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This study reveals the role of resampling techniques in enhancing the performance of 

various ML models to detect Diabetes Mellitus (DM) in imbalanced datasets, namely 

BRFSS 2015 and PIMA Indian. For this purpose, five ML algorithms, KNN, RF, SVM, 

GB, and XGB, were implemented on both datasets before and after resampling using 

SMOTE, SMOTE-TOMEK, and SMOTE-ENN. The results uncovered that all resampling 

techniques improve the performance of all ML models. The best improvement was achieved 

by combining the KNN model and SMOTE-ENN technique, with an accuracy of 0.97 and 

other evaluation metrics of 0.96-0.99 for the BRFSS 2015. For the PIMA Indian, the 

combination performs perfectly with all evaluation metrics, with a value of 1.0. This study 

observed that resampling improves the correlation between each feature and the target, 

making it easier for the model to recognize data patterns. It was also found that in 

unbalanced datasets, the role of resampling is more worthy of attention than the choice of 

the algorithm. With the proper technique, namely SMOTE-ENN, the difference in 

performance between ML models was only a maximum of 2 to 4%. It makes the ML DM 

prediction more flexible when applied to the health sector. 
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1. INTRODUCTION

The increasing prevalence of chronic diseases poses a 

significant threat to global public health, primarily driven by 

rapid urbanization and lifestyle changes. Among these, 

Diabetes Mellitus (DM) has become one of the most 

widespread and challenging conditions affecting individuals 

across all age groups and socioeconomic backgrounds [1]. DM 

is generally classified into four main types: type 1 diabetes 

(T1D), also known as insulin-dependent or juvenile diabetes; 

type 2 diabetes (T2D), which is the most common form; 

gestational diabetes; and diabetes caused by specific medical 

conditions or genetic factors [2]. Both T1D and T2D can lead 

to serious and life-threatening complications if not 

appropriately managed, including diabetic foot syndrome, 

stroke, heart attack, liver cirrhosis, and chronic kidney failure 

[3]. Early and accurate detection of diabetes is therefore 

critical to prevent these complications and to reduce the 

burden on healthcare systems worldwide. 

DM is a metabolic disorder that causes increased blood 

sugar levels [4]. The increased blood sugar levels can damage 

nerves, eyes, blood vessels, and other organs [5]. High blood 

sugar levels cause metabolic disorders in the body since it does 

not produce enough insulin, or the ineffective use of insulin 

that occurs in the body [6]. DM disease can be considered one 

of the main challenges in the world health community because 

this disease is growing very rapidly [7]. According to 

statistical research, an estimated 463 million individuals 

globally had diabetes in 2019, and that number is expected to 

rise to 578 million in 2030 and 700 million in 2045. The 

number of diabetes patients is expected to increase by 25% in 

2030 and by 51% in 2045 [8]. 

DM has been regarded as the seventh leading cause of 

premature death, and as such, about 1.6 million people die 

each year [9]. DM is dangerous for pregnant women and 

babies in the womb because there is a high potential for the 

mother to pass the disease on to her baby [6]. Given the ever-

increasing risks associated with DM disease, early detection is 

a crucial issue, so accurate DM calcification and prediction are 

urgently needed for treatment and prevention efforts [10]. In 

computer science, diabetes classification and prediction are 

challenging tasks because the class distribution for all 

attributes is not linearly separable [11]. ML techniques are 

widely used in disease classification and prediction due to 

continuous technological advancements [12, 13]. With 

accurate ML algorithms for diabetes classification and 

prediction, individuals at risk and implementing early 

preventive interventions can be identified [14]. Some ML 

algorithms that have been widely employed for DM 

classification and prediction are KNN [15], RF [16], SVM 
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[17], and GB [18]. 

A common problem faced by ML in classification tasks is 

class imbalance [19]. This is known as imbalanced data when 

the number of samples in one class is much higher or lower 

than in other classes [20]. This can cause the ML model to be 

too biased towards the majority class, thus performing poorly 

in predicting the minority class [21]. Several resampling 

techniques have been developed to address the problem of 

class imbalance, including oversampling, undersampling, or a 

combination of both. Oversampling may result in overfitting 

of the model [22], while undersampling can eliminate essential 

parts of the majority class so that the decision boundary 

between classes is more challenging to learn, and it affects 

classification accuracy [23, 24]. By combining the advantages 

of oversampling and undersampling, hybrid sampling 

approaches enable researchers to concurrently decrease the 

number of majority classes and raise the number of minority 

classes [25]. 

Previous research [26] applied the SMOTE-ENN technique 

to overcome the class imbalance problem in the BRFSS 

Diabetes 2015 dataset in predicting DM. The SMOTE-ENN 

method combines SMOTE oversampling and ENN 

undersampling to reduce the number of samples in the 

majority class as a hybrid technique to achieve a balanced 

dataset [27]. SMOTE-ENN has proven more effective than the 

individual SMOTE method in building an accurate prediction 

model. The study employed several ML algorithms, namely 

KNN, RF, XG Boost, Bagging, and AdaBoost, and found that 

KNN was the best model with an accuracy of 0.98. The study 

produces a reliable prediction model for diagnosing diabetes 

mellitus based on accuracy, precision, recall, F1-score, and 

ROC/AUC values. Although the KNN model has the best 

accuracy, other models, RF, XGB, Bagging, and AdaBoost, 

have good performance, with accuracies of 0.96, 0.95, 0.93, 

and 0.94, respectively. Unfortunately, there is no explanation 

of the performance of the ML models on the dataset before 

resampling. 

