
Hyperparameter Optimization for CNN, K-NN, and Decision Tree in Handwritten Digit

Classification

Yaqeen Saad Ali1* , Sura Mahroos Searan1 , Rihab Hazim Qasim1 , Salah Awad Aliesawi2

1 Department of Computer Science, College of Computer Science and Information Technology, University of Anbar, Anbar

31001, Iraq
2 Department of Computer Networks Systems, University of Anbar, Anbar 31001, Iraq

Corresponding Author Email: yaqeen.cs91@uoanbar.edu.iq

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.3005208 ABSTRACT

Received: 7 March 2025

Revised: 20 May 2025

Accepted: 27 May 2025

Available online: 31 May 2025

Handwritten recognition of characters appears to be the most fascinating field of image

processing research among the many studies that have been completed. Handwritten

character recognition methods use scanned photos, documents, and real-time devices such

as tablets, tabloids etc. as input, which is converted into digital text. For machine learning

algorithms, hyper-parameters are important since they guide the training process and have

a significant impact on model performance. This study thoroughly examines and

emphasizes how careful parameter adjustment is necessary to optimize model performance

and generalization. Our findings provide valuable insights to obtain high classification

accuracy for handwritten digits using machine-learning techniques which are decision tree

(DT), convolution neural network (CNN), and k-nearest neighbors (KNN) that are

optimized through hyper-parameter tuning techniques: grid search and random search to

modifying a machine learning model's to determine the best values of the parameters to

enhance the model's. The optimization machine learning models were applied and

compared on the MNIST digit database. The suggested techniques were able to identify

optimal hyper-parameters for a variety of ML models. Our major goal is to match the

accuracy of the classifier models along with their implementation time to obtain the best

possible model for digit recognition. the outcome of our work indicate an accuracy rate of

97.3% for k-nearest neighbors tuning by grid search and 97.03% for k-nearest neighbors

tuning by random search while the test accuracy of CNN based on grid search is 99.18%

and for random search test Accuracy is 99.08 %. Finally, the test accuracy for decision trees

based on grid search is 87.94% and for random search is 88.26%.

Keywords:

handwritten recognition, MNIST data set,

machine learning algorithms, hyper-

parameters tuning

1. INTRODUCTION

Handwritten-digit classification is a major subject in

computer-vision. Alot of studies excuted in this domain to beat

some challenges for the reason that handwritten digits are

different in size, thickness and orientation. Typically, a

machine learning algorithm transforms a problem into an

optimization issue and employs various optimization

mechanism to resolve it and sort them into 10 predefined

categories from (zero to nine). currently, a large number of

person employ divers forms of media-daily, not just for

socializing, but also for expressing their thoughts, providing

comments, and sharing their experiences [1]. The issue exists

even when the language variable remains constant and

handwriting is classified according to similar languages. Every

written composition is distinct; however, specific similarities

can be categorized. In this case, the data scientist's objective

was to categorize the image utilized in writing a certain

language into groups that reflect similar numbers or characters

[2]. Handwriting digit recognition turns numbers that are

written by hand into computer data. This method can be used

for many things, like entering data, optical character

recognition, and machine learning. There are a lot of different

ways that people write numbers, which makes HWR hard.

This difference could be because of:

• The writer's individual handwriting style

• The type of writing instrument used

• The quality of the paper

• The lighting conditions

Despite these challenges, HWR is a valuable technique that

can be used to automate a variety of tasks. One of the key areas

of optical character recognition is handwritten digit

recognition, which is a sub-problem of OCR [3, 4]. The

Modified National Institute of Standards and Technology

(MNIST) handwritten digit database is one of the most

important areas of research in pattern recognition, has

excellent research and practical value. Generally speaking,

handwriting classification techniques can be divided into

either statistical feature-related methods or structural feature-

related approaches [5]. The difficulty originates from the

machine's ability to efficiently process written inputs. Hence,

it is imperative to harness the potential of machine learning

through the creation of intelligent algorithms that can

Ingénierie des Systèmes d’Information
Vol. 30, No. 5, May, 2025, pp. 1201-1207

Journal homepage: http://iieta.org/journals/isi

1201

https://orcid.org/0009-0001-9478-4824
https://orcid.org/0009-0004-3060-219X
https://orcid.org/0009-0008-5975-9894
https://orcid.org/0000-0002-3157-781X
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.3005208&domain=pdf

effectively analyze data and make well-informed choices.

