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In this work, we have derived a closed-form expression for the probability of false alarm 

(PFA) of the smallest-of cell-averaging constant false alarm rate (SOCA-CFAR) processor 

which operates in a homogeneous Erlang-distributed clutter environment. This expression 

indicates that the PFA is independent of the rate parameter 𝜆 of the Erlang clutter. Moreover, 

as an intermediate step, we have derived accurate formulations for the probability density 

function (PDF) for the sum and the minimum sum of independent and identically distributed 

(i.i.d) Erlang random variates. The numerical simulations stipulate an enhancement in the 

SOCA-CFAR’s PFA as the shape parameter 𝑘 of the Erlang clutter increases. The accuracy 

of the analytical outcomes presented in this work is corroborated through Monte Carlo 

simulations. 
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1. INTRODUCTION

In radar target detection, undesirable reflections from 

objects are termed clutter. In homogeneous clutter 

backgrounds, constant false alarm rate (CFAR) techniques are 

fundamental for maintaining a predetermined, consistent false 

alarm rate (FAR) [1-5]. 

A CFAR processor determines the optimal detection 

threshold by analyzing the clutter level. This analysis involves 

processing a set of strategically positioned reference cells 

surrounding the cell under investigation (CUI), also known as 

the test cell. By carefully examining these reference cells, the 

CFAR processor generates a robust estimate of the clutter 

magnitude, effectively differentiating between the signal of 

interest and unwanted clutter. This process is crucial for 

mitigating false alarms while preserving the sensitivity needed 

for effective target detection and tracking in radar systems. 

The cell averaging (CA)-CFAR processor is a well-known 

CFAR variant [6, 7]. It methodically estimates the clutter’s 

mean level by averaging the values from all cells surrounding 

the CUI. This comprehensive averaging approach provides a 

robust estimate of the average clutter magnitude, enabling 

effective signal-clutter discrimination. Numerous CFAR 

variants have been developed for specific operational contexts. 

These include the greatest-of (GO) CA-CFAR processor, 

introduced by some researchers [8, 9] to manage false alarm 

rates in clutter transition zones; the smallest-of (SO) CA-

CFAR processor, described by Trunk (1978) and elaborated in 

later studies [10-13]; the ordered statistics OS-CFAR 

processor, proposed by Rohling (1983) and refined in 

subsequent research [14, 15]; and the Variability Index CFAR 

(VI-CFAR) introduced by Guida et al. [16]. Each of these 

variants offers distinct advantages and trade-offs. The OS-

CFAR processor offers robustness against interfering targets 

through rank-based threshold estimation; however, it incurs 

computational overhead due to sorting operations. VI-CFAR 

adapts to clutter heterogeneity by exploiting statistical 

variability measures, achieving superior performance in mixed 

clutter environments at the cost of increased computational 

complexity (~10⁴ operations per decision). Despite these 

advances, systematic comparative analysis of these processors 

under Erlang-distributed clutter—particularly relevant for 

maritime and urban radar scenarios—is lacking in existing 

literature. Most studies focus on Weibull or K-distributed 

clutter models, leaving a gap in understanding optimal CFAR 

selection for Erlang environments. This limitation motivates 
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the need for comprehensive performance evaluation that 

considers both detection capability and computational 

efficiency, enabling informed processor selection for specific 

operational scenarios. These diverse CFAR implementations 

collectively underscore the critical importance of selecting 

appropriate statistical models for optimal radar performance. 

This modeling challenge has become increasingly complex 

with the evolution of contemporary high-resolution radar 

systems. The radar research community has developed several 

compelling non-Gaussian statistical models specifically for 

high-resolution radar clutter, including Positive Alpha-Stable, 

Weibull, Log-Normal, Pareto, and K-distributions [16-22]. 

These models offer more accurate representations of clutter 

behavior. Researchers are actively investigating the most 

appropriate model for capturing the complexities of clutter 

dynamics in high-resolution radar environments. Utilizing 

these sophisticated models can significantly enhance clutter 

mitigation strategies, improving target detection accuracy and 

overall system performance in complex operational scenarios. 