The study begins by revealing the difference in ML model 

performance on the BRFSS dataset before and after 

resampling using three techniques, namely SMOTE, SMOTE-

TOMEK, and SMOTE-ENN, for various algorithms, namely 

KNN, RF, SVM, GB, and XGB [26]. The aim is to find out 

whether the resampling technique improves the performance 

of each algorithm and explain the cause of the increase in 

model performance due to resampling. The study is then 

applied to another imbalance PIMA Indian dataset from the 

National Institute of Diabetes and Digestive and Kidney 

Diseases (NIDDK) in the United States, and available at the 

UCI Respiratory ML [28]. In this dataset, 35% of patients are 

positive for diabetes, while 65% of patients are negative [29] 

The study aimed to find the best resampling technique and ML 

model for the imbalanced PIMA Indian dataset. Following this 

introduction, section 2 discusses related previous research, 

section 3 presents details of the research methodology and 

dataset, and section 4 discusses the research results before 

being closed by the conclusion in section 5. 

 

 

2. LITERATURE REVIEW 

 

This section discusses previous studies relevant to using ML 

methods to predict DM. The application of ML methods for 

DM prediction has received increasing attention in recent 

years. Various studies have explored artificial intelligence 

approaches to enhance early detection of DM by leveraging 

different datasets and model architectures [9, 30]. A key 

challenge frequently addressed is class imbalance in medical 

datasets, often mitigated through techniques such as SMOTE 

and its variants. For example, one study applied SMOTE to the 

BRFSS diabetes dataset to improve classification performance 

and compared several ML models, including Decision Tree 

(DT), LR, RF, KNN, and Gaussian Naive Bayes (GNB) [31]. 

Among these, the RF model achieved the highest accuracy 

(0.82%), closely followed by KNN (0.80%). 

The effectiveness of enhanced resampling strategies was 

further demonstrated in another study, which utilized the 

SMOTE-ENN technique with the BRFSS diabetes dataset. 

This method provided better performance than SMOTE alone 

in developing an accurate prediction model. The study tested 

multiple algorithms KNN, RF, XGB, Bagging, and AdaBoost 

with KNN producing the highest accuracy at 0.98% and RF at 

0.95% [26]. These results emphasize the potential of 

combining resampling and ensemble methods to build reliable 

tools for identifying risk factors and supporting early medical 

diagnosis. 

Other research has focused on evaluating specific algorithm 

pairs. For instance, a comparative analysis between KNN and 

Naive Bayes (NB) revealed that NB outperformed KNN with 

average accuracies of 76.07% and 73.33%, respectively [15]. 

In another study, the performance of multiple ML algorithms 

was examined using the PIMA Indian Diabetes (PID) and 

German diabetes datasets. Algorithms such as NB, KNN, 

SVM, DT, RF, and LR were assessed using the WEKA 3.8.6 

tool. On the PID dataset, LR recorded the highest accuracy at 

74.0%, while KNN had the lowest at 66.1% [32]. Further 

findings from studies utilizing the SVM and GB algorithms 

reported accuracies of 84% and 76%, respectively [17, 18], 

reinforcing the role of model selection and dataset suitability 

in influencing predictive outcomes. 

More comprehensive approaches have combined multiple 

datasets and advanced architectures. For example, one study 

constructed ML models using both the PIMA Indian and Iraqi 

LMCH diabetes datasets. It employed RF, SVM, and a two-

growth deep neural network (2GDNN), achieving high 

performance metrics with precision, sensitivity, and F1-scores 

around 97%. On the PIMA dataset, accuracy reached 97.25% 

in testing and 99.01% in training, while the LMCH dataset 

yielded a comparable 97.33% accuracy [33]. 

Finally, the integration of both supervised and unsupervised 

learning algorithms has also been explored. In one study, 

classification models RF, SVM, NB, DT, and the k-means 

clustering method were applied to data from Frankfurt 

Hospital and the UCI PIMA Indian Diabetes Database. The RF 

algorithm delivered the highest accuracy 97.6% on the 

Frankfurt dataset, whereas SVM performed best on the PIDD 

dataset with an accuracy of 83.1% [34]. Validation was 

performed using training and testing splits, confirming the 

models' generalization performance. 

Based on the literature review presented above, this study 

developed a reliable DM prediction model by utilizing 

multiple datasets and overcoming the class imbalance problem 

in the dataset. The problem of data imbalance can interfere 

with the learning process and reduce prediction accuracy, so it 

needs to be overcome through special techniques [35]. In 

addition, DM is a chronic disease that can cause various 

serious complications if not detected and treated early [36]. 

Therefore, an accurate prediction model is required to help 

diagnose diabetes more effectively. This study uses multiple 
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datasets to evaluate the accuracy of ML algorithms in 

predicting DM in various data conditions. This is crucial to test 

the robustness of the model [37] so that it can be appropriately 

implemented in various clinical contexts. The results of this 

study are also expected to provide valuable insights for the 

development of DM diagnosis and treatment applications in 

the future.  

Adjusting the hyperparameter tuning on each algorithm, 

which can control the training process, can improve the 

accuracy of results [38, 39]. Aside from the use of 

hyperparameter tuning, the cross-validation method using K-

Fold was utilized to obtain an optimal ML model [40]. 

 

 

3. METHODOLOGY 

 

This study employed two diabetes datasets, the BRFSS and 

PIMA Diabetes datasets, with the research flow presented in 

Figure 1. Data preprocessing was carried out for both datasets, 

including data cleaning and imputation, outlier handling using 

the Interquartile Range (IQR) method, and data normalization 

to ensure all features were in the same range. Furthermore, 

class balancing was conducted using SMOTE, SMOTE-

TOMEK, and SMOTE-ENN. The data was divided into 

training data (80%) and testing data (20%) for modeling 

purposes. The training was performed with internal validation 

using K-Fold cross-validation with 10 folds to ensure the 

resulting model was not overfitting. Several ML models were 

trained using this data: K-NN, RF, SVM, GB, and XGB. Grid 

Search Cross-Validation (Grid CV) was used for 

hyperparameter tweaking to determine the best parameters for 

every model. Using test data, the models were assessed in the 

last step, and the best model was applied to forecast the 

consequences of diabetes. 

