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 Heart disease is a significant global health issue, causing millions of deaths annually. 

Despite advancements in medical technology, early and accurate diagnosis remains 

challenging. This study aims to detect heart diseases using binary classification machine 

learning models. The methodology employed a Heart Failure Prediction Dataset from 

Kaggle, with no issues of duplicates, missing data, outliers, or multicollinearity. Five 

machine learning models, including K-Neighbor Classifier, decision tree, support vector 

machine, random forest, and logistic regression, were trained and tested. The random forest 

model with hyper-parameters 'n_estimators': list (range (5,40,3)), 'max_features': ['log2', 

'sqrt'] yielded the highest accuracy rate of 87.5%, precision rate of 90.4%, recall rate of 

87.9%, f1_score of 89.1%, and auc_score of 93.6%. These results indicate that the random 

forest model has a notable capacity for accurate heart disease prediction, offering potential 

benefits such as reduced mortality rates and improved patient outcomes. Further research is 

recommended to establish standard data collection and analysis methods and to develop 

prediction models that consider the unique characteristics of diverse populations. 
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1. INTRODUCTION 

 

Heart diseases are atherosclerotic Conditions that impact 

the heart organ, which include ailments like arrhythmias, heart 

failure, and coronary artery disease [1]. Smoking, high blood 

pressure, raised cholesterol levels, bad eating choices, 

inactivity, and obesity all increase the chance of getting 

particular cardiac diseases. One of the most common cardiac 

disorders is coronary artery disease, which is identified by the 

constriction or obstruction of the coronary arteries, chest pain, 

heart attacks, and strokes that may result from it. Other heart 

issues include endocarditis, an inflammation of the inner layer 

of the heart, congestive heart failure, irregular heartbeats, 

congenital heart problems apparent at birth, and irregular heart 

rhythms [2]. The phrase "cardiovascular disease" encompasses 

conditions that affect the heart [3]. These heart-related 

disorders can be avoided or controlled with the help of 

medication if the patient adopts a healthy lifestyle.  

Modern healthcare has come a long way, for example [2] 

made a considerable contribution to the global increase in 

average life expectancy by introducing intelligent algorithms 

with high accuracy levels in classifying different heart 

diseases. The complexity of addressing the changing demands 

of an aging population, as well as increased service demand 

and rising expenses, provides difficulties for healthcare 

systems. As a result, the healthcare sector has produced a vast 

amount of data about individuals, ailments, and diagnoses. 

Unfortunately, due to insufficient investigation and analysis, 

the entire potential of this material stays untapped. Medical 

experts have a fantastic potential to improve patient prognosis 

thanks to the expanding body of medical data. Healthcare 

professionals have been utilizing computers more and more in 

recent years to enhance decision assistance. For difficult jobs 

like deciphering genomic data and turning medical records 

into useful knowledge, machine learning has turned out to be 

a valuable technique in the healthcare industry. 

The United States is one such country where heart disease 

remains the primary cause of death for individuals of all 

genders and across various racial and ethnic backgrounds. The 

alarming fact is that every 33 seconds a person dies of 

cardiovascular disease in the US [4]. Heart disease will have a 

significant impact because it will be responsible for 20% of all 

fatalities in 2021, killing about 695,000 people. Heart disease 

has a large financial impact as well; it costs the US $239.9 

billion annually in healthcare costs, prescription drug costs, 

and the financial fallout from premature deaths [4]. 

Cardiovascular disease is not only a leading cause of death 

globally but also a major source of financial strain on 

healthcare systems. According to the American Heart 

Association, the expenses associated with treating 

cardiovascular conditions in the United States could surge to 

$1.1 trillion by 2035, driven by rising disease rates [5]. 

Worldwide, cardiovascular diseases contribute over $1 trillion 

annually in both direct medical costs and indirect losses, such 
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as diminished workforce productivity. This economic burden 

is particularly severe in low- and middle-income nations, 

which account for approximately 75% of the global cases, 

thereby worsening existing financial disparities [6]. 

Table 1 illustrates research regarding heart disease and its 

impact on men who are African American, American Indian 

or Alaska Native, Hispanic, and white, this shows the statistics 

of heart disease on certain races in the United States. 

 

Table 1. The percentages of heart disease deaths among the 

various ethnic groups (races) in 2021 

 
Ethnic Group Death Rate (%) 

American Indian or Alaska Native 15.5 

Asian 18.6 

Black (Non-Hispanic) 22.6 

Native Hawaiin or Other Pacific Islander 18.3 

White (Non-Hispanic) 18.0 

Hispanic 11.9 

All 17.4 

 

In terms of annual mortality, cardiovascular diseases (CVDs) 

are the leading cause of death globally, outpacing all other 

causes [7]. A startling 31% of all fatalities worldwide in 2015 

were attributable to CVDs, which claimed an estimated 17.7 

million lives in that year alone. Within this sobering figure, 

coronary heart disease was responsible for about 7.4 million 

deaths while stroke claimed 6.7 million. Notably, low- and 

middle-income countries occupy the largest share in nearly 75 

percent of CVD-related mortality. Unbelievably, 82% of the 

17 million premature deaths from noncommunicable illnesses 

that occurred in 2015 occurred in these low-income areas, with 

cardiovascular diseases (CVDs) accounting for 37% of those 

deaths [8]. 