However, incorporating certain non-Gaussian models into 

CFAR frameworks creates difficulties in deriving the clutter 

mean level estimate. This limitation significantly impacts the 

assessment of CFAR detector performance using key metrics 

such as probability of detection and false alarm probability. 

With non-Gaussian clutter models, deriving closed-form 

expressions for these performance metrics is often impossible, 

making numerical evaluation necessary, which may not 

always be feasible. This complexity underscores the inherent 

trade-off between sophisticated clutter modeling and the 

practical challenges of evaluating and deploying CFAR 

schemes in real-world radar systems. Continued research into 

novel methodologies is crucial for improving the performance 

and reliability of CFAR techniques across diverse radar 

applications. 

In some studies [23, 24], a meticulous examination of the 

CA- and GOCA-CFAR processors’ performance was 

conducted, presuming a scenario characterized by 

homogeneous Gamma-distributed clutter. These 

investigations yielded valuable insights, with the authors 

deriving expressions for the probability of false alarm (PFA) in 

the form of definite integrals specific to these CFAR 

processors. Building upon this groundwork, the authors in [25] 

have made a step forward by providing closed-form 

formulations for the integral-form PFA expressions given in 

[23, 24]. 

Inspired by the contributions in the aforementioned papers, 

in this work, we will derive a closed-form expression for the 

𝑃FA  of the SOCA-CFAR processor in the presence of a 

homogeneous Erlang-distributed clutter. 

The rest of this paper is organized as follows: In the next 

section, we will give a brief overview of the SOCA-CFAR 

processor and we recall the Erlang distribution. Some 

important findings and novel statistics for the clutter’s mean 

level will be presented in Section 3. These findings will be 

later utilized in Section 4 to conduct an analytical assessment 

of the SOCA-CFAR processor’s 𝑃FA. Section 5, will provide 

and detailly discuss some important numerical results. At last, 

a conclusion will be presented in Section 4. 

 

 
2. SOCA-CFAR PROCESSING AND THE ERLANG 

DISTRIBUTION 

 
In this section, we give a brief overview of the SOCA-

CFAR processor and we callback the Erlang distribution. 

 

2.1 SOCA-CFAR processor’s description and related 

assumptions 

 

In a SOCA-CFAR processor, the statistic 𝑍 of its output, 

which represents an estimate of the clutter’s level, is given by 

 

𝑍 =
1

𝑁
min(𝑍1, 𝑍2) (1) 

 

where, 𝑍1 = ∑ 𝑋𝑖
𝑁
𝑖=1  and 𝑍2 = ∑ 𝑋𝑖

2𝑁
𝑖=𝑁+1  are the sums of the 

leading and lagging windows, respectively. 𝑋𝑖 ,  𝑖 ∈
{1,2, . . . ,2𝑁}  represent the contents of the reference cells 

surrounding the cell under investigation (CUI) whose content 

is 𝑋0. 𝑁 denotes the size of the reference window. 

A binary test to declare the presence or absence of a target 

can be given by 

 
𝐻1 : 𝑋0 > 𝑇𝑍
𝐻0 : 𝑋0 < 𝑇𝑍

 (2) 

 

where, 𝐻0  and 𝐻1  represent the target-absent and target-

present hypothesis, respectively. 𝑇 is the scaling factor. 

 

2.2 Erlang distribution 

 

Erlang distribution is a two-parameter distribution and is 

used in statistical modeling in many fields of engineering and 

sciences. 

Definition 1 (Erlang RV). A RV 𝑋  that is Erlang-

distributed with a shape 𝑘  and a rate 𝜆  is denoted by 𝑋 ∼
Erlang (𝑘, 𝜆) . Its PDF and CDF using the shape-rate 

parametrization are given, respectively, by 

 

𝑓𝑋(𝑥) =
𝜆𝑘𝑥𝑘−1𝑒−𝜆𝑥

(𝑘 − 1)!
 for 𝑥 ≥ 0 (3) 

 

𝐹𝑋(𝑥) =
𝛾(𝑘, 𝜆𝑥)

(𝑘 − 1)!
 for 𝑥 ≥ 0 (4) 

 

with 𝑘 ∈ {1,2,3, … } and 𝜆 ∈ (0,∞). 
 