Image classification algorithms are utilized to examine an

input image and forecast its content. Machine learning

algorithms have shown remarkable efficacy in accurately

predicting handwritten digits and producing suitable results

[6]. A machine learning algorithm converts an issue that

requires a solution into an optimized problem and employs

various optimization techniques to resolve it. The optimization

function affects how the ML algorithm adapts the model to the

data and is made up of a number of hyper-parameters that are

preset prior to the learning process. Internal model parameters,

like a neural network's weights, which can be learning from

data during the model training phase, are different from

hyperparameters [7]. Handwritten character recognition is a

wide-ranging area of study that includes different clearly

defined methods of application. These approaches include

utilizing prominent learning datasets, popular algorithms, and

methods for feature scaling and feature extraction. One such

widely used dataset is the MNIST dataset, which is a subset of

the NIST (National Institute of Standards and Technology)

database. The MNIST dataset is created by combining two

specific databases from NIST [8, 9]. This paper was arranged

as follows: Section 2 involves some previous work. Section 3

involves a view for techniques of hyper-parameter tuning that

was applied in order to tune the algorithm parameter. Section

4 provides an overview of the algorithm survey, which are

includes the K-Nearest Neighbor Algorithm (KNN),

Convolution Neural Network (CNN), and decision tree.

Section 5 involves the implementation in detail. Section 6

involves the conclusions.

2. RELATED WORK

Neural Network (NN) techniques are the main topic of this

research [10]. The three most often used neural network (NN)

techniques are deep neural networks (DNN), convolutional

neural networks (CNN), and deep belief networks (DBN). The

three NN way are compared and evaluated in terms of many

factors near as treat and performance. Random and standard

dataset of handwritten number have been used for run the test.

The findings indicate that DNN is the most accurate algorithm

among the three NN techniques, with a delicacy rate of 98.08.

Nevertheless, DNN's prosecution time is comparable to that of

the other two algorithms.

The connection between hyperparameters of ML models

and their performance was determined using Gaussian

processes [7]. Bayesian optimization is used for solving the

hyper-parameter tuning problem, which may be represented as

an optimization problem. the Bayesian optimization algorithm

based on Gaussian process can get great accuracy in a few

samples.

A novel multi-objective optimization framework was

proposed to identify the most informative local regions from

character images [11]. The framework was evaluated on

isolated handwritten English numerals (MNIST images). The

attributes take off from a convolutional neural network in their

model and achieved maximum of 98.92% accuracy, 21.99%

attribute lowering and 47.838% reduction/character

recognition time are observed. this task performed on four

datasets: isolated handwritten Bangla Basic characters,

isolated handwritten Bangla numerals, English numerals, and

isolated handwritten Devanagari characters

A neural network-based architecture based on adjusting

hyperparameter values for handwritten digit recognition was

investigated [2]. Numerous models based on neural networks

are used to examine various facets of the same, mainly

accuracy determined by hyperparameter values. The most

precise and effective solution models are offered. The

experimental results of the proposed methodexhibit perfect

classification on three datasets namely 2-classleukemia,

Ovarian, and SRBCT by scoring 100% and 0.97 test accuracy

is achieved on two datasets namely 3-class Leukemia and

MLL.

Offline (HDR) is a famous issue that remains at best partly

resolved. The HDR procedure was implemented using diverse

algorithms to address these issues [12]. These algorithms are:

random forest (RF), multilayer perceptrons, decision tree. The

working logic of the handwriting image classification process

was tested, and the efficiency of different algorithms was

measured on the same database. The top accuracy at 96% with

sensible runtime execution in Random Forest algorithm.

In order to obtain improvement recognition rate of the

MNIST dataset, an enhancement deep CNN model with a fast-

converging rate in training was applied [5]. The designed

model comes with a multi-layer deep arrange structure,

including 3 convolution and activation layers for (feature

extraction) and 2 fully connected layers for recognition. The

hyper-parameters model’s, such as the batch sizes, batch

normalization, kernel sizes, activation function, and learning

rate are optimized to improve the recognition performance.

The average classification accuracy of the suggested

methodology is found to reach 99.82% on the training dataset

and 99.40% on the testing dataset.