 

3.1 Dataset descriptions 

 

The first dataset used in this analysis is a subset of the 

14.268 samples from the BRFSS Diabetes behavioural risk 

factor data, each including one output attribute and 20 input 

attributes. Blood pressure, cholesterol, smoking, diabetes, 

obesity, age, sex, race, food, exercise, alcohol usage, BMI, 

household income, marital status, sleep, time since last 

checkup, education, health insurance, and mental health were 

among these characteristics [41]. The detailed attribute 

information and descriptions are presented in Table 1. 

The second dataset is PIMA Indian, containing 768 

samples; each sample had 8 input attributes and 1 output 

attribute. These attributes encompassed the number of 

Pregnancies, plasma glucose levels, blood pressure, skin 

thickness, insulin levels, body mass index, the ability to 

analyze diabetes risk, age, and the classification results of 

whether someone is a diabetic. 

Each attribute had a different range of values, such as the 

number of pregnancies, 0-17 times, glucose levels, 0-199 

mg/dl, and blood pressure, 0-122 mm/Hg. These attributes 

provide a comprehensive understanding of the data used for 

diabetes prediction research so that they can help identify 

important factors that influence the diagnosis and prevention 

of diabetes. Specifically, all patients here were women aged at 

least 21 years with PIMA Indian heritage [42]. A detailed 

attribute information table for the PIMA Indian dataset is 

presented in https://github.com/agustinus58/Diabetes-

Mellitus-Prediction-on-Imbalance-Datasets. 

 

 
 

Figure 1. Proposed methodology for DM prediction assessment 

 

Table 1. Attribute information of BRFSS diabetes 

 
No Variable Name Description 

0 Diabetes binary 0 = no diabetes 1 = prediabetes or diabetes 

1 High BP 0 = no high BP 1 = high BP 

2 High Chol 0 = no high cholesterol 1 = high cholesterol 

3 Chol Check 0 = no cholesterol check in 5 years 1 = yes cholesterol check in 5 years 

4 BMI Body Mass Index 

5 Smoker In your lifetime, have you smoked at least 100 cigarettes? [Note: 100 smokes are in 5 packs.] 1 = yes, 0 = no 

6 Stroke You had a stroke, did you know that? 1 = yes, 0 = no 

7 
Heart Disease or 

Attack 
Myocardial infarction (MI) or coronary heart disease (CHD) 1 = yes, 0 = no 

8 Phys Activity 30 days' worth of physical exercise, excluding work 1 = yes, 0 = no 
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9 Fruits Eat fruit at least once a day. 1 = yes, 0 = no 

10 Veggies Eat Vegetables at least once a day 1 = yes, 0 = no 

11 
Hvy Alcohol 

Consump 

Heavy drinkers (adult women who consume more than seven drinks per week, and adult men who consume 

more than fourteen drinks per week) 1 = yes; 0 = no 

12 Any Healthcare possess health care coverage, such as health insurance, prepaid plans like HMOs, etc. 1 = yes; 0 = no. 

13 No Docbc Cost 
Have you ever needed to see a doctor in the last 12 months but been unable to do so due to financial 

constraints? 1 = yes, 0 = no 

14 Gen Hlth 
If you had to rate your overall health on a scale of 1 to 5, where 1 represents excellent, 2 very good, 3 good, 4 

fair, and 5 poor, how would you rank it? 

15 Ment Hlth 
In light of your mental health, which includes emotional problems, stress, and depression, how many days 

throughout the past 30 days did you have poor mental health? Range from 1 to 30 days 

16 Phys Hlth 
Considering any illnesses or injuries, how many days during the past 30 days did you experience poor physical 

health? Please answer with a number between 1 and 30 days. 

17 Diff Walk Do you find it difficult to climb stairs or walk? 1 = yes, 0 = no 

18 Sex 0 = female 1 = male 

19 Age 13-level age group (codebook: _AGEG5YR) 1 = 18–24 9 is 60-64. 13 = 80 years of age or older 

20 Education 

The scale of education level (EDUCA see codebook) 1–6 1 = Only completed kindergarten or never went to 

school 2 = Elementary Grades 1 through 8 Grades 9–11 (some high school) = 3. 4 = GED (high school 

graduation) or Grade 12 5 = One to three years of college (technical school or college) 6 = 4 years or more of 

college (college graduate) 

21 Income 
Income scale (refer to the codebook for INVOE2): On a scale of 1–8, 1 is less than $10,000, 5 is less than 

$35,000, and 8 is at least $75,000. 

 

3.2 Data preprocessing  

 

Data preprocessing involves various steps, such as handling 

missing values, removing duplicates, and managing outliers 

[43]. In data cleaning, imputation was performed to fill in 

missing data using the mean, median, or other appropriate 

approaches so that the dataset remains intact [44]. At the same 

time, outlier handling was carried out to reduce the impact of 

extreme values that can interfere with the analysis results, such 

as by using IQR (Interquartile Range) to remove inappropriate 

outliers [45]. Data normalization is the next step, converting 

data values to a uniform scale so that differences in scale 

between variables do not affect the results of the ML model. 

Finally, class balancing is a technique for balancing the 

distribution of classes in an unbalanced dataset, such as by 

oversampling or undersampling methods, so that the model is 

not biased towards the majority class and can more accurately 

predict the minority class. These three steps are handy for 

ensuring the quality of the data to build effective and reliable 

models.  