 

3. NOVEL IMPORTANT STATISTICS 

 

In this section, we introduce some important statistics, that 

we will be utilized later in the next section, when evaluate the 

SOCA-CFAR processor’s 𝑃FA. 

Lemma 1 (Sum of i.i.d Erlang variates). 

Let {Xi}i=1
2N  be a sequence of i.i.d RVs for which Xi ∼

Erlang(k, λ). The PDF and CDF of the RV 

 

𝑍 =∑𝑋𝑖

2𝑁

𝑖=1

 (5) 

 

are given, respectively, by: 
 

𝑓𝑍(𝑧) =
𝜆2𝑁𝑘

(2𝑁𝑘 − 1)!
 𝑧2𝑁𝑘−1  𝑒−𝜆𝑧,  𝑧 > 0, (6) 

 

𝐹𝑍(𝑧) =
𝛾(2𝑁𝑘, 𝜆𝑥)

(2𝑁𝑘 − 1)!
,  𝑧 > 0. (7) 
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Proof. The characteristic function 𝜑𝑍(𝑤) of 𝑅𝑍 in Eq. (5) 

is given by: 

 

𝜑𝑍(𝑤) = 𝔼[𝑒
𝑗𝑤𝑍] 

= 𝔼 [𝑒𝑗𝑤∑ 𝑋𝑖
2𝑁
𝑖=1 ] = (𝔼[𝑒𝑗𝑤𝑋1])2𝑁 

= (∫ 𝑒𝑗𝑤𝑥1
+∞

0

𝑓𝑋1(𝑥1)𝑑𝑥1)

2𝑁

 

= (
𝜆𝑘

(𝑘 − 1)!
∫ 𝑥1

𝑘−1
+∞

0

𝑒−(𝜆−𝑗𝑤)𝑥1𝑑𝑥1
⏟              

=1

)

2𝑁

 

(8) 

 

Invoking [26] (Eq. (3.381.4)) to evaluating the integral 𝐼 =

∫ 𝑥1
𝑘−1+∞

0
𝑒−(𝜆−𝑗𝑤)𝑥1𝑑𝑥1 in Eq. (8), yields 

 

𝜑𝑍(𝑤) = (1 −
1

𝜆
𝑗𝑤)

−2𝑁𝑘

. (9) 

 

Now, inverting Eq. (9) using the Fourier transform yields 

the result in Eq. (6). The CDF in (7) can be easily derived by 

integrating Eq. (6) over the interval ] − ∞, 𝑧]. 
Lemma 2 (Minimum of two sums of i.i.d Erlang variates). 

Let 𝑋𝑖 ∼ Erlang(𝑘, 𝜆). 
 

Let 𝑍1 = ∑ 𝑋𝑖
𝑁
𝑖=1  and 𝑍2 = ∑ 𝑋𝑖

2𝑁
𝑖=𝑁+1 . The PDF of 

the RV 

𝑍 = min(𝑍1, 𝑍2) 
(10) 

 

is given by: 

 

𝑓𝑍(𝑧) =
2𝜆𝑁𝑘

(𝑁𝑘 − 1)!
𝑧𝑁𝑘−1𝑒−𝜆𝑧 (1 −

𝛾(𝑁𝑘, 𝜆𝑧)

(𝑁𝑘 − 1)!
) ,  𝑧

> 0. 

(11) 

 

Proof. The PDF of 𝑍 in Eq. (10) can be given by: 

 

𝑓𝑍(𝑧) = 𝑓𝑍1(𝑧) (1 − 𝐹𝑍2(𝑧)) + 𝑓𝑍2(𝑧) (1 − 𝐹𝑍1(𝑧)). (12) 

 

Substituting Eqs. (6)-(7) in (12) yields the result in Eq. (11). 

 

 

4. 𝑃FA OF THE SOCA-CFAR PROCESSOR 

 

In this section, we derive a closed-form expression for the 

SOCA-CFAR processor’s 𝑃FA. Given the decision rule in Eq. 

