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Handwritten recognition of characters appears to be the most fascinating field of image 

processing research among the many studies that have been completed. Handwritten 

character recognition methods use scanned photos, documents, and real-time devices such 

as tablets, tabloids etc. as input, which is converted into digital text. For machine learning 

algorithms, hyper-parameters are important since they guide the training process and have 

a significant impact on model performance. This study thoroughly examines and 

emphasizes how careful parameter adjustment is necessary to optimize model performance 

and generalization. Our findings provide valuable insights to obtain high classification 

accuracy for handwritten digits using machine-learning techniques which are decision tree 

(DT), convolution neural network (CNN), and k-nearest neighbors (KNN) that are 

optimized through hyper-parameter tuning techniques: grid search and random search to 

modifying a machine learning model's to determine the best values of the parameters to 

enhance the model's. The optimization machine learning models were applied and 

compared on the MNIST digit database. The suggested techniques were able to identify 

optimal hyper-parameters for a variety of ML models. Our major goal is to match the 

accuracy of the classifier models along with their implementation time to obtain the best 

possible model for digit recognition. the outcome of our work indicate an accuracy rate of 

97.3% for k-nearest neighbors tuning by grid search and 97.03% for k-nearest neighbors 

tuning by random search while the test accuracy of CNN based on grid search is 99.18% 

and for random search test Accuracy is 99.08 %. Finally, the test accuracy for decision trees 

based on grid search is 87.94% and for random search is 88.26%. 

Keywords: 

handwritten recognition, MNIST data set, 

machine learning algorithms, hyper-

parameters tuning 

1. INTRODUCTION

Handwritten-digit classification is a major subject in 

computer-vision. Alot of studies excuted in this domain to beat 

some challenges for the reason that handwritten digits are 

different in size, thickness and orientation. Typically, a 

machine learning algorithm transforms a problem into an 

optimization issue and employs various optimization 

mechanism to resolve it and sort them into 10 predefined 

categories from (zero to nine). currently, a large number of 

person employ divers forms of media-daily, not just for 

socializing, but also for expressing their thoughts, providing 

comments, and sharing their experiences [1]. The issue exists 

even when the language variable remains constant and 

handwriting is classified according to similar languages. Every 

written composition is distinct; however, specific similarities 

can be categorized. In this case, the data scientist's objective 

was to categorize the image utilized in writing a certain 

language into groups that reflect similar numbers or characters 

[2]. Handwriting digit recognition turns numbers that are 

written by hand into computer data. This method can be used 

for many things, like entering data, optical character 

recognition, and machine learning. There are a lot of different 

ways that people write numbers, which makes HWR hard. 

This difference could be because of: 

• The writer's individual handwriting style

• The type of writing instrument used

• The quality of the paper

• The lighting conditions

Despite these challenges, HWR is a valuable technique that 

can be used to automate a variety of tasks. One of the key areas 

of optical character recognition is handwritten digit 

recognition, which is a sub-problem of OCR [3, 4]. The 

Modified National Institute of Standards and Technology 

(MNIST) handwritten digit database is one of the most 

important areas of research in pattern recognition, has 

excellent research and practical value. Generally speaking, 

handwriting classification techniques can be divided into 

either statistical feature-related methods or structural feature-

related approaches [5]. The difficulty originates from the 

machine's ability to efficiently process written inputs. Hence, 

it is imperative to harness the potential of machine learning 

through the creation of intelligent algorithms that can 
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effectively analyze data and make well-informed choices. 

Image classification algorithms are utilized to examine an 

input image and forecast its content. Machine learning 

algorithms have shown remarkable efficacy in accurately 

predicting handwritten digits and producing suitable results 

[6]. A machine learning algorithm converts an issue that 

requires a solution into an optimized problem and employs 

various optimization techniques to resolve it. The optimization 

function affects how the ML algorithm adapts the model to the 

data and is made up of a number of hyper-parameters that are 

preset prior to the learning process. Internal model parameters, 

like a neural network's weights, which can be learning from 

data during the model training phase, are different from 

hyperparameters [7]. Handwritten character recognition is a 

wide-ranging area of study that includes different clearly 

defined methods of application. These approaches include 

utilizing prominent learning datasets, popular algorithms, and 

methods for feature scaling and feature extraction. One such 

widely used dataset is the MNIST dataset, which is a subset of 

the NIST (National Institute of Standards and Technology) 