After data cleaning and IQR application, the next step was 

data normalization using min-max scaling with the aim of 

standardizing the scale of features in the datasets [46]. This 

was done by calculating each feature's minimum and 

maximum values and then applying a linear transformation to 

map the original values into the new range [0, 1]. Eq. (1) 

governs the min-max scaling, where 𝑥𝑖
′  is the result of 

normalizing data 𝑥𝑖, and 𝑥𝑖 is the i-th data to be normalized, 

while 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥  are the maximum and minimum values 

of the dataset features. 

 

𝑥𝑖
′ =

𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 (1) 

 

Data resampling was done using SMOTE oversampling and 

its combination with Tomek Links (SMOTE-TOMEK) and 

ENN undersampling (SMOTE-ENN) methods to balance 

datasets. The goal was to increase the predictive power of the 

model by balancing the classes before the machine-learning 

model was built [47]. Following class balancing with SMOTE, 

SMOTE-TOMEK, and SMOTE-ENN, Table 2 shows the 

percentage of samples between the regular and diabetes 

classes. 

Table 2. Number of samples after class balancing 

 

Dataset 
Imbalance 

Class 
SMOTE 

SMOTE-

TOMEK 

SMOTE-

ENN 

Brfss 

Diabetes 
11788:2321 

11788: 

11788 

11764: 

11764 

11257: 

6347 

Pima 

Indian 
398:192 398:398 393:393 339:307 

 

3.3 Modelling 

 

As depicted in Figure 1, ML modeling starts with splitting 

the dataset into training and test sets in a ratio of 80:20. The 

popular Pareto principle is the basis for the 80:20 split's 

rationale [48]. However, that is simply the thumb rule that 

practitioners employ. There don't appear to be any explicit 

guidelines on the ideal ratio for the supplied dataset [49]. 

While 20% of the data is used to test the model, the remaining 

80% is used to train five ML models: KNN, RF, SVM, GB, 

and XGB.  

 

 
 

Figure 2. Illustration of K-fold cross-validation 

 

The training was conducted by applying K-fold cross-

validation with a value of K = 10, randomly dividing the 

training data into 10 folds, where nine folds were used to train 

the model. At the same time, the remaining 1-fold was 

employed to validate internally. The model was trained using 

the remaining folds in the first iteration, while the initial fold 

served as validation. The model was trained using the 

remaining folds in the second iteration, whereas the second 

fold was used for testing. As shown in Figure 2, this procedure 

was repeated until all 10 folds had been employed to validate 

the model. 

The performance of a classifier algorithm is highly 
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dependent on the parameter values that define its model 

architecture, known as hyperparameters. To obtain the best 

results from a classifier algorithm on a dataset, hyperparameter 

tuning needs to be done by trying various values until the 

optimal value is found that produces the best performance 

[50]. This study performed the hyperparameter tuning process 

using the Grid search CV algorithm using 10-fold cross-

validation by testing various ranges of hyperparameter values 

shown in Table 3 using nested loops while building the 

classifier model. Table 4 presents the details of the 

hyperparameters with the best values on the PIMA Indian 

dataset, and other BRFSS Diabetes 2015 datasets can be found 

in https://github.com/agustinus58/Diabetes-Mellitus-

Prediction-on-Imbalance-Datasets. 

 

Table 3. Classifiers and their hyperparameters of the prediction model 

 
Algorithm Parameter Name Value 

KNN 

N neighbors 3,5,7,9 

weight Uniform, distance 

Algorithm Auto, ball tree, kd tree, brute 

Leaf size 10, 20, 30 

p 1,2 

SVM 

C 0.01, 0.1, 1, 10, 100 

Kernel Linear, rbf 

Gamma Scale, auto 

Class weight None, balanced 

Random Forest 

N estimators 50, 100, 200 

Max depth None, 10, 20, 30 

Min samples split 2, 5, 10 

Min samples leaf 1, 2, 4 

Max features Sqrt, log2, None 

bootstrap True, False 

Gradient Boosting 

N estimators 50, 100, 200 

Learning rate 0.01, 0.1, 0.2 

Max depth 3, 4, 5, 6 

Min samples split 2, 5, 10 

Min samples leaf 1, 2, 4 

subsample 0.6, 0.8, 1.0 

Max features Auto, sqrt, log2 

XG Boost 

N estimators 100, 200, 300 

Learning rate 0.01, 0.05, 0.1 

Max depth 3, 4, 5 

subsample 0.8, 0.9, 1.0 

Colsample bytree 0.8, 0.9, 1.0 

 

Table 4. Hyperparameter tuning training parameter 

 

Dataset Model Parameter Name 
Best Value 

Imbalance Data SMOTE SMOTE-TOMEK SMOTE-ENN 

Pima Indian 

KNN 

N neighbors 3 7 3 3 

Weights Distance Distance Distance Distance 

Algorithm Auto Auto Auto Auto 

Leaf size 10 10 10 10 

p 2 2 1 1 

Random Forest 

N estimators 100 100 20 50 

Max depth None None None None 

Min samples split 5 2 2 5 

Min samples leaf 2 1 1 1 

Max features sqrt Log2 Log2 Sqrt 

Bootstrap False False False True 

SVM 

C 0.01 100 100 10 

Kernel Linear rbf Rbf Linear 

Gamma Scale Scale Scale Scale 

Class weight Balanced None None None 

Gradient Boosting 

N estimators 50 100 50 50 

Learning rate 0.2 0.2 0.2 0.2 

Max depth 6 6 5 5 

Min samples split 5 10 2 2 

Min samples leaf 1 1 1 2 

Subsample 0.8 1 1 0.6 

Max features Log2 Sqrt Log2 Sqrt 

XG Boosting 

N estimators 100 200 300 200 

Learning rate 0.1 0.1 0.05 0.05 

Max depth 3 5 3 4 

Subsample 0.8 1 1 1 

Colsample bytree 0.8 1 1 0.8 
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3.4 Evaluation metrics 

 

In this study, five evaluation metrics were employed to 

assess the performance of the classification model [51]: 

accuracy, precision, recall, F1-score, and AUC. The selection 

of the most appropriate evaluation metric for a classification 

task depends on the specific objectives and context of the 

problem. Utilizing multiple metrics can provide a more 

comprehensive understanding of the model’s performance. 