However, most cardiovascular diseases are preventable and 

many of them are due to Risk factors that can be changed, such 

as smoking, unhealthy eating habits, and being overweight, 

inactivity, and excessive alcohol consumption [9]. Early 

detection and management are essential for those with 

cardiovascular disease or those who have a high risk (as a 

result of conditions like hypertension, diabetes, 

hyperlipidemia, or pre-existing conditions), and they should 

include the proper counseling and pharmacological 

interventions. 

Diagnosing heart disease accurately and swiftly remains a 

significant challenge in medicine despite advances in 

technology. While existing diagnostic tools have limitations, 

such as precision issues with electrocardiograms and the risks 

associated with invasive therapies, there is a pressing 

requirement for a dependable, non-invasive, and efficient 

diagnostic method that supports early detection. Machine 

learning algorithms offer promise in utilizing available data, 

including routine blood tests and patient demographics like 

age and gender, to predict future cardiac events accurately. 

However, previous research using other machine learning 

models has yielded suboptimal results due to limited datasets 

and lack of cross-validation, relying solely on baseline models. 

Leveraging the predictive power of ensemble models like 

random forests could address these limitations and improve 

diagnostic accuracy. 

This study aims to detect heart disease using a predictive 

binary classification machine learning model. Therefore, the 

specific objectives of the study include: 

i. Compare and contrast various machine learning methods 

for predictive binary classification to see how well they 

can detect heart disease. 

ii. Create predictive binary classification algorithms that 

can accurately forecast a patient's likelihood of having 

heart disease. 

iii. Implementation analysis and evaluation of the results and 

performance metrics of various predictive binary 

classification models. 

 

1.1 Problem statement 

 

Several studies have demonstrated the efficacy of machine 

learning techniques in predicting heart disease, achieving high 

levels of accuracy and reliability. For instance, models 

utilizing algorithms such as Support Vector Machines (SVM), 

Random Forests, and Gradient Boosting have reported 

accuracy rates exceeding 90%. These results suggest that 

machine learning can significantly enhance traditional 

diagnostic methods by providing more precise risk 

assessments and enabling personalized treatment plans 

tailored to individual patients. 

Despite the promising results from various machine 

learning applications in heart disease detection, challenges 

remain in terms of model interpretability and integration into 

clinical practice. Ensuring that these models are transparent 

and understandable is crucial for gaining the trust of healthcare 

providers and patients alike. Therefore, this research aims to 

develop a binary classification machine learning model 

specifically designed for heart disease detection, focusing on 

achieving high predictive performance while maintaining 

interpretability. By addressing these critical aspects, this study 

seeks to contribute to the ongoing efforts to improve heart 

disease diagnosis and management through innovative 

technological solutions. 

Heart disease continues to pose a significant threat to global 

health, and the integration of machine learning into diagnostic 

practices offers a viable pathway toward enhanced early 

detection and intervention strategies. This research endeavors 

to harness the power of machine learning to develop an 

effective binary classification model that can aid in identifying 

individuals at risk for heart disease, ultimately contributing to 

better health outcomes and reduced healthcare costs. 

 

 

2. REVIEW OF RELATED WORKS  

 

The research using machine learning and hyperparameter 

optimization [10], aimed to develop a robust predictive model 

for heart disease detection addressing both the absence or 

presence of cardiovascular disease (CVD) and its severity 

levels, utilizing methods such as Synthetic Minority 

Oversampling Technique (SMOTE), classifiers based on 

Machine Learning (ML), and optimization using Hyperband 

(HB). Methodologically, the study integrates optimization 

algorithms with data balancing techniques and ML approaches, 

conducting experiments on the Cleveland and Statlog datasets. 

Weaknesses include a lack of detailed discussion on potential 

limitations of the proposed methodology, such as the 

generalizability of results across diverse datasets or the 

computational resources required for implementing the 

optimization algorithms. Additionally, while the study 

compares results with prior research, it lacks a thorough 

analysis of potential confounding variables or biases in those 

comparisons, potentially affecting the validity of claims 

regarding the superiority of the proposed model. 
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Alalawi and Alsuwat [11] sought to compare various 

machine learning predictive models for CVD using patient 

data and preprocessing techniques. Methodologically, the 

study employs classifiers such as SVM, DT, LR, KNN, NB, 

and ANN, comparing their performance using metrics like 

Precision, Recall, F1-score, and Accuracy. Areas for 

improvement include the omission of potential biases arising 

from data collection methods or the selection of features, 

which could affect the generalizability of results. Furthermore, 

while the study presents comparative performance metrics, it 

lacks a thorough analysis of potential confounding variables 

or biases in those comparisons, potentially affecting the 

validity of claims regarding the superiority of the gradient-

boosting model. 