database. The MNIST dataset is created by combining two 

specific databases from NIST [8, 9]. This paper was arranged 

as follows: Section 2 involves  some previous work. Section 3 

involves a view for techniques of hyper-parameter tuning that 

was applied in order to tune the algorithm parameter. Section 

4 provides an overview of the algorithm survey, which are 

includes the K-Nearest Neighbor Algorithm (KNN), 

Convolution Neural Network (CNN), and decision tree. 

Section 5 involves the implementation in detail. Section 6 

involves the conclusions. 

 

 

2. RELATED WORK 

 

Neural Network (NN) techniques are the main topic of this 

research [10]. The three most often used neural network (NN) 

techniques are deep neural networks (DNN), convolutional 

neural networks (CNN), and deep belief networks (DBN). The 

three NN way are compared and evaluated in terms of many 

factors near as treat and performance. Random and standard 

dataset of handwritten number have been used for run the test. 

The findings indicate that DNN is the most accurate algorithm 

among the three NN techniques, with a delicacy rate of 98.08. 

Nevertheless, DNN's prosecution time is comparable to that of 

the other two algorithms. 

The connection between hyperparameters of ML models 

and their performance was determined using Gaussian 

processes [7]. Bayesian optimization is used for solving the 

hyper-parameter tuning problem, which may be represented as 

an optimization problem. the Bayesian optimization algorithm 

based on Gaussian process can get great accuracy in a few 

samples.  

A novel multi-objective optimization framework was 

proposed to identify the most informative local regions from 

character images [11]. The framework was evaluated on 

isolated handwritten English numerals (MNIST images). The 

attributes take off from a convolutional neural network in their 

model and achieved maximum of 98.92% accuracy, 21.99% 

attribute lowering and 47.838% reduction/character 

recognition time are observed. this task performed on four 

datasets: isolated handwritten Bangla Basic characters, 

isolated handwritten Bangla numerals, English numerals, and 

isolated handwritten Devanagari characters 

A neural network-based architecture based on adjusting 

hyperparameter values for handwritten digit recognition was 

investigated [2]. Numerous models based on neural networks 

are used to examine various facets of the same, mainly 

accuracy determined by hyperparameter values. The most 

precise and effective solution models are offered. The 

experimental results of the proposed methodexhibit perfect 

classification on three datasets namely 2-classleukemia, 

Ovarian, and SRBCT by scoring 100% and 0.97 test accuracy 

is achieved on two datasets namely 3-class Leukemia and 

MLL. 

Offline (HDR) is a famous issue that remains at best partly 

resolved. The HDR procedure was implemented using diverse 

algorithms to address these issues [12]. These algorithms are: 

random forest (RF), multilayer perceptrons, decision tree. The 

working logic of the handwriting image classification process 

was tested, and the efficiency of different algorithms was 

measured on the same database. The top accuracy at 96% with 

sensible runtime execution in Random Forest algorithm. 

In order to obtain improvement recognition rate of the 

MNIST dataset, an enhancement deep CNN model with a fast-

converging rate in training was applied [5]. The designed 

model  comes with a multi-layer deep arrange structure, 

including 3 convolution and activation layers for (feature 

extraction) and 2 fully connected layers for recognition. The 

hyper-parameters model’s, such as the batch sizes, batch 

normalization, kernel sizes, activation function, and learning 

rate are optimized to improve the recognition performance. 

The average classification accuracy of the suggested 

methodology is found to reach 99.82% on the training dataset 

and 99.40% on the testing dataset.  