The formulas for these evaluation metrics are presented in Eqs. 

(2)–(6). In these equations: TP (True Positive) denotes the 

number of correctly identified positive instances; TN (True 

Negative) represents the number of correctly identified 

negative instances; FN (False Negative) indicates the number 

of positive instances incorrectly classified as negative; and FP 

(False Positive) refers to negative instances incorrectly 

classified as positive. Additionally, TPR and FPR correspond 

to the true positive rate and false positive rate, respectively. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

 

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (5) 

 

AUC = ∫ TPR(FPR)
1

0

 𝑑(FPR) (6) 

 

 

4. RESULTS AND DISCUSSION  

 

This section discusses the implementation results of various 

ML algorithms, such as KNN, RF, SVM, GB, and XGB, to 

predict DM using two datasets: BRFSS and PIMA. Each 

algorithm underwent a hyperparameter tuning process with 

Grid CV to obtain the best performance. Performance 

evaluation was performed using five metrics: accuracy, 

precision, recall, F1-score, and ROC/AUC. The performance 

results of each model were then compared to determine the 

most appropriate algorithm for each dataset and the most 

consistent algorithm between metrics in both datasets. In 

addition, the effect of resampling methods such as SMOTE, 

SMOTE-TOMEK, and SMOTE-ENN on the model 

performance was also analyzed. 

 

4.1 Before resampling 

 

As an initial step, five ML learning algorithms were applied 

to both datasets without any resampling to evaluate their 

performance on the original data. Table 5 displays the 

evaluation metrics—accuracy, precision, recall, F1-score, and 

ROC/AUC—for each algorithm on each dataset. For the 

BRFSS dataset, the performance metrics ranged as follows: 

accuracy (82–83%), precision (51–75%), recall (7–16%), F1-

score (13–26%), and ROC/AUC (73–82%). For the PIMA 

Indian dataset, the ranges were: accuracy (81–87%), precision 

(74–89%), recall (76–82%), F1-score (77–82%), and 

ROC/AUC (85–92%). These results suggest that the accuracy 

values achieved by the five algorithms on both datasets are 

relatively modest and not particularly impressive. In addition 

to the accuracy value, what is more important to notice is its 

consistency with the values of other metrics, such as precision, 

recall, F1-score, and ROC/AUC, which also need to be 

considered to see the quality of the model.  

Before resampling, the consistency of values between 

metrics for both datasets could be low. The most severe 

inconsistency occurred with the KNN model on the BRFSS 

Diabetes 2015 dataset, where it has an accuracy of 0.82, while 

the precision, recall, F1-score, and ROC/AUC show lower 

values, namely 0.51, 0.15, 0.23, and 0.74, respectively. Such 

inconsistencies are also observed in the Pima Indian dataset, 

although they are not as severe. Inconsistent metrics can 

provide a misleading picture of model performance; for 

example, high accuracy may be due to the dominance of the 

majority class, while the performance of the minority class can 

be abysmal [52].  

Table 5 displays the initial analysis results on the BRFSS 

Diabetes 2015 and PIMA Indian datasets, which show that 

specific models, such as KNN, produced inconsistent metric 

performance. This finding suggests that dataset characteristics 

have a significant influence on algorithm performance [53]. 

Balancing plays a vital role in improving the consistency of 

performance metrics [54]. This technique improves the 

representation of minority classes in the dataset, supporting the 

algorithm to produce more accurate results [55, 56]. 

Table 5 shows the values of evaluation metrics provided by 

different ML models before resampling for the two datasets. It 

was observed that the evaluation metrics values were 

inconsistent, where other metrics do not always follow higher 

accuracy values. The most striking difference is between the 

accuracy and recall values. As previously reported, 

imbalanced data may produce inconsistent performance 

between evaluation metrics [57].  

 

Table 5. Evaluation metrics of five ml models for each dataset before resampling 

 
Dataset Algorithm Accuracy Precision Recall F1 Score Roc/Auc 

Brfss Diabetes 2015 

SVM 0.83 0.75 0.07 0.13 0.73 

KNN 0.82 0.51 0.15 0.23 0.74 

RF 0.83 0.63 0.11 0.19 0.81 

GB 0.83 0.65 0.17 0.27 0.82 

XGB 0.83 0.66 0.16 0.26 0.82 

Pima Indian 

SVM 0.81 0.74 0.80 0.77 0.85 

KNN 0.86 0.82 0.82 0.82 0.91 

RF 0.83 0.86 0.69 0.77 0.93 

GB 0.87 0.89 0.76 0.82 0.92 

XGB 0.87 0.87 0.78 0.82 0.92 
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Accuracy is not the only metric that determines model 

quality [58]. It measures the number of correct predictions 

without considering the distribution or balance of the data, 

making it less relevant for imbalanced data [59]. Using 

accuracy as the only metric in unbalanced data can be 

misleading. For example, suppose the majority of the data 

contains non-diabetic patients. In that case, a model that 

always predicts "non-diabetic" will still achieve high accuracy 

despite failing to detect actual cases. Therefore, additional 

metrics like recall (which measures the model's ability to 

identify positive cases) and F1-score (which represents the 

balance between precision and recall) are essential for a more 

comprehensive evaluation of the model's performance. 

Figure 3(a) presents the confusion matrix of the KNN model 

applied to the BRFSS Diabetes 2015 dataset before 

resampling. The model correctly predicted 2,248 positive 

cases (class 0) and 78 negative cases (class 1), but 

misclassified 423 positive cases as negative and 73 negative 

cases as positive. The higher risk lies in misclassifying 

diabetic patients as non-diabetic, which underscores the 

challenges posed by using an imbalanced dataset [60]. Figure 

3(b) displays the ROC curve of the KNN model, with an AUC 

value of 0.74, indicating moderate classification performance. 