Table 1. Comparison of previous strategies

Models Applied Work References

DNNs convolutional neural networks

and deep belief networks
Neural Network (NN) techniques are the main topic of this work [10]

Bayesian optimization
established the connection among the hyperparameters of the ML models and their

performance using Gaussian processes.
[7]

Convolutional neural network
To determine which local areas of a character image are the most informative, a novel

multi-objective optimization method was proposed
[11]

Neural network
In order to test neural network-based architectures for handwritten image

classification, hyperparameter values are altered.
[13]

SVM, RF, DT, KNN, ANN, and K-

Means

The effectiveness of several algorithms on the same database was evaluated and the

working logic of the handwriting digit recognition process was investigated.
[12]

Deep CNN model
a deep CNN model is developed to enhance the recognition rate of MNIST

handwritten digit dataset with a fast-converging rate in training
[5]

1202

Table 1 provides a summary of the literature review on

machine-learning algorithms for handwritten data

classification and testing. To complement our work, this

section provides a brief overview of the field's activities.

3. HYPER-PARAMETER OPTIMIZATION

TECHNIQUES

Hyperparameter tuning can be conceptualized statistically

as an investigation of the hyperparameter space to determine

which values result in the best model performance. The set of

all potential values for the hyperparameters is known as the

hyperparameter space. Hyperparameter tuning aims to identify

the values that optimize the model's performance on a

validation set. The model's performance is assessed using a

validation set of data, which is separate from the training set.

The validation set is used to identify the ideal hyperparameter

values but is not included in the model training procedure.

Cross-validation is a technique used to test a model on a

different validation set in order to determine its efficacy. The

process of cross-validation involves dividing the data into

several folds. The model is then evaluated on the remaining

data segments after being trained on a subset of the data. There

are a number of different hyperparameter tuning techniques

that can be used, some of the most common techniques include

[1, 2]:

Grid-search: This approach explores every conceivable

hyper-parameter value combinations.

The cross validation technique are used on the training set

to quantify performance, which should serve as a guide for

training the machine-learning algorithm for every possible

combination of hyper-parameters. This validation technique

ensures that the trained model obtains most of the patterns

from the dataset. The simplest way to adjust hyper-parameters

is to use Grid Search

Random-search: This approach selects hyperparameter

values from the hyper-parameter space at random.

Random search, further, examine sets from a given

probability division and samples the search space. Briefly, it is

a method that finds the optimal solution for the model in

question by utilizing random combinations of hyper-

parameters.

Bayesian optimization: This approach uses a Bayesian

model to identify the ideal hyper-parameter values. The

amount of hyper-parameters, the computational resources

available, and the required level of accuracy all influence the

choice of hyper-parameter tuning technique. Optimizing the

hyper-parameters of a machine learning model is necessary to

maximize its performance. It is crucial to modify the default

values in order to attain the required degree of accuracy.

Additionally, it is essential to break the data into three sets: the

validation, testing, and training sets.

4. OVERVIEW OF ALGORITHMS SURVEY

4.1 KNN algorithm

KNN algorithm is an effective supervised learning method

for classification and regression applications. It works by first

determining which k data points are most similar to a new data

point, and then using the labels of those data points, it predicts

the new data point's label (Figure 1) [9, 14].

The k parameter in the KNN algorithm indicates how many

neighbors to take into account. When forming a prediction,

more data points will be taken into account the greater the

value of k.

A number of distance metrics, including the Manhattan

distance and the Euclidean distance, can be used to calculate

how similar two data points are to one another.

The labels of the k most similar data points are utilized to

predict the label of the new data point once they have been

located.

KNN algorithm, a non-parametric technique for

classification and regression in pattern recognition, is

employed. The input in both situations is made up of the k

training examples that are closest in the feature space.

Figure 1. The illustration of KNN

4.2 CNNs

Convolutional Neural networks are popular Deep Learning

technique for classifying and recognizing images. (CNNs)

have evolved over time to achieve the level of performance

they are known for today. The most models of significant deep

learning which are: CNNs, which are widely used in face

identification, object detection, and image recognition. CNNs

work by performing multiple convolutions, which is where

their architecture gets its name [15]. CNN extracts features

from images by using a number of different layers which are:

convolutional, pooling, flattening and fully connected layer

(Figure 2).

However, 1 and 2 can be repeated multiple times to help

increase learning from the abstract feature.