Study on the categorization of heart conditions through 

enhanced machine learning techniques [12], the objective is to 

develop an automated model for the early detection Utilizing 

machine learning for the detection of heart disease procedure, 

focusing on optimizing classification results and comparing 

various classifiers. It utilizes a diverse dataset compiled from 

five well-known cardiovascular disease datasets and employs 

data preprocessing methods like cleaning, outliers’ removal, 

and normalization to improve model effectiveness. Various 

machine learning models like Support Vector Machines, K-

Nearest Neighbor, Decision Tree, and Random Forest are 

utilized, with hyperparameter optimization using the Random 

Search technique to fine-tune the models. Performance metrics 

like accuracy, precision, recall, specificity, and F1-score serve 

as evaluation criteria. The strength of the study includes a 

comprehensive approach to model development, but it has 

limitations including potential biases in the dataset, a lack of 

transparency, no discussion on dataset limitations, a focus on 

accuracy in model evaluation, and insufficient discussion on 

generalizability and data imbalance impacts. 

The objectives of the study [13] are to predict heart disease 

using a combined machine learning model, that utilizes 

Decision Tree and Random Forest algorithms, and to provide 

an automated medical diagnosis method for early detection of 

heart disease. The methodology entails data gathering and 

cleaning from the Cleveland heart disease dataset, 

implementing machine learning algorithms like Decision Tree, 

Random Forest, and a Hybrid model, and evaluating the 

models' performance. The strength of the study lies in the 

implementation of a novel hybrid machine learning model, 

which attains an accuracy level of 88% in predicting heart 

disease. However, the limitations include the lack of 

exploration of deep learning algorithms, the focus on binary 

classification without considering multi-class problems, and 

the absence of discussion on possible biases or constraints in 

the dataset. Moreover, there is a need to refine error metrics 

calculation and discuss its results in comparison with the 

existing literature. 

The research study [14] intended to forecast heart disease 

using machine learning methods, focusing on improving the 

accuracy achieved in previous works. It utilized five common 

ML models, including Decision Tree, Naïve Bayes, Random 

Forest, Support Vector Machine, and Logistic Regression, on 

a dataset obtained from Kaggle. By implementing data 

preprocessing techniques, model selection, and 10-fold cross-

validation, the study sought to enhance accuracy levels. The 

results showed significant improvements in classifier accuracy 

compared to previous research, particularly with Decision 

Tree, Logistic Regression, and SVM models. The detailed 

methodology, model performances, and dataset selection 

demonstrated advancements in heart disease prediction. 

However, potential weaknesses may include the limited 

discussion on potential biases or limitations in the dataset and 

the absence of exploration of deep learning algorithms, which 

could be avenues for future research. 

Despite the advancements made in heart disease prediction 

through machine learning models, several limitations persist 

in the existing studies. Many works rely on small or narrowly 

focused datasets, which compromises the generalizability of 

their models across more diverse populations. For instance, 

studies that utilize the Cleveland heart disease dataset often 

encounter issues with sample size, leading to overfitting and 

limited applicability in real-world settings [12]. Moreover, 

imbalanced datasets remain a critical challenge, as negative 

heart disease cases frequently outweigh positive ones, 

distorting performance metrics such as accuracy and precision 

[10].  

Some studies have attempted to address this imbalance 

using techniques like Synthetic Minority Oversampling 

Technique (SMOTE), yet these solutions are not consistently 

applied across the literature, resulting in overestimated 

performance metrics [10, 11]. Additionally, the handling of 

missing data and outliers is not always transparent, which can 

impact the robustness of these models in practical use [12]. 

In contrast, this study leverages a larger and more diverse 

dataset, integrating multiple sources to overcome these 

generalizability issues. The study looks to incorporate cross-

validation and hyperparameter optimization to improve model 

robustness and mitigate overfitting. By using ensemble 

methods such as Random Forests, addressing the issue of 

imbalanced datasets more effectively, providing a more 

accurate and interpretable model for heart disease prediction. 

 

 

3. METHODOLOGY 

 

For this research purpose secondary data was considered, 

we utilized the dataset "Heart Failure Prediction Dataset" 

which can be accessed at the Kaggle database for heart disease 

prediction [15]. This dataset stands out because of its original 

integration of different datasets that were not previously 

combined. Using this vast dataset, an array of machine 

learning models was created and evaluated with the goal of 

forecasting and preventing heart illnesses.  

K-Nearest Neighbors (KNN), Decision Trees (DT), 

Logistic Regression (LR), Support Vector Machines (SVM), 

and Random Forests selection for the detection of heart disease 

in this study are grounded in their theoretical suitability and 

practical effectiveness for binary classification tasks. KNN 

operates on a simple principle of classifying data points based 

on the majority class among their nearest neighbors, making it 

particularly useful for heart disease prediction where decision 

boundaries may not be linear. Its non-parametric nature allows 

it to adapt to various datasets, capturing local patterns 

effectively. Decision Trees offer significant advantages in 

interpretability, allowing for easy visualization of decision-

making processes, which is crucial in clinical settings. Logistic 

Regression, being straightforward and computationally 

efficient, provides quick insights into the relationship between 

independent variables and the likelihood of heart disease, 

outputting probabilities that facilitate risk assessment. Support 

Vector Machines excel in high-dimensional spaces, making 

them suitable for medical datasets with numerous features; 

their ability to apply different kernel functions allows them to 
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adapt to various data distributions while maintaining 

robustness against overfitting. Random Forests leverage 

multiple decision trees to improve predictive performance and 

reduce overfitting through an ensemble approach, offering 

valuable insights into feature importance that can guide 

clinical decision-making. By integrating these diverse 

methodologies, this research aims to develop an effective 

predictive model that identifies individuals at risk for heart 

disease while supporting clinical decisions through clear 

insights into risk factors and underlying patterns. 