 

Table 1. Comparison of previous strategies 

 
Models Applied Work References 

DNNs convolutional neural networks 

and deep belief networks 
Neural Network (NN) techniques are the main topic of this work [10] 

Bayesian optimization 
established the connection among the hyperparameters of the ML models and their 

performance using Gaussian processes. 
[7] 

Convolutional neural network 
To determine which local areas of a character image are the most informative, a novel 

multi-objective optimization method was proposed 
[11] 

Neural network 
In order to test neural network-based architectures for handwritten image 

classification, hyperparameter values are altered. 
[13] 

SVM, RF, DT, KNN, ANN, and K- 

Means 

The effectiveness of several algorithms on the same database was evaluated and the 

working logic of the handwriting digit recognition process was investigated. 
[12] 

Deep CNN model 
a deep CNN model is developed to enhance the recognition rate of MNIST 

handwritten digit dataset with a fast-converging rate in training 
[5] 
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Table 1 provides a summary of the literature review on 

machine-learning algorithms for handwritten data 

classification and testing. To complement our work, this 

section provides a brief overview of the field's activities. 

 

 

3. HYPER-PARAMETER OPTIMIZATION 

TECHNIQUES  

  

Hyperparameter tuning can be conceptualized statistically 

as an investigation of the hyperparameter space to determine 

which values result in the best model performance. The set of 

all potential values for the hyperparameters is known as the 

hyperparameter space. Hyperparameter tuning aims to identify 

the values that optimize the model's performance on a 

validation set. The model's performance is assessed using a 

validation set of data, which is separate from the training set. 

The validation set is used to identify the ideal hyperparameter 

values but is not included in the model training procedure. 

Cross-validation is a technique used to test a model on a 

different validation set in order to determine its efficacy. The 

process of cross-validation involves dividing the data into 

several folds. The model is then evaluated on the remaining 

data segments after being trained on a subset of the data. There 

are a number of different hyperparameter tuning techniques 

that can be used, some of the most common techniques include 

[1, 2]: 

Grid-search: This approach explores every conceivable 

hyper-parameter value combinations.  

The cross validation technique are used on the training set 

to quantify performance, which should serve as a guide for 

training the machine-learning algorithm for every possible 

combination of hyper-parameters. This validation technique 

ensures that the trained model obtains most of the patterns 

from the dataset. The simplest way to adjust hyper-parameters 

is to use Grid Search 

Random-search: This approach selects hyperparameter 

values from the hyper-parameter space at random. 

Random search, further, examine sets from a given 

probability division and samples the search space. Briefly, it is 

a method that finds the optimal solution for the model in 

question by utilizing random combinations of hyper-

parameters. 

Bayesian optimization: This approach uses a Bayesian 

model to identify the ideal hyper-parameter values. The 

amount of hyper-parameters, the computational resources 

available, and the required level of accuracy all influence the 

choice of hyper-parameter tuning technique. Optimizing the 

hyper-parameters of a machine learning model is necessary to 

maximize its performance. It is crucial to modify the default 

values in order to attain the required degree of accuracy. 

Additionally, it is essential to break the data into three sets: the 

validation, testing, and training sets.  

 

 

4. OVERVIEW OF ALGORITHMS SURVEY 

 

4.1 KNN algorithm  

 

KNN algorithm is an effective supervised learning method 

for classification and regression applications. It works by first 

determining which k data points are most similar to a new data 

point, and then using the labels of those data points, it predicts 

the new data point's label (Figure 1) [9, 14]. 

The k parameter in the KNN algorithm indicates how many 

neighbors to take into account. When forming a prediction, 

more data points will be taken into account the greater the 

value of k. 

A number of distance metrics, including the Manhattan 

distance and the Euclidean distance, can be used to calculate 

how similar two data points are to one another. 

The labels of the k most similar data points are utilized to 

predict the label of the new data point once they have been 

located. 

KNN algorithm, a non-parametric technique for 

classification and regression in pattern recognition, is 

employed. The input in both situations is made up of the k 

training examples that are closest in the feature space.  

 

 

 

Figure 1. The illustration of KNN 

 

4.2 CNNs 

 

Convolutional Neural networks are popular Deep Learning 

technique for classifying and recognizing images. (CNNs) 

have evolved over time to achieve the level of performance 

they are known for today. The most models of significant deep 

learning which are: CNNs, which are widely used in face 

identification, object detection, and image recognition. CNNs 

work by performing multiple convolutions, which is where 

their architecture gets its name [15]. CNN extracts features 

from images by using a number of different layers which are: 

convolutional, pooling, flattening and fully connected layer 

(Figure 2). 