(2) and the clutter level’s estimate defined in Eq. (1), the 𝑃FA 

can be determined as 

 

𝑃FA(𝑇) = 𝔼𝑍[Pr(𝑋0 > 𝑇𝑍 ∣ 𝐻0)]

= ∫ ∫ 𝑓𝑋0

+∞

𝑇𝑧

+∞

0

(𝑥

∣ 𝐻0)𝑑𝑥𝑓𝑍(𝑧)𝑑𝑧 

(13) 

 

Since 𝑋0 ∼ Erlang(𝑘, 𝜆), Substituting its PDF 𝑓𝑋0(𝑥) and 

referring to [26] (Eq. (3.381.3)), gives: 

 
𝑃FA(𝑇) = 

1

(𝑘 − 1)!
∫ 𝛤
+∞

0

(𝑘, 𝜆𝑇𝑧)𝑓𝑍(𝑧)𝑑𝑧. 
(14) 

 

Now, leveraging the crucial findings presented in Section 3, 

we deduce, in the subsequent theorem, a closed-form 

expression for the 𝑃FA of the SOCA-CFAR processor. 

Theorem 1. The 𝑃FA of the SOCA-CFAR processor under 

consideration is given by 15, where (𝑎)𝑛 = Γ(𝑎 + 𝑛)/Γ(𝑎) 

denotes the Pochhammer symbol, and 𝑇N =
𝑇

𝑁
 represents the 

normalized scaling factor of the SOCA-CFAR processor. 

 

𝑃FA(𝑇N) = 2(1 −
𝛤(2𝑁𝑘)

𝛤2(𝑁𝑘)22𝑁𝑘𝑁𝑘
 ∑

(1)𝑝(𝑁𝑘 + 𝑘)𝑝
(𝑁𝑘 + 1)𝑝  𝑝!  2

𝑝

+∞

𝑝=0

−
𝑇N
𝑘𝛤(𝑘(𝑁 + 1))

𝛤(𝑁𝑘)𝛤(𝑘 + 1)(𝑇N + 1)
𝑘(𝑁+1)

∑
(1)𝑞(𝑁𝑘 + 𝑁)𝑞
(𝑘 + 1)𝑞  𝑞!

+∞

𝑞=0

(
𝑇N

𝑇N + 1
)
𝑞

+
𝛤(𝑘(2𝑁 + 1))𝑇N

𝑘

𝛤2(𝑁𝑘)𝛤(𝑘 + 1)𝑁𝑘
∑∑

(𝑘(2𝑁 + 1))
𝑚+𝑛

(𝑁𝑘)𝑚(𝑘)𝑛(−1)
𝑚(𝑇N)

𝑛

(𝑁𝑘 + 1)𝑚(𝑘 + 1)𝑛𝑚! n!
 

+∞

𝑛=0

+∞

𝑚=0

)

 (15) 

 

Proof. The proof is provided in Appendix A. 

 
 

5. RESULTS AND DISCUSSION 
 

This section presents numerical results related to the 𝑃FA of 

the SOCA-CFAR and analyzes its computational properties. 
 

5.1 Performance analysis 
 

Figure 1 and Figure 2 show the 𝑃FA  performance of the 

SOCA-CFAR processor as a function of the normalized 

scaling factor 𝑇𝑁  for different values of 𝑁 . The shape 

parameter 𝑘  is set to 1 and 5, respectively. These figures 

illustrate how the 𝑃FA changes as the normalized scaling factor 

is varied, for different numbers of reference cells (𝑁) in the 

CFAR processing. The choice of 𝑘  implies a specific 

underlying statistical model for the clutter; this parameter 

choice affects the overall performance and could be explored 

further for different clutter characteristics [25-29]. 

The 𝑃FA  performance of the SOCA-CFAR processor as a 

function of the shape parameter 𝑘 for different values of 𝑁 is 

shown in Figures 3 and 4. In these figures, 𝑇 is set to 2 and 4, 

respectively. These figures complement Figures 1 and 2 by 

examining the influence of the shape parameter, k, which 

directly affects the statistical model underlying the clutter. 