The research model used in the proposed study is illustrated 

in the subsequent Figure 1. This dataset is of particular interest 

because it combines five different cardiac datasets and shares 

eleven common attributes. As a result, it currently stands as 

the largest dataset that has been found for heart disease 

research. The five constituent datasets used in creating this 

dataset are represented in Table 2. 

 

 
 

 

Figure 1. Proposed modelling strategy 

 

Table 2. The five constituent datasets 

 
Location Number of Entry 

Long Beach VA 200 observations 

Cleveland 303 observations 

Stalog (Heart) Data Set 270 observations 

Hungarian 294 observations 

Switzerland 123 observations 

 

3.1 Data description 

 

The combined dataset comprises data from five distinct 

cardiac datasets and encompasses a set of 11 shared attributes. 

It includes a total of 12 characteristics, with 11 independent 

features and 1 target feature serving as the dependent variable, 

this is represented in Table 3. With a substantial sample size 

of 918 observations, this dataset holds the potential for 

predicting and potentially preventing cardiac diseases. 

Table 3. The 12 attributes and their description from the 

datasets 

 
Attribute Description 

Sex 
The patient's sex, designated as either Male (M) 

or Female (F) 

Age The age of the patient in years 

Chest Pain 

Type 

The classification of the chest pain felt by the 

patient is as follows: 

Typical Angina (TA) - Chest discomfort caused 

by myocardial ischemia. 

Atypical Angina (ATA) - Chest discomfort that 

does not fit the typical angina criteria. 

Non-Anginal Pain (NAP) - It may resemble 

angina but has different underlying causes. 

Asymptomatic (ASY) - Transient disruption in 

myocardial perfusion without chest pain or typical 

angina symptoms. 

RestingBP 
The patient’s blood pressure when at rest (mm 

Hg). 

Cholesterol 
Serum cholesterol or total cholesterol in 

milligrams per deciliter (mg/dl). 

FastingBS 

Blood glucose level after fasting [1: if 

FastingBS > 120 mg/dl, 0: otherwise]. 

1: Blood glucose level after fasting greater than 

120 mg/dl. 

0: Else. 

RestingECG 

Categorized as follows: 

Normal: Indicates a normal resting 

electrocardiogram. 

ST: Shows the existence of ST-T wave 

abnormalities, like T wave inversions and/or ST 

elevation or depression of more than 0.05 mV. 

LVH: Suggests potential presence of left 

ventricular hypertrophy as per Estes' criteria. 

MaxHR 

Maximum heart rate, represented by numbers 

from 60 and 202. Maximal heart rate refers to the 

highest numerical value of heart beats per sixty 

seconds, the heart can reach during vigorous 

physical activities. 

Exercise 

Angina 

Exercise-induced angina refers to chest pain 

experienced during physical exertion or situations 

where the heart is required to work harder. 

Categorized as; 

Y: Yes, indicating the presence of chest 

discomfort during physical exercise or stress. 

N: No, indicating the absence of exercise-induced 

angina. 

Old peak 

Exercise-induced ST depression in comparison to 

rest is illustrated by a numerical value recorded in 

depression. 

ST_Slope 

The classification of the slope of the ST segment 

during peak exercise is as follows: 

Up: Upsloping, indicating an upward slope. 

Flat: Flat, indicating a horizontal or no significant 

slope. 

Down: Downsloping, indicating a downward 

slope. 

Heart Disease 

Output class categorized as follows: 

1: heart disease. 

0: No heart disease 

 

3.2 Data preprocessing and implementation 

 

In the process of the data preparation for model training, it 

is important to identify the nominal and ordinal categorical 

variables in the dataset: 

1. Ordinal categorical variables—ST_Slope 

2. Nominal categorical variables—ChestPainType, 

RestingECG, ExerciseAngina, Sex 
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An ordinal categorical variable is a type of categorical 

variable that has a specific ranking or order among its possible 

values. These variables lie between categorical and 

quantitative variables. For example, education level has a 

distinct order, such as "high school", "college", and "graduate 

school". 

On the other hand, a nominal categorical variable consists 

of two or more categories without any inherent hierarchy or 

order [16]. There is no natural ranking between the categories. 

A binary variable, such as a yes-or-no question, is an example 

of a nominal categorical variable, with two distinct categories 

(yes or no) and no inherent ordering. 

Since machine learning models can only process numerical 

features and cannot directly handle categorical attributes, it is 

necessary to transform ordinal and nominal qualitative 

variables to numeric representations. This process is known as 

feature encoding. By encoding these categorical variables into 

numerical features, the machine learning model can 

effectively utilize them for training and prediction purposes. 

