNet [24] methods from the 

Section 2.  

 

 

 
 

Figure 9. Sequence classification 

 

 
 

Figure 10. Detection accuracy 

 

 
 

Figure 11. Classification time 
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Figure 12. Variation error 

 

 
 

Figure 13. Continuity verification 

 

4.2.1 Sequence classification 

Sequence classification refers to the model's ability to 

distinguish between regular and irregular heart rhythms, which 

are crucial for accurate heart monitoring. This represents the 

efficiency in classifying sequences within different sensing 

intervals, which is computed as 𝑅𝑟𝑒𝑔(𝑡) 𝑎𝑛𝑑 𝑅𝑖𝑟−𝑟𝑒𝑔(𝑡). The 

performance is determined by its two-layer neural network 

architecture. The first layer is designed to detect discontinuous 

sequences within the fixed signal sensing intervals, using a 

continuous time interval metric. As the sensing interval 

increases, the model has more data per sequence, which can 

improve classification accuracy due to the richer context 

available for analysis. The second layer focuses on correlating 

high and low signal pulses with normal and abnormal ECG 

training inputs. This layer uses the variations between high and 

low pulses to train the neural network for precise abnormal 

signal detection, computed as 𝑆2(𝑡). The output from the first 

layer serves as an input for the second layer, 𝐼(𝑡) it to refine 

its classification based on the identified discontinuities and 

correlations. This higher classification performance at longer 

intervals, due to the increased amount of data per sequence, 

allows the model to make more informed decisions. The 

ability to maintain high classification standards across 

different timeframes is highlighted, showcasing its robustness 

and adaptability in real-time heart monitoring applications 

(Figure 9).  
 

4.2.2 Detection accuracy 

Detection accuracy measures how correctly the model 

identifies normal and abnormal heart signals. This shows high 

accuracy across all intervals and sequences, indicating the 

robustness of the neural network layers. The first layer's ability 

to identify discontinuous sequences between fixed signal 

sensing intervals plays a significant role. This layer uses a 

continuous time interval metric, which converges using 

identified signal iterations to ensure accurate detection of 

discontinuities. The formulation of  𝑅(10)  in which  ∃𝑟𝑒𝑔=
1

5
∫ 𝑆(𝑡) × 𝑒𝑥𝑝(−𝛿𝑡)𝑑𝑡
5

0
 𝑎𝑛𝑑 ∃𝑖𝑟−𝑟𝑒𝑔=

1

5
∫ 𝑆(𝑡) ×
10

6

𝑒𝑥𝑝(−𝛾(𝑡 − 5))𝑑𝑡  computes the detection accuracy. This 

includes both the first layer's ability to identify discontinuous 

sequences and the second layer's proficiency in correlating 

signal pulses. In this detecting an irregular rhythm during the 

five-second interval signifies a shift from the normal baseline. 

It was observed in the first interval, prompting the model to 

classify the overall signal as irregular. This process highlights 

the model's ability to dynamically detect temporal changes in 

heart rhythms. High detection accuracy is crucial for reliable 

heart-related disease detection, and the model's effectiveness 

in varied temporal contexts (Figure 10). 

 

4.2.3 Classification time 

This compares the time taken by the proposed model to 

classify sequences across different sensing intervals. 

Classification time is a critical metric, particularly in real-time 

applications where quick detection is necessary. From the 

proposed work, 𝐶1 represents a very stable heart rhythm with 

minimal deviations in time. 𝐶2 indicate slight variations and 
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𝐶3  shows moderate deviations. 𝐶4  represents significant 

deviations and instability of classifications based on time. 

However, it aims to maintain low classification times even at 

longer intervals by optimizing the neural network layers and 

leveraging efficient signal processing techniques. This balance 

between speed and accuracy is vital for practical deployment 

in wearable heart monitoring devices. This demonstrates 

shorter classification times at shorter sensing intervals, as less 

data is processed per sequence (Figure 11). 

 

4.2.4 Variation error  

This shows (Figure 12) the variation error in the model's 

predictions across different sensing intervals and sequences. 

Variation error indicates the discrepancy between the 

predicted and actual heart signal classifications. Lower 

variation error signifies higher model reliability. This 

highlights that the CICUM maintains low variation error 

across all intervals and sequences, underscoring its robustness. 

This is achieved through precise training of the neural network 

layers, where the second layer particularly focuses on 

minimizing discrepancies in high and low signal variations. 