The first layer in a convolutional neural network is the

convolutional layer. It receives the input image and extracts its

features. The convolution process is a mathematical procedure

that involves a filter sliding across the input image, calculating

a dot product between the filter and the image at each. This

procedure produces a feature map, which represents the input

image by emphasizing specific features, like edges, lines, and

forms.

The second layer in a convolutional neural network is

pooling layer. It reduces the size of the image while

maintaining the most crucial elements by down sampling the

convolutional layer's output. The three major kinds of pooling

are sum, average, and maximum pooling. Sum pooling takes

the sum of the data, average pooling takes the average value,

and max pooling takes the maximum value from each region

of the convolutional layer's output. The third layer in a

convolutional neural network is the flattening layer. It flattens

the pooling layer's output into a vector with one dimension.

The fully linked layer then receives this vector. The final layer

is the fully connected layer. The flattening layer's output is

1203

fully combined to this conventional neural network layer [13].

Figure 2. Basic CNN architectures

4.3 DT

The decision tree classifier is a common machine learning

technique for addressing classification problems, like

handwritten digit recognition (Figure 3). As the name implies,

the decision tree model analyzes our facts by formulating

conclusions through a sequence of inquiries.

A popular supervised learning technique for classification

problems is the decision tree. Both continuous and categorical

dependent variables can be used with it. This method separates

the population into two or more homogeneous groups. This is

done in order to create as many distinct groupings as possible

[16, 17].

Figure 3. An illustration of DT

5. IMPLEMENTATION

The system was trained and tested using the MNIST dataset.

An international dataset of handwritten numbers that is

frequently utilized is the MNIST database. This work used the

Python package, which provides a wide variety of machine

learning techniques. Scikit-Learn's ease of use and quick

training and testing of machine learning algorithms may be

very helpful to researchers who want to evaluate and assess the

efficacy of different machine learning algorithms. Figure 4

shows how our model is implemented. Loading the MNIST

dataset is necessary. Both the input features (X) and the

corresponding target labels (y) must be present in the dataset.

Depending on the machine learning method used, the order in

which the actions are performed will change. The MNIST

dataset frequently requires pre-processing operations like:

Normalization: The input data (MNIST) contains original

pixel-values ranging from (0 - 255). The process of

normalizing these numbers involves rescaling them to a more

condensed range, usually between 0 and 1. This is done to

make machine learning algorithms more effective.

Image rescaling: The MNIST images have 28×28 pixel

dimensions, however many machine learning methods require

images to have a specific size. The performance of the

algorithms may be improved by resizing the (Images) to

guarantee that they all have consistent dimensions.

The data is grouped into two sets: train and test set. This is

commonly done with the MNIST dataset. The training set is

utilized to instruct the machine learning algorithm, whereas

the test set is employed to assess the system's performance.

The training set should ideally consist of approximately 80%

of the data, whereas the test set should ideally consist of

approximately 20% of the data

Centering and scaling the images: involves subtracting the

mean value from each pixel value in order to achieve proper

alignment. By centering the images around 0, the performance

of machine learning algorithms can be enhanced.

Figure 4. Model implementation overview

In this paper three machine learning algorithm applied to

train (MNIST dataset) which are (CNN, DS and K-NN), and

perform hyperparameter tuning to optimize the model's

performance. This involves searching through different

1204

hyperparameter values to find the best combination.

Techniques like Grid Search and Random Search are

commonly used for this purpose. The Scikit-Learn's Metrics

module provides a report that includes the following metrics

[18-20]:

1. Precision is the rate at which positive estimates are

accurate. It is computed by dividing the total number of false

positives (TP + FP) by the number of true positives (TP).

2. Recall: This is the sensitivity or true positive rate (TPR).

It is calculated as the number of true positives (TP) divided by

the sum of the true positives and false negatives (TP + FN)

3. F1 Score: This is a measure of the harmonic mean of

(precision and recall). It is calculated as 2 * (precision * recall)

/ (precision + recall).

5.1 Input dataset (MNIST)

The input data (MNIST dataset) is a standardized data that

is widely used in the pattern recognition community. The

MNIST dataset, which consists of 70,000 handwritten digit

images, is 28 by 28 (784 pixels) in size. There are 60,000

training images and 10,000 test images. Numerous machine

learning models have been trained and tested on this fiercely

competitive dataset. Each image is divided by 255 steps to

normalize it. Eight bits make up each channel, and when we

split them, the result falls between 0 and 1 [21, 22].