However, 1 and 2 can be repeated multiple times to help 

increase learning from the abstract feature. 

The first layer in a convolutional neural network is the 

convolutional layer. It receives the input image and extracts its 

features. The convolution process is a mathematical procedure 

that involves a filter sliding across the input image, calculating 

a dot product between the filter and the image at each. This 

procedure produces a feature map, which represents the input 

image by emphasizing specific features, like edges, lines, and 

forms. 

The second layer in a convolutional neural network is 

pooling layer. It reduces the size of the image while 

maintaining the most crucial elements by down sampling the 

convolutional layer's output. The three major kinds of pooling 

are sum, average, and maximum pooling. Sum pooling takes 

the sum of the data, average pooling takes the average value, 

and max pooling takes the maximum value from each region 

of the convolutional layer's output. The third layer in a 

convolutional neural network is the flattening layer. It flattens 

the pooling layer's output into a vector with one dimension. 

The fully linked layer then receives this vector. The final layer 

is the fully connected layer. The flattening layer's output is 
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fully combined to this conventional neural network layer [13]. 

 

 

 

Figure 2. Basic CNN architectures 

 

4.3 DT 

 

The decision tree classifier is a common machine learning 

technique for addressing classification problems, like 

handwritten digit recognition (Figure 3). As the name implies, 

the decision tree model analyzes our facts by formulating 

conclusions through a sequence of inquiries.  

A popular supervised learning technique for classification 

problems is the decision tree. Both continuous and categorical 

dependent variables can be used with it. This method separates 

the population into two or more homogeneous groups. This is 

done in order to create as many distinct groupings as possible 

[16, 17].  

 

 
 

Figure 3. An illustration of DT 

5. IMPLEMENTATION 

 

The system was trained and tested using the MNIST dataset. 

An international dataset of handwritten numbers that is 

frequently utilized is the MNIST database. This work used the 

Python package, which provides a wide variety of machine 

learning techniques. Scikit-Learn's ease of use and quick 

training and testing of machine learning algorithms may be 

very helpful to researchers who want to evaluate and assess the 

efficacy of different machine learning algorithms. Figure 4 

shows how our model is implemented. Loading the MNIST 

dataset is necessary. Both the input features (X) and the 

corresponding target labels (y) must be present in the dataset. 

Depending on the machine learning method used, the order in 

which the actions are performed will change. The MNIST 

dataset frequently requires pre-processing operations like:  

Normalization: The input data (MNIST) contains original 

pixel-values ranging from (0 - 255). The process of 

normalizing these numbers involves rescaling them to a more 

condensed range, usually between 0 and 1. This is done to 

make machine learning algorithms more effective.  

Image rescaling: The MNIST images have 28×28 pixel 

dimensions, however many machine learning methods require 

images to have a specific size. The performance of the 

algorithms may be improved by resizing the (Images) to 

guarantee that they all have consistent dimensions.  

The data is grouped into two sets: train and test set. This is 

commonly done with the MNIST dataset. The training set is 

utilized to instruct the machine learning algorithm, whereas 

the test set is employed to assess the system's performance. 

The training set should ideally consist of approximately 80% 

of the data, whereas the test set should ideally consist of 

approximately 20% of the data 

Centering and scaling the images: involves subtracting the 

mean value from each pixel value in order to achieve proper 

alignment. By centering the images around 0, the performance 

of machine learning algorithms can be enhanced. 

 

 
 

Figure 4. Model implementation overview 

 

In this paper three machine learning algorithm applied to 

train (MNIST dataset) which are (CNN, DS and K-NN), and 

perform hyperparameter tuning to optimize the model's 

performance. This involves searching through different 
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hyperparameter values to find the best combination. 

Techniques like Grid Search and Random Search are 

commonly used for this purpose. The Scikit-Learn's Metrics 

module provides a report that includes the following metrics 

[18-20]:  

1. Precision is the rate at which positive estimates are 

accurate. It is computed by dividing the total number of false 

positives (TP + FP) by the number of true positives (TP). 