An AUC between 0.70 and 0.80 is considered acceptable but 

warrants caution, whereas values above 0.90 are regarded as 

excellent. 

 

 
(a) Confusion matrix value of the KNN BRFSS 2015 

 

 
(b) ROC/AUC value of the KNN BRFSS 2015 

 
(c) Confusion matrix value of the KNN PIMA Indian 

 

 
(d) ROC/AUC value of the KNN PIMA Indian 

 

Figure 3. (a), (c) Confusion matrix value of the KNN model. 

(b), (d) ROC/AUC value of the KNN model before 

resampling the BRFSS 2015 and PIMA Indian 

 

Figure 3(c) shows the confusion matrix for the PIMA Indian 

dataset, where the model correctly classified 64 instances of 

class 0 and 38 instances of class 1, with eight 

misclassifications in each class. The model achieved an 

accuracy of 86.44%, and for class 1, it yielded a precision, 

recall, and F1-score of 82.61%. 

Finally, Figure 3(d) illustrates the ROC curve of the KNN 

model on the same dataset, with an AUC of 0.91, indicating 

excellent classification ability in distinguishing between the 

two classes. A higher AUC value reflects better model 

performance [61]. However, it is worth noting that the KNN 

model’s AUC value of 0.91 before resampling on the PIMA 

Indian dataset, while high, still falls within the moderate range 

and suggests room for further improvement. 

Figures 3, 4, and 5 illustrate the clinical implications of the 

model's performance. In a clinical context, an FN means that 

a diabetic patient is not detected by the model, which may 

delay diagnosis and treatment, thus worsening the patient's 

condition. Conversely, FP occurs when individuals who do not 

have diabetes are misclassified as diabetics, which may cause 

excessive anxiety and lead to unnecessary follow-up 

examinations. Therefore, an effective screening model should 

prioritize reducing FN while keeping FP rates within 

acceptable limits, to ensure early and accurate detection 

without harming patients. 
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4.2 After resampling 

 

Three methods, SMOTE, SMOTE-TOMEK, and SMOTE-

ENN, were applied to the BRFSS and PIMA datasets to 

evaluate the impact of resampling techniques on enhancing the 

performance of the five machine learning algorithms. These 

techniques aimed to identify the most effective approach for 

addressing class imbalance in the BRFSS Diabetes 2015 and 

PIMA Indian datasets. The following section outlines the 

performance of the five algorithms after resampling, based on 

their accuracy, precision, recall, F1-score, and ROC/AUC 

scores for each dataset. 
 

Table 6. Evaluation metrics of five ML models for the BRFSS 2015 diabetes after resampling 

 
Resampling Algorithm Accuracy Precision Recall F1-Score ROC/AUC 

SMOTE 

KNN 0.90 0.84 0.98 0.91 0.96 

RF 0.91 0.96 0.85 0.90 0.97 

SVM 0.91 0.87 0.96 0.92 0.96 

GB 0.90 0.95 0.84 0.89 0.96 

XGB 0.90 0.96 0.84 0.89 0.96 

SMOTE-TOMEK 

KNN 0.90 0.84 0.99 0.91 0.95 

RF 0.90 0.95 0.85 0.91 0.97 

SVM 0.91 0.87 0.96 0.91 0.96 

GB 0.89 0.94 0.85 0.89 0.96 

XGB 0.90 0.95 0.84 0.89 0.96 

SMOTE-ENN 

KNN 0.97 0.96 0.99 0.98 0.99 

RF 0.94 0.97 0.94 0.96 0.99 

SVM 0.96 0.95 0.99 0.97 0.98 

GB 0.94 0.97 0.94 0.95 0.99 

XGB 0.94 0.97 0.94 0.95 0.99 
 

Table 7. Evaluation metrics of five ML models for PIMA Indian dataset after resampling 
 

Resampling Algorithm Accuracy Precision Recall F1-Score ROC/AUC 

SMOTE 

KNN 0.90 0.89 0.92 0.91 0.97 

RF 0.91 0.92 0.91 0.92 0.97 

SVM 0.89 0.91 0.88 0.89 0.93 

GB 0.91 0.91 0.91 0.91 0.98 

XGB 0.92 0.91 0.94 0.92 0.97 

SMOTE-TOMEK 

KNN 0.94 0.92 0.98 0.95 0.98 

RF 0.94 0.97 0.92 0.95 0.98 

SVM 0.89 0.93 0.86 0.90 0.95 

GB 0.94 0.97 0.91 0.94 0.98 

XGB 0.94 0.96 0.94 0.95 0.98 

SMOTE-ENN 

KNN 1.0 1.0 1.0 1.0 1.0 

RF 0.99 0.98 1.0 0.99 1.0 

SVM 0.97 0.96 0.98 0.97 0.97 

GB 0.99 0.98 1.0 0.99 1.0 

XGB 0.99 0.98 1.0 0.99 1.0 

 

  

(a) Confusion matrix value of the KNN BRFSS 2015 (b) ROC/AUC value of the KNN BRFSS 2015 

 

Figure 4. (a) Confusion matrix value of the KNN model, (b) ROC/AUC value of the KNN model after resampling the BRFSS 

2015 
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(a) Confusion matrix value of the KNN PIMA Indian (b) ROC/AUC value of the KNN PIMA Indian 

 

Figure 5. (a) Confusion matrix value of the KNN model, (b) ROC/AUC value of the KNN model after resampling the PIMA 

Indian dataset 

 

Tables 6 and 7 present the performance of the five models 

after resampling using SMOTE, SMOTE-TOMEK, and 

SMOTE-ENN. Compared to metric values before resampling 

in Table 5, any resampling technique could improve model 

performance for all algorithms and all evaluation metric 

values. The SMOTE-ENN is the best technique for the highest 

performance for all five models and both datasets [26]. For the 

BRFSS Diabetes 2015 dataset, the KNN model was the best, 

with an accuracy of 0.97, approaching the results of previous 

research of 0.98 [26]. The values of the other four metrics were 

in the range of 0.96-0.99, which is also close to previous 

results [26]. This was not only true for the BRFSS dataset; 

combining the SMOTE-ENN and KNN models was also the 

best resampling technique and model for the PIMA Indian 

dataset, with perfect values (1.0) for all evaluation metrics. 