Varying 𝑘 allows us to analyze the sensitivity of the SOCA-

CFAR to different clutter’s setups. Furthermore, by 

maintaining 𝑇 at a constant value, we can isolate the individual 

effect of the shape parameter 𝑘  on the 𝑃FA , without 

interference from threshold variations. 

The curves in these figures are generated using the 

analytical expression in Theorem 1 and show perfect 

agreement with the marker symbols, which are the results of 

Monte-Carlo simulation. This strong agreement validates both 

the analytical derivation and the simulation methodology, 

providing high confidence in the presented results. 

From these figures, we can see that an increase in either the 

value of 𝑘 or 𝑁 results in a decrease in the 𝑃FA. This indicates 

that both a less impulsive clutter (higher 𝑘 ) and a larger 

number of reference cells ( 𝑁  for better clutter power 

estimation) improve the performance of the SOCA-CFAR 

processor by reducing the 𝑃FA .Therefore, the strategic 

selection of 𝑇, 𝑘 and 𝑁 parameters is crucial for optimizing 

overall system performance in practical radar applications.
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Figure 1. 𝑃FA  of SOCA-CFAR vs. 𝑇𝑁 : (a) 𝑘 = 1. The curves from 

top to bottom corresponds to N=2, 4, 16, and 64, respectively 

 

 
 

Figure 2. 𝑃FA of SOCA-CFAR vs. 𝑇𝑁: (b) 𝑘 = 5. The curves 

form top to bottom corresponds to 𝑁 = 2, 4, 16, and 64, 

respectively 

 

 
 

Figure 3. 𝑃FA of SOCA-CFAR vs. k: (a) 𝑇N=2. The curves 

from top to bottom corresponds to N=2, 4, 16, and 64, 

respectively 

 
 

Figure 4. 𝑃FA of SOCA-CFAR vs. k: (b) 𝑇N=4. The curves 

from top to bottom corresponds to N=2, 4, 16, and 64, 

respectively 

 

5.2 Computational analysis 

 

For practical implementation, the infinite series can be 

truncated when successive terms fall below a prescribed 

tolerance 𝜖 . Typically, 20-50 terms suffice for engineering 

accuracy (𝜖 = 10−6). 

 

Remark: The expression reduces to known results for 

special cases: 

- 𝑁 = 1 , 𝑘 = 1 : Classical CA-CFAR with 𝑃FA = (1 +
𝑇1)

−1-Large 𝑁 limit: Approaches Gaussian approximation. 

 

Proposition 1 (Convergence Properties) All infinite series 

in Theorem 1 converge absolutely for 𝑇𝑁 > 0, 𝑁 ≥ 1, and 

𝑘 > 0. 

Proof. The convergence follows from: 

1. For the series in 𝑝: |
(1)𝑝(𝑁𝑘+𝑘)𝑝

(𝑁𝑘+1)𝑝𝑝!2
𝑝| ∼ 𝒪(𝑝

−1) as 𝑝 → ∞. 

2. For the series in 𝑞 : geometric convergence with ratio 

|𝑇𝑁/(𝑇𝑁 + 1)| < 1. 

3. For the double series: dominated convergence via 

∑𝑚,𝑛 |𝑎𝑚,𝑛| ≤ ∑𝑚,𝑛
𝐶𝑚+𝑛

𝑚!𝑛!
< ∞ for some constant 𝐶. 

 

 

6. CONCLUSION 

 

In this letter, we have assessed the performance of the SO-

CFAR processor in the context of a clutter environment 

characterized by an Erlang distribution. To do so, we have 

derived the necessary statistics for the clutter’s mean level in 

a form of the sum and the minimum sum of independent and 

identically distributed (i.i.d) Erlang random variates’ PDFs. 