For ordinal categorical variables, we use an ordinal encoder 

method, as shown below: Where, ordinal_variable = 

["ST_Slope"] For nominal categorical variables, we use one-

hot encoding method, as shown below: Where, 

nominal_variable = ["Sex", "ChestPainType", "RestingECG", 

"ExerciseAngina"]. 

While the Heart Failure Prediction Dataset provides a robust 

framework for model training, it is obsereved that the dataset 

primarily combines records from several hospitals in the U.S. 

and Europe, which may introduce demographic biases. For 

example, patients from low- and middle-income regions are 

underrepresented, limiting the model’s generalizability to a 

global population. Additionally, the dataset, though free of 

outliers and missing data, could still suffer from a class 

imbalance, with heart disease cases outnumbering non-cases. 

This imbalance might inflate performance metrics such as 

accuracy, which is why the study employed cross-validation 

and data-balancing techniques to ensure more reliable results 

across diverse populations. 

 

3.3 Train-test split 

 

The dataset has to be split into the training dataset and the 

test dataset to run a machine learning process. The test dataset 

is used to assess how effectively the machine learning model 

has learned and how correctly it can generate predictions, 

while the training dataset is needed in order to train the model. 

A split ratio of 80:20 was employed for the "Heart Failure 

Prediction Dataset," using an 80-20 divide applying 80% for 

training the model and 20% for the evaluation. The train-test 

divide is put into practice as follows: 

(1) The feature "HeartDisease," which serves as the output or 

target variable, is assigned to a variable called 

"target_variable" for ease of implementation and 

understanding.  

(2) The "target_variable," which contains the "HeartDisease" 

feature, is then removed from the dataset.  

(3) The modified data is assigned to a variable called "x". 

Subsequently, the dropped "target_variable" is assigned to 

another variable called "y". 

(4) This separation allows for the independent handling of 

input features which is encoded as "x" and the variable 

targeted is stored in "y" during the training and test 

processes of the machine learning model. 

(5) TRAIN: x-train (734 records, 18 attributes), y-train (734 

records), distribution of target (401 “heart disease” which 

is 1, 333 “No Heart Disease” which is 0). 

(6) TEST: x-test (184 records, 18 attributes), y-test (184 

records), distribution of target (107 “heart disease” which 

is 1, 77 “No Heart Disease” which is 0). 

 

3.4 Split data scaling (Normalization) 

 

To ensure consistency in how machine learning models 

interpret the features, the dataset underwent a process called 

normalization [17]. The process of modifying different 

characteristics in a dataset is known as feature scaling, also 

known as normalizing. Real-world data often contains features 

with different size, scope, and unit values. Feature scaling is 

necessary so that machine learning models can understand 

these features on a consistent scale. 

Normalization, specifically min-max scaling, was applied to 

the dataset. This scaling technique involves shifting the values 

within each column so that they have a set range between 0 

and 1 as their bounds [18]. By performing normalization, the 

dataset's features are brought to a common scale, allowing 

machine learning models to accurately analyze the dataset. 

This is crucial because features in the dataset may originally 

have different magnitudes, ranges, and units. The min-max 

scaling approach used in this study ensures that the values 

within each column are adjusted to fit within the range of 0 to 

1, promoting consistent and standardized interpretation of the 

data. 

 

3.5 Model building (Baseline models) 

 

The process of building baseline models involves creating 

simple reference models that serve as a benchmark in a 

machine learning project. These models are typically 

straightforward and may not possess strong predictive 

capabilities. However, including baseline models is crucial for 

various reasons [19]. Below is the breakdown of the baseline 

model building: 

1. In this study, baseline models were constructed using 

several algorithms imported from the scikit-learn library. The 

specific models used include the Random Forest Classifier 

from the sklearn.ensemble module, SVC (Support Vector 

Classifier) from the sklearn.svm module, Decision Tree 

Classifier from the sklearn.tree module, K-Neighbors 

Classifier from the sklearn.neighbors module, and Logistic 

Regression from the sklearn.linear_model module. 

2. To train the baseline models, the X-train data (input 

features) and Y-train data (target variable) were fitted into 

each respective model. This step involves using the training 

data to teach the models to make predictions based on the input 

features. 

 

3.6 Model building: Cross validation model 

 

Several methods that can be used in machine learning, and 

one of them is the cross-validation method that is used to 

determine how well fitted a model is for a new-coming data. 

This involves a process of partitioning the data into two or 

more subsamples or folds and can be defined as below in other 

words, it can be defined as a process of data partitioning. The 

different samples of the given data are divided into one part- 

this is the validation partition, and the other parts of the data 

samples are used in training of the model. Thus, this procedure 

is carried out time and time again, such that each of the folds 
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is used as the validation set [20]. In order to increase the 

reliability and validity of the results, the performance of the 

model is evaluated at different epochs and the results are 

averaged out. 