As shown in Tables 6 and 7, resampling techniques enhance 

model performance and reduce the variation in results across 

different algorithms, leading to minimal differences in 

accuracy, precision, recall, F1-score, and ROC/AUC. For 

instance, in the PIMA Indian dataset, the maximum 

performance gap between models was limited to just 2–4% 

across all evaluation metrics. 

From this perspective, for imbalanced diabetes data, the 

issue of finding a resampling technique is more worthy of 

attention than finding the best algorithm. A good resampling 

technique can improve the correlation between features and 

targets, facilitating any algorithm's recognition of data 

patterns.  

The role of the resampling technique on model performance 

can be explained through Figures 4(a) and (b), which present 

the confusion matrix and ROC/AUC of the KNN model for the 

BRFSS Diabetes 2015 dataset. Out of 1,180 positive cases, the 

model only made four errors, indicating that the model's ability 

to detect positive cases is very high. In addition, out of 2341 

negative cases, the model made 78 errors, denoting a relatively 

small error rate compared to the total number of negative 

cases. 

This overview was also observed in the other four models. 

Compared to Figure 4 before resampling, the SMOTE-ENN 

method could help the five ML models detect positive cases 

accurately and almost not miss truly positive cases. The 

ROC/AUC curves demonstrate that the ML models perform 

very well in distinguishing between the positive class (class 0) 

and the negative class (class 1). This curve was also observed 

in other ML models for both datasets. The model could 

achieve a very high (TPR), which means it correctly detects 

almost all positive cases, while maintaining a very low (FPR), 

which means only a few negative cases are incorrectly 

classified as positive. With an AUC value of 0.99, the model 

exhibited almost perfect ability to separate the two classes. An 

AUC value approaching 1 indicates that the model effectively 

makes accurate predictions. 

Testing with an AUC value above 0.90 denotes that the 

model has a very superior and reliable classification 

performance. A high AUC suggests that the model can 

distinguish between positive and negative classes with very 

good accuracy [61]. 

The role of the SMOTE-ENN technique in the KNN 

algorithm for the PIMA Indian dataset is also very clearly 

observed in the confusion matrix and ROC/AUC presented in 

Figures 5 (a) and (b). The model successfully predicted all data 

correctly, namely 73 data as class 0 (TN) and 57 data as class 

1 (TP), without any errors in the prediction (False Positive and 

False Negative are zero).  

This implies that the model accuracy reached 1.0. 

Furthermore, the ROC Curve strengthens these results with an 

AUC value of 1.0, indicating that the KNN model performs 

perfectly in distinguishing between the two classes. Overall, 

the KNN model showed optimal performance on the PIMA 

Indian dataset. 

 

4.3 Discussion 

 

ML algorithms (KNN, RF, SVM, GB, and XGB) were 

applied to two datasets without resampling to evaluate the 

initial performance of the models. Without resampling, the 

performance of all five ML models on the BRFSS and PIMA 

datasets is less than satisfactory, with varying and inconsistent 

values of accuracy, precision, recall, F1-score, and 

ROC/AUC. For example, the most extreme inconsistencies 

were observed for the KNN algorithm implemented on the 

BRFSS dataset, where its accuracy was 0.82, but the recall was 

only 0.15. 

Three resampling methods, namely SMOTE, SMOTE-

TOMEK, and SMOTE-ENN, were employed to address the 

class imbalance in the BRFSS Diabetes 2015 and PIMA Indian 
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datasets by combining oversampling and undersampling 

techniques. The results displayed significant improvements in 

accuracy, precision, recall, F1-score, and ROC/AUC. 

SMOTE-ENN, a combination of SMOTE and ENN, gave the 

best results, significantly increasing metric values. 

Resampling techniques can minimize performance differences 

between algorithms so that they do not differ significantly in 

accuracy, precision, recall, F1-score, and ROC/AUC. For 

example, for the PIMA Indian dataset, the differences in 

performance between models were relatively small, ranging 

only from 2% to 4% across metrics such as accuracy, 

precision, recall, F1-score, and ROC/AUC. Among the 

resampling techniques used, SMOTE-ENN consistently 

performed the best in handling class imbalance, establishing it 

as the most effective method in this analysis. 

Figure 6 illustrates the correlation values between features 

and targets for the BRFSS Diabetes 2015 dataset before and 

after resampling using the SMOTE-ENN technique. In 

general, resampling increases the correlation values between 

features and the target, either positive or negative. Features 

with positive correlations, such as high BP, BMI, and stroke, 

experienced significant increases after resampling, indicating 

that data redistribution helped strengthen the positive 

relationship between these features and diabetes. Meanwhile, 

several features with negative correlations, such as 

PhysActivity (physical activity) and Veggies (vegetable 

consumption), also increase by resampling, emphasizing the 

inverse relationship between these features and diabetes risk. 

Overall, resampling provides a more representative dataset 

and allows for a more in-depth analysis of the relationship 

between variables. Virtual samples improve distribution 

uniformity and strengthen the relationship between features 

and targets [62]. 