The second layer's role in correlating high variation ℋ(𝑡) =

𝕀[𝑂2(𝑡) > 𝜃ℎ𝑖𝑔ℎ]  and low variation ℒ(𝑡) = 𝕀[𝑂2(𝑡) ≤ 𝜃𝑙𝑜𝑤] 

signal pulses with normal and abnormal ECG training inputs 

further minimize variation error. Maintains low variation error 

across all intervals and sequences, underscoring its robustness. 

This robustness is achieved through precise training of the 

neural network layers, where the second layer particularly 

focuses on minimizing discrepancies in high and low signal 

variations. The low variation error is essential for reliable heart 

monitoring, as it ensures that the model's predictions are 

consistent and accurate. 

 

4.2.5 Continuity verification 

This measures the effectiveness of the model in verifying 

the continuity of heart signal data across different sensing 

intervals. Continuity verification ensures that the heart signal 

is consistent and free from significant gaps, which is crucial 

for accurate monitoring. These show high continuity 

verification across all intervals and sequences, demonstrating 

the proficiency of the first neural network layer in identifying 

discontinuous sequences. The computation of 𝑂2(𝑡)  further 

enhances the model's ability to maintain continuous and 

consistent heart signal data. By computing 𝔇(𝑡),  high 

continuity verification is essential for reliable heart monitoring, 

as it ensures the data integrity necessary for accurate disease 

detection. This achieves high continuity verification across all 

intervals and sequences, demonstrating the proficiency of the 

first neural network layer in identifying discontinuous 

sequences. High continuity verification is essential for reliable 

heart monitoring, as it ensures the data integrity necessary for 

accurate disease detection (Figure 13). 

 

4.3 Analysis 

 

The comparison results are summarized in Table 3 for the 

sensing interval and Table 4 for sequences (/Hr). 

The CICU improves the sequence classification, detection 

accuracy, and continuity verification by 12.54%, 9.12%, and 

11.38%, respectively. This model reduces classification time 

and variation error by 8.31% and 9.49%, respectively.  

The CICU improves the sequence classification, detection 

accuracy, and continuity verification by 14.71%, 8.91%, and 

11.82%, respectively. This model reduces classification time 

and variation error by 8.12% and 11.53%, respectively. 
 

Table 3. Comparison results for the sensing interval 
 

Metrics 3L-DL+MHA 1D-RDCAE TFM-ResNet CNN-LSTM CB-HDM CICUM 

Sequence Classification (%) 75.08 78.81 84.43 87.13 90.86 95.089 

Detection Accuracy 0.787 0.841 0.873 0.892 0.928 0.9451 

Classification Time (s) 0.907 0.781 0.664 0.571 0.382 0.3076 

Variation Error 0.0654 0.053 0.0426 0.0362 0.0246 0.01314 

Continuity Verification 0.805 0.852 0.881 0.903 0.939 0.9768 

 

Table 4. Comparison results for sequences (/Hr) 
 

Metrics 3L-DL+MHA 1D-RDCAE TFM-ResNet CNN-LSTM CB-HDM CICUM 

Sequence Classification (%) 71.45 77.37 84.57 87.84 90.81 94.432 

Detection Accuracy 0.798 0.823 0.849 0.889 0.918 0.9374 

Classification Time (s) 0.952 0.775 0.559 0.424 0.387 0.3229 

Variation Error 0.0843 0.0733 0.0545 0.0424 0.0321 0.02074 

Continuity Verification 0.824 0.858 0.879 0.918 0.941 0.9822 

 

 

5. CONCLUSION 

 

The CICUM introduced in this article offered a promising 

approach to improving the detection of irregular heart rhythms 

from continuous ECG signals. This model employed a two-

layer neural network and addressed the challenges associated 

with signal discontinuity and correlation of high and low pulse 

variations. The first layer identified discontinuous sequences 

to enhance the model's ability to maintain precise 

differentiations across different intervals. The second layer 

correlated signal pulses to ensure accurate classification of 

normal and abnormal rhythms. This dual-layer approach 

enabled more precise detection of heart-related diseases, 

making CICUM a valuable addition to the current landscape 

of medical signal processing technologies. The CICU 

improves the sequence classification, detection accuracy, and 

continuity verification by 12.54%, 9.12%, and 11.38%, 

respectively for the maximum sensing interval. 

For real-world applications, the prior classification based on 

low/ high variation ensures precise disease detection. In the 

irregular pattern classification process, the classification part 

ensures concise rhythm detection even for small variations. 

Depending on the sophisticated inputs, the modification of 

impact and the layer implication can be followed. Future work 

may explore the integration of additional physiological signals 

and the application of this model to other areas of medical 

1639



diagnosis, further expanding its potential impact on healthcare. 
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