Figure 5. Sample random MNIST handwritten digits

Figure 5 shows an example of how to plot some random

MNIST handwritten digits using the Python programming

language.

5.2 Results

This experiment aimed to compare classifier methods,

namely decision tree (DS), k-nearest neighbors (KNN), and

convolutional neural networks (CNN). The experiment was

conducted in two stages:

Stage 1: The three classifier techniques were trained and

evaluated using grid search. Grid search is a method for

finding the best hyperparameter values for a machine learning

model by searching a grid of possible values.

Stage 2: The three classifier techniques were trained and

evaluated using random search. Random search is a method

for finding the best hyperparameter values for a machine

learning model by randomly sampling hyperparameter values

from a range of possible values.

5.2.1 Hyper parameter tuning for K-nearest neighbors

For grid search best parameters: {gride search:

'n_neighbors': 7, 'p': 2)}, Test Accuracy is: 97.343%,

Execution Time: 170 s. Random search best parameters:

{Random search: 'n_neighbors': 5, 'p': 2}, Test Accuracy is:

97.031%, Execution Time: 115 s (Table 2).

5.2.2 Hyperparameter tuning for CNN

Based on grid search: Best Parameters: {'dropout_rate':

0.25, 'epochs': 10, 'filters': 64, 'kernel_size': (5, 5)}, Test

Accuracy: 99.18%. The best parameters for the model were

dropout_rate=0.25, epochs=10, filters=64, and

kernel_size=(5, 5) .

Based on random search: Best Parameters:{ conv1_filters:

32, conv2_filters: 32, dense_units: 64, learning_rate: 0.001.

Trial 1 Complete [00h 03m]: validation accuracy: 99.19%,

Test Accuracy: 99.08% (Table 3).

5.2.3 Hyperparameter tuning for DT

For grid search test: Accuracy is 87.94%, Execution Time:

280 seconds. Random search test: Accuracy is: 88.26%,

Execution Time: 265 seconds (Table 4).

Table 2. Validation set's categorization report for K-nearest neighbors

Gride Search Random Search

Class Precision Recall F1-Score Precision Recall F1-Score

0 98.68% 99.26% 98.97% 98.84% 99.41% 99.13%

1 98.43% 96.87% 97.65% 97.75% 96.35% 97.05%

2 98.14% 97.65% 97.90% 98.26% 98.33% 98.29%

3 97.91% 97.50% 97.70% 97.92% 97.81% 97.86%

4 99.21% 98.12% 98.66% 98.81% 97.92% 98.36%

5 98.43% 97.81% 98.12% 98.63% 97.50% 98.06%

6 98.95% 98.95% 98.95% 98.92% 98.75% 98.84%

7 98.82% 98.59% 98.71% 99.12% 98.33% 98.73%

8 98.75% 98.43% 98.59% 98.21% 98.44% 98.33%

9 98.68% 98.82% 98.755% 98.82% 98.75% 98.79%

Total 98.29 97.34 97.82 98.29% 97.03% 97.65%

Table 3. Model accuracy and loss evolution across epochs

Epoch Loss Accuracy Val Accuracy

1/5 0.1740 0.9478 0.9835

2/5 0.0567 0.9831 0.9858

3/5 0.0401 0.9876 0.9898

4/5 0.0304 0.9904 0.9905

5/5 0.0227 0.9926 0.9920

1205

Table 4. Validation set's categorization report for DT

Gride Search RANDOM SEARCH

Class Precision Recall F1-Score Precision Recall F1-Score

0 93.0% 92.0% 93.0% 95.0% 93.0% 94.0%

1 95.0% 97.0% 96.0% 95.0% 97.0% 96.0%

2 86.0% 87.0% 86.0% 84.0% 87.0% 85.0%

3 84.0% 85.0% 84.0% 85.0% 84.0% 85.0%

4 85.0% 87.0% 86.0% 87.0% 88.0% 88.0%

5 84.0% 83.0% 83.0% 84.0% 83.0% 84.0%

6 91.0% 90.0% 91.0% 91.0% 91.0% 91.0%

7 91.0% 90.0% 91.0% 91.0% 91.0% 91.0%

8 84.0% 82.0% 83.0 % 84.0% 82.0% 83.0 %

9 85.0% 85.0% 85.0% 85.0% 84.0% 85.0%

Total 87.8% 87.8% 87.8% 88.1% 88.1% 88.2%

Table 5. Overall comparison between machine learning models

Model Classifier
Test Accuracy

(Gride Search)