Cross-validation solves the difficulty of overfitting where 

the model is excessively trained on the training data and will 

not work well when tested on other data. Cross validation can 

be used to have a better estimate of how well the model works 

on other unseen validation sets. The sort of cross-validation 

include k-fold, the leave-one-out, the stratified [21]. The 

modeling challenge, the data requirements, the size and kind 

of the data, and other elements all have a role in the method of 

choosing. 

Implementing cross-validation in the context of model 

creation often entails the following steps: 

1. Add cross-validation modules from the Scikit-Learn 

package, like StratifiedKFold and GridSearchCV from 

sklearn.model_selection. 

2. Import evaluation metrics from the scikit-learn package, 

such as confusion_matrix, roc_curve, auc from 

sklearn.metrics, accuracy_score, recall_score, f1_score, and 

precision_score. 

3. Fit the X-train and Y-train data into the cross-validation 

modules to train the models. 
 

3.7 Comparison between cross-validation and train/test 

split in machine learning 
 

Train/test split: It involves splitting the input data into two 

data sets which includes the training data set and the testing 

data set in a ratio of 70:30 or 80:20. The training data is used 

to develop the model while the test data is used to evaluate the 

model developed. The primary disadvantage of this approach 

is that it has fairly high variance. 

1. Train Datasets: The train set consists of observations used 

to train the model, where each observation has a known 

dependent variable. 

2. Test Data: The test data is a subset of the original data 

with similar characteristics, and is separate from the data used 

for training purposes. It is used to check the performance of 

the trained model by making predictions. 

Cross-Validation dataset: Cross-validation decision is used 

to avoid the drawbacks of the train/test split approach. In this 

method, data is divided into a number of partitions and each 

partition is used as the training and testing sets in turns. It is 

for this reason that assessments are then taken and averaged in 

order to arrive at a more accurate conclusion. Cross-validation 

is most advantageous when it is used in the tuning step of a 

trained model and all features and records are utilized in the 

training and testing step, which makes it far superior to the 

train-test split method. 

In the process of building a model for a certain task it is 

recommended to evaluate a performance of a certain type of a 

machine learning model. Some of these are confusion matrix, 

recall, precision and accuracy. 
 

3.8 Model building: Cross validation model 
 

As indicated in the evaluation metrics, the effectiveness of 

the proposed model is determined by the confusion matrix, the 

recall rate, the precision, and the accuracy. The confusion 

matrix is an n × n matrix; the value of n being equal to total 

number of different target classes in the problem; helps in 

comparing the actual results with the results predicted by the 

ML model. 

The matrix helps in comparing the actual values of the test 

set with the values that had been forecasted by the classifier 

[22]. In an effort to eliminate some level of error the aim is to 

increase True Negatives and True Positives and decrease False 

Negatives and False Positives. An optimal model will work 

towards the achievement of this balance. 

True Negative (TN) is a state in which the machine learning 

model accurately predicts that a patient does not have heart 

disease, and the patient does not.  

False Negative (FN) is a case whereby the model returns an 

indication that the patient has no heart disease while in the real 

sense he/she has the disease.  

True Positive (TP) means that the model has classified a 

patient as having the heart disease when in fact the patient does 

have the disease.  

False Positive (FP) means that the model produces results 

that indicate a certain patient have heart disease but in real 

sense he or she does not.  

Accuracy is another measure that measures how correct the 

model is in the prediction it gives. However, accuracy is 

sometimes misleading especially when dealing with many 

class problems or datasets that have imbalanced classes. 

 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 

 

A measure of how well a model distinguishes between 

positive cases, precision looks at the ratio of correctly 

identified positive cases to the total number of positive cases 

the model predicted, it is determined by the ratio of correctly 

deemed positives to the total of well classified positives and 

 

Precision =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

 

Recall quantifies how many accurately identified positive 

outcomes there are compared to all number of results in the 

true positive class. It reveals information on how well a model 

can locate relevant data. 
 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 

The F1-score is used to evaluate how well a model performs 

on a particular dataset, commonly in binary classification 

situations where data is grouped into "negative" and "positive" 

categories. The F1-score is determined by taking the harmonic 

mean of the model's precision and recall results, giving a 

comprehensive assessment of both measures. 
 

F1˗Score = 
𝑇𝑃

𝑇𝑃+1 2⁄ (𝐹𝑃+𝐹𝑁)
 

 

The AUC assesses the size of the 2D area under the ROC 

curve. It gives an indication of how well various threshold 

settings perform overall. The ROC curve shows how True 

Positive Rate and False Positive Rate are related, providing a 

visual representation of how well a classifier performs. 