2. Recall: This is the sensitivity or true positive rate (TPR). 

It is calculated as the number of true positives (TP) divided by 

the sum of the true positives and false negatives (TP + FN)  

3. F1 Score: This is a measure of the harmonic mean of 

(precision and recall). It is calculated as 2 * (precision * recall) 

/ (precision + recall). 

 

5.1 Input dataset (MNIST) 

 

The input data (MNIST dataset) is a standardized data that 

is widely used in the pattern recognition community. The 

MNIST dataset, which consists of 70,000 handwritten digit 

images, is 28 by 28 (784 pixels) in size. There are 60,000 

training images and 10,000 test images. Numerous machine 

learning models have been trained and tested on this fiercely 

competitive dataset. Each image is divided by 255 steps to 

normalize it. Eight bits make up each channel, and when we 

split them, the result falls between 0 and 1 [21, 22]. 

 

 

 
Figure 5. Sample random MNIST handwritten digits 

 

Figure 5 shows an example of how to plot some random 

MNIST handwritten digits using the Python programming 

language. 

 

5.2 Results  

 

This experiment aimed to compare classifier methods, 

namely decision tree (DS), k-nearest neighbors (KNN), and 

convolutional neural networks (CNN). The experiment was 

conducted in two stages: 

Stage 1: The three classifier techniques were trained and 

evaluated using grid search. Grid search is a method for 

finding the best hyperparameter values for a machine learning 

model by searching a grid of possible values. 

Stage 2: The three classifier techniques were trained and 

evaluated using random search. Random search is a method 

for finding the best hyperparameter values for a machine 

learning model by randomly sampling hyperparameter values 

from a range of possible values.  

 

5.2.1 Hyper parameter tuning for K-nearest neighbors 

For grid search best parameters: {gride search: 

'n_neighbors': 7, 'p': 2)}, Test Accuracy is: 97.343%, 

Execution Time: 170 s. Random search best parameters: 

{Random search: 'n_neighbors': 5, 'p': 2}, Test Accuracy is: 

97.031%, Execution Time: 115 s (Table 2). 

 

5.2.2 Hyperparameter tuning for CNN 

Based on grid search: Best Parameters: {'dropout_rate': 

0.25, 'epochs': 10, 'filters': 64, 'kernel_size': (5, 5)}, Test 

Accuracy: 99.18%. The best parameters for the model were 

dropout_rate=0.25, epochs=10, filters=64, and 

kernel_size=(5, 5) . 

Based on random search: Best Parameters:{ conv1_filters: 

32, conv2_filters: 32, dense_units: 64, learning_rate: 0.001. 

Trial 1 Complete [00h 03m]: validation accuracy: 99.19%, 

Test Accuracy: 99.08% (Table 3). 

 

5.2.3 Hyperparameter tuning for DT 

For grid search test: Accuracy is 87.94%, Execution Time: 

280 seconds. Random search test: Accuracy is: 88.26%, 

Execution Time: 265 seconds (Table 4).

 

Table 2. Validation set's categorization report for K-nearest neighbors 
 

Gride Search Random Search 

Class Precision Recall F1-Score Precision Recall F1-Score 

0 98.68% 99.26% 98.97% 98.84% 99.41% 99.13% 

1 98.43% 96.87% 97.65% 97.75% 96.35% 97.05% 

2 98.14% 97.65% 97.90% 98.26% 98.33% 98.29% 

3 97.91% 97.50% 97.70% 97.92% 97.81% 97.86% 

4 99.21% 98.12% 98.66% 98.81% 97.92% 98.36% 

5 98.43% 97.81% 98.12% 98.63% 97.50% 98.06% 

6 98.95% 98.95% 98.95% 98.92% 98.75% 98.84% 

7 98.82% 98.59% 98.71% 99.12% 98.33% 98.73% 

8 98.75% 98.43% 98.59% 98.21% 98.44% 98.33% 

9 98.68% 98.82% 98.755% 98.82% 98.75% 98.79% 

Total 98.29 97.34 97.82 98.29% 97.03% 97.65% 

 