Test Accuracy

(Random Search)
Excution Time for Grid Search Excution Time for Random Search

CNN 99.18% 99.08% 300 s 180 s

K-NN 97.34% 97.03% 170 s 115 s

decision tree 87.94% 88.26% 280 s 265 s

5.3 Comparison of results and discussion

5.3.1 Accuracy

The comparison between machine learning models is as

shown in Table 5, Figures 6 and 7.

Figure 6. Bar graph depicting accuracy for ML model on

both grid and random search

Figure 7. Calibration evaluation of machine learning

classifiers

Highest: CNN models achieved the highest test accuracy,

with Grid Search reaching 99.18% and Random Search

reaching 99.08%.

Moderate: K-NN models performed well, with Grid Search

scoring 97.34% and Random Search at 97.03%

Lowest: decision tree models had the lowest accuracy, with

Grid Search at 87.94% and Random Search at 88.26%.

5.3.2 Execution time

Fastest: K-NN models were the fastest to train, with

Random Search taking only 115 seconds and Grid Search

requiring 170 seconds.

5.3.3 Discussion

CNNs may automatically extract low-level characteristics

like edges and corners in initial levels, gradually integrating

them into more abstract and high-level features in subsequent

layers. CNNs are specifically made with numerous layers that

allow them to learn complex information.

CNNs extract features automatically and locally. Because

of this, manual feature engineering is no longer necessary.

Lastly, a crucial consideration is whether the CNN design is

appropriate for picture datasets such as MNIST.

6. CONCLUSION

In this study, we evaluate and compare three optimizing

classifiers (CNN, K-NN, and decision tree) that have been

done for the classification of the MNIST handwritten digits. In

order to improve accuracy and obtain highest recognition rate,

two techniques in this work were employed for tuning the

parameters of applied classifiers which are: grid and random

search. This could result in better classification outcomes by

improving the selection of hyperparameter values. The

introduced results display that the best classifier to recognize

handwritten-digits is CNN. The highest recognition rates

(99.18%) are obtained for grid search while (99.08%)

recognition rates are obtained for random search. Another

mode like decision tree gives worse results, but their training

is quicker. For this specific job, CNN models fared better in

terms of accuracy than K-NN and decision tree models.

1206

REFERENCE

[1] Elgeldawi, E., Sayed, A., Galal, A.R., Zaki, A.M. (2021).

Hyperparameter tuning for machine learning algorithms

used for arabic sentiment analysis. Informatics, 8(4): 79.

https://doi.org/10.3390/informatics8040079

[2] Shekar, B.H., Dagnew, G. (2019). Grid search-based

hyperparameter tuning and classification of microarray

cancer data. In 2019 Second International Conference on

Advanced Computational and Communication

Paradigms (ICACCP), Gangtok, India, pp. 1-8.

https://doi.org/10.1109/ICACCP.2019.8882943

[3] Rahman, A.A., Hasan, M.B., Ahmed, S., Ahmed, T.,

Ashmafee, M.H., Kabir, M.R., Kabir, M.H. (2022). Two

decades of bengali handwritten digit recognition: A

survey. IEEE Access, 10: 92597-92632.

https://doi.org/10.1109/ACCESS.2022.3202893

[4] Kaensar, C. (2013). A comparative study on handwriting

digit recognition classifier using neural network, support

vector machine and k-nearest neighbor. In the 9th

International Conference on Computing and Information

Technology (IC2IT2013) 9th-10th May 2013 King

Mongkut's University of Technology North Bangkok,

pp. 155-163. https://doi.org/10.1007/978-3-642-37371-

8_19

[5] Shao, H., Ma, E., Zhu, M., Deng, X., Zhai, S. (2023).

MNIST handwritten digit classification based on

convolutional neural network with hyperparameter

optimization. Intelligent Automation & Soft Computing,

36(3): 3595-3606.

https://doi.org/10.32604/iasc.2023.036323

[6] Hamida, S., Cherradi, B., Raihani, A., Ouajji, H. (2019).