 

 

4. RESULT AND FINDINGS  

 

The performance and configuration results of the prediction 

classification models to predict heart diseases are displayed 

and examined in this section. In Table 4 the results for the 

baseline models are displayed. Figures 2-6 display the 

performance metrics comparison for all the baseline models. 
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Table 4. Compiled results of baseline models 

 
Models Accuracy Precision Recall F1-Score AUC-Score 

Logistic Regression 0.84 0.89 0.83 0.85 0.91 

Support Vector Classifier 0.86 0.90 0.85 0.88 0.90 

K-Neighbor Classifier 0.82 0.87 0.81 0.84 0.88 

Decision Tree 0.79 0.86 0.77 0.81 0.80 

Random Forest Classifier 0.88 0.89 0.89 0.89 0.94 

 

Table 5. Compiled results of cross-validation models 

 
Models Accuracy Precision Recall F1-Score AUC-Score 

Logistic Regression 0.84 0.89 0.83 0.86 0.91 

Support Vector Classifier 0.84 0.89 0.83 0.86 0.91 

K-Neighbor Classifier 0.81 0.85 0.82 0.83 0.90 

Decision Tree 0.86 0.89 0.87 0.88 0.92 

Random Forest Classifier 0.87 0.90 0.87 0.89 0.93 

 

 
 

Figure 2. Accuracy scores of baseline models 

 

 
 

Figure 3. Precision scores of baseline models 

 

 
 

Figure 4. Recall scores of baseline models 

 
 

Figure 5. F1 scores of baseline models 

 

 
 

Figure 6. AUC scores of baseline models 

 

 
(a) Logistic regression model confusion matrix 
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(b) ROC curve of logistic regression model 

 

 
(c) Support vector classifier confusion matrix 

 

 
(d) ROC curve of support vector classifier 

 

 
(e) K-Neighbor model confusion matrix 

 
(f) ROC curve of K-Neighbor model 

 

 
(g) Decision tree model confusion matrix 

 

 
(h) ROC curve of decision tree model 

 

 
(i) Random forest model confusion matrix 
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(j) ROC curve of random forest model 

 

Figure 7. Heat map and ROC curve of all the cross-

validation models 

 

4.1 Model results for cross-validation models 

 

As earlier discussed, the cross-validation models were 

implemented, Table 5 displays the compiled cross-validation 

models. The heat map for all the models was implemented and 

the Figures 5 to 7 show how they fared. 

 

 

5. DISCUSSION OF FINDINGS 

 

Table 4 provides a summary of the performance metrics for 

different baseline models in the Compiled Results section. Out 

of all these models, the decision tree model stands out as the 

least efficient, with accuracy, precision, recall, F1 score, and 

AUC score approximately at 79.9%, 86.5%, 77.6%, 81.8%, 

and 80.3% respectively. On the other hand, the random forest 

classifier model excels as the best performer, with around 

88.0% accuracy, 89.7% precision, 89.7% recall, 89.7% F1 

score, and 94.0% AUC score. 

Figure 2 displays the accuracy scores comparison among all 

baseline models, where the Random Forest classifier baseline 

model had the top accuracy score of 0.88043. Coming in 

closely behind is the Support Vector classifier scoring 0.86413 

for accuracy, with logistic regression achieving a score of 

0.84239. The K-Nearest Neighbor classifier followed with 

0.82609 accuracy, while the decision trees model had the 

lowest accuracy score of 0.79891. In terms of precision scores, 

the Support Vector model performed better than the rest, 

achieving a score of 0.90196, while Decision trees had the 

lowest precision at 0.86458. As for the F1 score, Random 

Forest tops the chart, followed by Logistics regression, which 

was closely followed by the Support vector model, then K-

Neighbor, and lastly, the Decision trees model. 

For the cross-validation, stratified k-fold cross-validation 

and GridSearchCV were used. Recall, that stratified k-fold 

cross-validation is a strategy that makes use of the idea of 

stratification, which entails reorganizing the data in such a 

manner that each fold or group has to contain all the dataset. 

GridSearchCV, a cross-validation technique, is a useful 

method for finding the best parameter values within a given 

grid. It requires the specification of both the model and the 

parameters. The technique offers precise predictions based on 

the chosen configuration by identifying the ideal parameter 

values. 

Logistic Regression: Using the GridSearchCV, the logistic 

regression model has three hyper-parameters, with values 

{'solver': ['newton-cg', 'lbfgs', 'liblinear'], 'C': [100, 50, 20, 10, 

1.0, 0.1, 0.01], 'max_iter': [1000]} respectively. These 

hyperparameters have a total of 21 combinations. After going 

through all combinations, an optimal combination of {'C': 20, 

'max_iter': 1000, 'solver': 'newton-cg'} was produced. This 

optimal hyperparameter combination produced the highest 

performance of the logistic regression model. 

Support Vector Classifier: Using the GridSearchCV, the 

support vector classifier model has three hyper-parameters, 

with values {'C': [0.1, 1, 10, 20, 50, 100, 200, 350], 'gamma': 

[1, 0.1, 0.01, 0.001, 0.0001], 'kernel': ['linear']} respectively. 

These hyperparameters have a total of 40 combinations. After 

going through all combinations, an optimal combination of 

{'C': 20, 'gamma': 1, 'kernel': 'linear'} was produced. This 

optimal hyperparameter combination produced the highest 

performance of the support vector classifier. 

K-Neighbors Classifier: Using the GridSearchCV, the k-

neighbor classifier model has two hyper-parameters, with 

values {'leaf_size': list(range(1,21)), 'n_neighbors': 

list(range(3,20))} respectively. After going through all 

possible combinations, an optimal combination of {'leaf_size': 

1, 'n_neighbors': 11} was produced. This optimal 

hyperparameter combination produced the highest 

performance of the k-neighbors classifier model. 