Table 3. Model accuracy and loss evolution across epochs 
 

Epoch Loss Accuracy Val Accuracy 

1/5 0.1740 0.9478 0.9835 

2/5 0.0567 0.9831 0.9858 

3/5 0.0401 0.9876 0.9898 

4/5 0.0304 0.9904 0.9905 

5/5 0.0227 0.9926 0.9920 
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Table 4. Validation set's categorization report for DT 

 
Gride Search RANDOM SEARCH 

Class Precision Recall F1-Score Precision Recall F1-Score 

0 93.0% 92.0% 93.0% 95.0% 93.0% 94.0% 

1 95.0% 97.0% 96.0% 95.0% 97.0% 96.0% 

2 86.0% 87.0% 86.0% 84.0% 87.0% 85.0% 

3 84.0% 85.0% 84.0% 85.0% 84.0% 85.0% 

4 85.0% 87.0% 86.0% 87.0% 88.0% 88.0% 

5 84.0% 83.0% 83.0% 84.0% 83.0% 84.0% 

6 91.0% 90.0% 91.0% 91.0% 91.0% 91.0% 

7 91.0% 90.0% 91.0% 91.0% 91.0% 91.0% 

8 84.0% 82.0% 83.0 % 84.0% 82.0% 83.0 % 

9 85.0% 85.0% 85.0% 85.0% 84.0% 85.0% 

Total 87.8% 87.8% 87.8% 88.1% 88.1% 88.2% 

 

Table 5. Overall comparison between machine learning models 

 

Model Classifier  
Test Accuracy  

(Gride Search) 

Test Accuracy  

(Random Search) 
Excution Time for Grid Search Excution Time for Random Search 

CNN 99.18% 99.08% 300 s 180 s 

K-NN 97.34% 97.03% 170 s 115 s 

decision tree 87.94% 88.26% 280 s  265 s 

 

5.3 Comparison of results and discussion 

 

5.3.1 Accuracy 

The comparison between machine learning models is as 

shown in Table 5, Figures 6 and 7. 

 

 
 

Figure 6. Bar graph depicting accuracy for ML model on 

both grid and random search 

 

 
 

Figure 7. Calibration evaluation of machine learning 

classifiers 

 

Highest: CNN models achieved the highest test accuracy, 

with Grid Search reaching 99.18% and Random Search 

reaching 99.08%. 

Moderate: K-NN models performed well, with Grid Search 

scoring 97.34% and Random Search at 97.03% 

Lowest: decision tree models had the lowest accuracy, with 

Grid Search at 87.94% and Random Search at 88.26%. 

 

5.3.2 Execution time 

Fastest: K-NN models were the fastest to train, with 

Random Search taking only 115 seconds and Grid Search 

requiring 170 seconds. 

 

5.3.3 Discussion 

CNNs may automatically extract low-level characteristics 

like edges and corners in initial levels, gradually integrating 

them into more abstract and high-level features in subsequent 

layers. CNNs are specifically made with numerous layers that 

allow them to learn complex information. 

CNNs extract features automatically and locally. Because 

of this, manual feature engineering is no longer necessary. 

Lastly, a crucial consideration is whether the CNN design is 

appropriate for picture datasets such as MNIST.  

 

 

6. CONCLUSION  

 

In this study, we evaluate and compare three optimizing 

classifiers (CNN, K-NN, and decision tree) that have been 

done for the classification of the MNIST handwritten digits. In 

order to improve accuracy and obtain highest recognition rate, 

two techniques in this work were employed for tuning the 

parameters of applied classifiers which are: grid and random 

search. This could result in better classification outcomes by 

improving the selection of hyperparameter values. The 

introduced results display that the best classifier to recognize 

handwritten-digits is CNN. The highest recognition rates 

(99.18%) are obtained for grid search while (99.08%) 

recognition rates are obtained for random search. Another 

mode like decision tree gives worse results, but their training 

is quicker. For this specific job, CNN models fared better in 

terms of accuracy than K-NN and decision tree models.  
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