Based on that we have then derived a closed-form expression 

for the SO-CFAR processor’ 𝑃FA. Furthermore, aside from its 

ease of evaluation, this closed-form expression can also be 

instrumental in facilitating a realistic design and analysis of 

the SO-CFAR processor. Additionally, an examination of 

various parameters and their influence on the performance of 

the processor has been conducted. The numerical findings 

indicate that an augmentation in either the clutter’s shape 

parameter 𝜆, or the size of the reference window 𝑁, results in 

an enhancement of the processor’s performance. Future work 
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should investigate SO-CFAR performance in heterogeneous 

environments (clutter edges, multiple targets), conduct 

comparative studies with other CFAR variants, and validate 

results using real radar data. 
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NOMENCLATURE 

 

(𝑎)𝑠 Pochhammer’s symbol [27](Eq. (5.2.4)) 

𝑓𝑋(𝑥) Probability Density Function (PDF) 

𝐹𝑋(𝑥) Cumulative Distribution Function (CDF) 

𝔼[𝑋] Expectation of the random variable X 

𝛤(⋅) Gamma function [26], Eq. (8.310.1) 

𝛤(⋅,⋅) 
Upper incomplete Gamma function [26], 

Eq. (8.350.2) 

𝛾(⋅,⋅) 
Lower incomplete Gamma function [26], 

Eq. (8.350.1) 

 

 

APPENDIX A 

 

Proof of the theorem1 

 

Step I: Integral Decomposition 

According lemma 2, the PDF 𝑓𝑍(𝑧) in the case of SOCA-

CFAR is given by Eq. (11). Now, Substituting Eq. (11) into 

Eq. (14) with 𝑇 = 𝑇𝑁𝑁 yields: 

 

𝑃FA(𝑇𝑁) = 𝐼1 − 𝐼2 (A.1) 

 

where, 

 

𝐼1 =
2𝜆𝑁𝑘

(𝑘 − 1)! (𝑁𝑘 − 1)!
 

∫
∞

0

Γ(𝑘, 𝜆𝑇𝑁𝑁𝑧)𝑧
𝑁𝑘−1𝑒−𝜆𝑧 𝑑𝑧 

(A.2) 

 

𝐼2 =
2𝜆𝑁𝑘

(𝑘 − 1)! [(𝑁𝑘 − 1)!]2
 

∫
∞

0

Γ(𝑘, 𝜆𝑇𝑁𝑁𝑧)𝑧
𝑁𝑘−1𝑒−𝜆𝑧𝛾(𝑁𝑘, 𝜆𝑧) 𝑑𝑧 

(A.3) 

 

Step II: Evaluation of 𝑰𝟏 

For integer 𝑘, the upper incomplete gamma function admits 

the series representation [27] (Eq. (8.352)): 

 

Γ(𝑘, 𝑥) = (𝑘 − 1)! 𝑒−𝑥∑

𝑘−1

𝑗=0

𝑥𝑗

𝑗!
 (A.4) 

 

Substituting Eq. (A.5) into (A.3): 

 

𝐼1 =
2𝜆𝑁𝑘

(𝑁𝑘 − 1)!
∑

𝑘−1

𝑗=0

(𝜆𝑇𝑁𝑁)
𝑗

𝑗!
∫
∞

0

𝑧𝑁𝑘+𝑗−1𝑒−𝜆(1+𝑇𝑁𝑁)𝑧 𝑑𝑧 (A.5) 

 

Applying the standard gamma integral [26] (Eq. 3.381.4):  

 

∫
∞

0

𝑡𝑛−1𝑒−𝑎𝑡𝑑𝑡 =
Γ(𝑛)

𝑎𝑛
,

Re(𝑎) > 0, Re(𝑛) > 0 

(A.6) 

 

yields: 

 

𝐼1 =
2Γ(𝑘)Γ(𝑁𝑘)

𝜆𝑁𝑘(1 + 𝑇𝑁𝑁)
𝑁𝑘
∑

𝑘−1

𝑗=0

(𝑁𝑘)𝑗

𝑗!
(
𝑇𝑁𝑁

1 + 𝑇𝑁𝑁
)
𝑗

 (A.7) 

 

The series in Eq. (A.8) can be expressed using the confluent 

hypergeometric function: 

 