Performance evaluation of machine learning algorithms

in handwritten digits recognition. In 2019 1st

International Conference on Smart Systems and Data

Science (ICSSD), Rabat, Morocco, pp. 1-6.

https://doi.org/10.1109/ICSSD47982.2019.9003052

[7] Wu, J., Chen, X.Y., Zhang, H., Xiong, L.D., Lei, H.,

Deng, S.H. (2019). Hyperparameter optimization for

machine learning models based on Bayesian

optimization. Journal of Electronic Science and

Technology, 17(1): 26-40.

https://doi.org/10.11989/JEST.1674-862X.80904120

[8] Pashine, S., Dixit, R., Kushwah, R. (2021). Handwritten

digit recognition using machine and deep learning

algorithms. arXiv preprint arXiv:2106.12614.

https://doi.org/10.48550/arXiv.2106.12614

[9] Shamim, S.M., Miah, M.B.A., Sarker, A., Rana, M., Al

Jobair, A. (2018). Handwritten digit recognition using

machine learning algorithms. Indonesian Journal of

Science and Technology, 3(1): 29-39.

[10] Firdous, S. (2022). Handwritten character recognition.

International Journal for Research in Applied Science &

Engineering Technology, 10(5): 1409-1428.

[11] Gupta, A., Sarkhel, R., Das, N., Kundu, M. (2019).

Multiobjective optimization for recognition of isolated

handwritten Indic scripts. Pattern Recognition Letters,

128: 318-325.

https://doi.org/10.1016/j.patrec.2019.09.019

[12] Karakaya, R., Kazan, S. (2021). Handwritten digit

recognition using machine learning. Sakarya University

Journal of Science, 25(1): 65-71.

https://doi.org/10.16984/saufenbilder.801684

[13] Albahli, S., Alhassan, F., Albattah, W., Khan, R.U.

(2020). Handwritten digit recognition: Hyperparameters-

based analysis. Applied Sciences, 10(17): 5988.

https://doi.org/10.3390/app10175988

[14] Géron, A. (2022). Hands-on Machine Learning with

Scikit-Learn, Keras, and TensorFlow: Concepts, tools,

and techniques to build intelligent systems. O'Reilly

Media, Inc.

[15] Bakhshi, A., Chalup, S., Noman, N. (2020). Fast

evolution of CNN architecture for image classification.

Deep Neural Evolution: Deep Learning with

Evolutionary Computation, pp. 209-229.

https://doi.org/10.1007/978-981-15-3685-4_8

[16] Assegie, T.A., Nair, P.S. (2019). Handwritten digits

recognition with decision tree classification: A machine

learning approach. International Journal of Electrical and

Computer Engineering, 9(5): 4446-4451.

https://doi.org/10.11591/ijece.v9i5.pp4446-4451

[17] Nasteski, V. (2017). An overview of the supervised

machine learning methods. Horizons Series B, 4: 51.

https://doi.org/10.20544/HORIZONS.B.04.1.17.P05

[18] Géron, A. (2017). Hands-on Machine Learning with

Scikit-Learn and TensorFlow: Concepts, Tools, and

Techniques to Build Intelligent Systems. O’Reilly

Publishing.

[19] Saad, Y., Hazim, R., Mahroos, S., Mohammed, O.,

Sadoon, I. (2025). Optimizing random forest for

handwritten digit recognition through hyper-parameter

tuning. Fusion: Practice and Applications, 155-165.

https://doi.org/10.54216/FPA.200112

[20] Saad, Y., Ali, N.A.M., Ali, F.A.M., Abdulbaqi, A.S.

(2024). A deep learning-based cervical tumor

classification system for telehealthcare monitoring. In

International Conference on Innovative Computing and

Communication, New Delhi, India, pp. 65-77.

https://doi.org/10.1007/978-981-97-3591-4_6

[21] LeCun, Y., Cortes, C. and Burges, C.J.C. (1998). The

MNIST database of handwritten digits. New York, USA.

https://www.lri.fr/~marc/Master2/MNIST_doc.pdf.

[22] Nguyen, V. (2019). Bayesian optimization for

accelerating hyper-parameter tuning. In 2019 IEEE

Second International Conference on Artificial

Intelligence and Knowledge Engineering (AIKE),

Sardinia, Italy, pp. 302-305.

https://doi.org/10.1109/AIKE.2019.00060

1207

https://doi.org/10.54216/FPA.200112