Figure 7 presents the correlation values between features 

and targets for the PIMA Indian dataset before and after 

resampling. It appears that the resampling keeps the pattern of 

the dataset, namely that the glucose and insulin features have 

the highest correlation values among the other features, 

meaning that these two features are dominant. Resampling on 

the PIMA Indian dataset increased the correlation value 

between features and targets, and this increase was observed 

in all features, including the most dominant features, namely 

glucose and insulin. Resampling improves the correlation 

between features and targets, making it easier for the ML 

model to recognize patterns, thereby increasing its accuracy, 

including the values of other evaluation metrics. 

 

 
 

Figure 6. Correlation between features and targets before and after resampling 

 

 
 

Figure 7. Correlation between features and targets before and after resampling 
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Table 8. Comparison of the proposed method with existing studies using the BRFSS 2015 diabetes 

 
Study Dataset Highest Accuracy Accuracy Precision Recall F1-Score ROC/AUC 

[31] BRFSS 2015 RF 0.82 0.83 0.80 0.82 0.82 

[26] BRFSS 2015 KNN 0.98 0.98 0.98 0.98 0.98 

[51] BRFSS 2015 RF 0.96 0.80 0.80 - 0.99 

Our Proposed Method BRFSS 2015 KNN (SMOTE-ENN) 0.97 0.96 0.99 0.98 0.99 

 

Table 9. Comparison of the proposed method with existing studies using the PIMA Indian dataset 

 
Study Dataset Highest Accuracy Accuracy Precision Recall F1-Score ROC/AUC 

[16] PIMA Indian RF 0.75 0.84 0.78 0.81 1.0 

[17] PIMA Indian SVM 0.84 0.71 0.66 0.67 0.80 

[18] PIMA Indian GB 0.76 0.68 0.59 0.63 0.82 

[34] PIMA Indian SVM 0.83 - 0.53 0.64 - 

[32] PIMA Indian SVM 0.74 0.74 0.74 0.74 0.74 

Our Proposed Method PIMA Indian 
KNN 

(SMOTE-ENN) 
1.0 1.0 1.0 1.0 1.0 

 

The proposed method in this study has produced good 

results in several assessment metrics for predicting DM 

disease. The proposed method exhibited high accuracy, 

precision, recall, F1-score, and ROC/AUC performance. 

Tables 8 and 9 show the performance of the proposed 

framework, evaluated based on methodology and accuracy, 

compared with several relevant studies. Table 7 compares the 

performance of ML models on the BRFSS Diabetes 2015 

dataset. The proposed method, KNN, obtained an accuracy 

value of 0.97, close to the previous study result of 0.98 [26], 

indicating excellent performance. 

This method excels in detecting positive cases and maintaining 

performance balance while effectively handling imbalanced 

data, and the results are comparable to previous methods. 

Table 8 also compares the ML models on the PIMA Indian 

dataset for diabetes prediction. The previous study achieved 

the highest accuracy of 0.84 using SVM, while other models, 

such as RF and GB, had lower accuracy. The proposed 

method, KNN with SMOTE-ENN, produced a performance of 

all metrics reaching a perfect value of 1.0. This method 

effectively detects all positive cases (recall = 1.0) and 

produces accurate predictions without errors (precision = 1.0) 

thanks to resampling using the SMOTE-ENN technique. 

 

 

5. CONCLUSIONS 

 

This study demonstrated that applying the SMOTE-ENN 

resampling technique significantly enhanced the performance 

of machine learning algorithms in predicting diabetes mellitus 

(DM) on the imbalanced BRFSS Diabetes 2015 and PIMA 

Indian datasets. SMOTE-ENN improved accuracy, precision, 

recall, F1-score, and ROC/AUC, resulting in more consistent 

models in identifying both positive and negative cases. On the 

BRFSS Diabetes 2015 dataset, the KNN algorithm achieved 

an accuracy of 0.97, with other metrics also showing strong 

performance, closely aligning with findings from previous 

research. In the PIMA Indian dataset, the KNN model 

combined with SMOTE-ENN delivered optimal results, 

achieving perfect scores (1.0) across all evaluation metrics. 

The confusion matrix analysis uncovered that the SMOTE-

ENN technique significantly improved the model's ability to 

detect minority classes (positive cases of diabetes), which 

were previously often overlooked in imbalanced datasets. For 

example, in the BRFSS Diabetes 2015 dataset, the KNN 

model, after resampling, only made a few errors in predicting 

positive and negative classes, resulting in a very low (FPR). 

An even better result was observed in the PIMA Indian dataset, 

where the KNN model successfully predicted all data without 

error. The model achieved a perfect AUC value (1.0) for the 

latter dataset, indicating an excellent ability to distinguish 

between positive and negative classes.  

The SMOTE-ENN resampling technique improves all five 

ML models performance because it strengthens the 

relationship between features and target. The positive 

correlation of key features, such as high BP, BMI, and Stroke, 

with the target significantly increased after resampling. In 

addition, features with negative correlations, such as Phys 

Activity and Veggies, also strengthened the inverse 

relationship, emphasizing the role of these features in 

supporting diabetes prediction.  

This proves that the data redistribution could improve 

dataset representation and reduce distortion due to data 

imbalance. After resampling, the increase in correlation 

between features and targets indicates a more representative 

data redistribution. The resampling technique improves the 

overall model performance and minimizes the performance 

differences between algorithms. In imbalanced datasets, the 

issue of resampling techniques is more worthy of attention 

than that of searching for the best algorithm. The practical 

implication of this study is that SMOTE-ENN can be used as 

part of an automated screening system for early detection of 

diabetes in primary healthcare, including clinics and health 

centers. This approach can also be integrated into web-based 

or mobile health applications. In the future, the research will 

be extended to test the effectiveness of this method on 

multiclass data as well as real-time scenarios, such as 

complication prediction or DM severity classification. 
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