∑

∞

𝑗=0

(𝑎)𝑗

𝑗!
𝑧𝑗 =1 𝐹1(𝑎; 1; 𝑧) (A.8) 

 

Applying Kummer’s transformation [28] (Eq. (1.5.3)):  

 

 1𝐹1(𝑎; 𝑏; 𝑧) = 𝑒
𝑧
1𝐹1(𝑏 − 𝑎; 𝑏; −𝑧) (A.9) 

 

and utilizing connection formulas for hypergeometric 

functions [28], Eq. (1.5.7), we obtain: 

 

𝐼1

= 2(1 −
Γ(2𝑁𝑘)

Γ2(𝑁𝑘)22𝑁𝑘𝑁𝑘
∑

∞

𝑝=0

(1)𝑝(𝑁𝑘 + 𝑘)𝑝

(𝑁𝑘 + 1)𝑝𝑝! 2
𝑝
) 

(A.10) 

 

Step III: Evaluation of 𝑰𝟐 

Using the series representation of the lower incomplete 

gamma function [27] (Eq. (6.5.29)): 

 

𝛾(𝑁𝑘, 𝑥) = 𝑥𝑁𝑘𝑒−𝑥 ∑

∞

𝑚=0

𝑥𝑚

Γ(𝑁𝑘 +𝑚 + 1)
 (A.11) 

 

Substituting Eq. (A.11) into Eq. (A.3): 

 

𝐼2 =
𝜆𝑁𝑘

(𝑁𝑘 − 1)!
∑

∞

𝑚=0

𝜆𝑚

Γ(𝑁𝑘 +𝑚 + 1)
 

∫
∞

0

Γ(𝑘, 𝜆𝑇𝑁𝑧)𝑧
2𝑁𝑘+𝑚−1𝑒−2𝜆𝑧 𝑑𝑧 

(A.12) 

 

Expanding Γ(𝑘, 𝜆𝑇𝑁𝑧) using Eq. (A4) and integrating term-

by-term: 
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𝐼2

=
Γ(𝑘)

22𝑁𝑘(𝑁𝑘 − 1)!
∑

∞

𝑚=0

∑

∞

𝑛=0

𝑇𝑁
𝑛Γ(2𝑁𝑘 + 𝑚 + 𝑛)

𝑛! Γ(𝑁𝑘 + 𝑚 + 1)2𝑚+𝑛
 

(A.13) 

 

The double series in Eq. (A.13) can be decomposed using 

gamma function identities [27] (Eq. 6.1.15) and Pochhammer 

symbol properties [27] (Eq. 6.1.22): 

 

𝐼2 

= 𝐼2𝑎 − 𝐼2𝑏  
(A.14) 

 
where, 

 

𝐼2𝑎 

=
𝑇𝑁
𝑘Γ(𝑘(𝑁 + 1))

Γ(𝑁𝑘)Γ(𝑘 + 1)(𝑇𝑁 + 1)
𝑘(𝑁+1)

 
(A.15) 

∑

∞

𝑞=0

(1)𝑞(𝑁𝑘 + 𝑁)𝑞

(𝑘 + 1)𝑞𝑞!
(
𝑇𝑁

𝑇𝑁 + 1
)
𝑞

 

  

𝐼2𝑏 =
Γ(𝑘(2𝑁 + 1))𝑇𝑁

𝑘

Γ2(𝑁𝑘)Γ(𝑘 + 1)𝑁𝑘
 

∑

∞

𝑚,𝑛=0

(𝑘(2𝑁 + 1))𝑚+𝑛(𝑁𝑘)𝑚(𝑘)𝑛(−1)
𝑚𝑇𝑁

𝑛

(𝑁𝑘 + 1)𝑚(𝑘 + 1)𝑛𝑚! 𝑛!
 

(A.16) 

 

Step IV: Final Assembly 

Combining results from Steps II and III using Eq. (A.1): 
 

𝑃FA(𝑇𝑁) = 𝐼1 − 𝐼2𝑎 + 𝐼2𝑏 (A.17) 
 

Substituting Eq. (A.10), Eq. (A.15), and Eq. (A.16) yields 

the theorem statement. 
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