Decision Tree Classifier: Using the GridSearchCV, the 

decision tree classifier model has two hyper-parameters, with 

values {'max_depth': list(range(5,21)), 'max_leaf_nodes': 

list(range(2,100,2))} respectively. After going through all 

possible combinations, an optimal combination of 

{'max_depth': 5, 'max_leaf_nodes': 10} was produced. This 

optimal hyperparameter combination produced the highest 

performance of the decision tree classifier model. 

Random Forest Classifier: Using the GridSearchCV, the 

random forest classifier model has two hyper-parameters, with 

values respectively. After going through all possible 

combinations, an optimal combination of {'max_features': 

'log2', 'n_estimators': 32} was produced. This optimal 

hyperparameter combination produced the highest 

performance of the random forest classifier model. 

 

5.1 Comparative analysis of machine learning models 

 

When compared to the state-of-the-art models, the 

performance metrics achieved in this study demonstrate 

competitive efficacy, particularly in the context of clinical 

applicability. For instance, while Alotaibi's study reported a 

Decision Tree accuracy of 93.19% and SVM accuracy of 

92.30% [14], the Random Forest model in this study achieved 

an accuracy of 87.5%, accompanied by a noteworthy AUC 

score of 93.6%, indicating strong discriminatory power. 

Notably, the emphasis on ensuring model interpretability and 

robustness enhances its potential for real-world 

implementation in clinical settings, an aspect that many 

existing studies often overlook. this models also exhibit a 

balanced performance across multiple metrics, with precision 

and recall rates highlighting the reliability in identifying at-

risk patients—a crucial factor in medical decision-making. 

The dataset utilized in this research is characterized by its 

diversity, integrating data from multiple sources to enhance 

the generalizability of the findings across various 

demographics. While acknowledging the existing limitations, 

such as potential biases inherent in the dataset, the study lays 

a solid foundation for future research to explore advanced 
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feature selection techniques and ensemble methods. By 

emphasizing the integration of cross-validation techniques and 

aligning with contemporary machine learning practices, this 

study not only contributes valuable insights but also reinforces 

the ongoing relevance of machine learning models in 

improving heart disease detection and patient outcomes. 

For these machine learning models to be truly impactful, 

they must be seamlessly integrated into the clinical decision-

making process. This could involve embedding predictive 

models into electronic health record systems (EHRs) or 

clinical software platforms that doctors already use. For 

example, when a patient’s data is entered into the EHR, the 

system could automatically run predictive models in the 

background and provide clinicians with risk scores or 

recommendations for further diagnostic testing or treatment. 

Additionally, models like Random Forest, which offer insights 

into feature importance, could help doctors understand which 

patient characteristics contribute most to the risk of heart 

disease, thereby enabling more personalized and targeted 

interventions.  

 
5.2 Comparing performance metrics of all cross-validation 

models 

 

Table 5 presents a comprehensive comparison of 

performance metrics across all cross-validation models, 

including accuracy, precision, recall, F1, and AUC scores. 
Accuracy Score: The comparison of accuracy scores across 

all cross-validation models indicates that the random forest 

classifier achieves the highest accuracy at approximately 

87.5%, followed by the decision tree classifier at 86.9%. 

Logistic regression and the support vector classifier both attain 

84.8%, while the k-nearest neighbor classifier has the lowest 

accuracy at 81.5%. 

Precision Score: The precision scores reveal that the 

random forest classifier performs best with approximately 

90.4%, followed by logistic regression and the support vector 

classifier, both at 89.9%. The decision tree classifier scores 

89.5%, while the k-nearest neighbor classifier has the lowest 

precision at 85.4%. 

Recall Score: A comparison of recall scores highlights that 

the decision tree and random forest classifiers lead with an 

equal score of approximately 87.9%. Logistic regression and 

the support vector classifier both score 83.1%, whereas the k-

nearest neighbor classifier records the lowest recall at 82.2%. 

F1 Score: The evaluation of F1 scores shows that the 

random forest classifier achieves the highest score of 

approximately 89.1%, followed by the decision tree classifier 

at 88.7%. Logistic regression and the support vector classifier 

both score 86.4%, while the k-nearest neighbor classifier 

records the lowest F1 score at 83.8%. 

AUC Score: The AUC score comparison demonstrates that 

the random forest classifier attains the highest score at 

approximately 93.6%, followed by the decision tree classifier 

at 92.3%. Logistic regression and the support vector classifier 

both score 91.5%, whereas the k-nearest neighbor classifier 

has the lowest AUC score at 90.1%. 

From the results of the cross-validation models, the least 

overall performance model is the k-neighbor classifier, with 

approximated values of an accuracy score of 81.5%, precision 

score of 85.4%, recall score of 82.2%, F1 score of 83.8% and 

AUC score of 90.1%. While, the best overall performance 

model is the random forest classifier model, with 

approximated values of: accuracy score of 87.5%, precision 

score of 90.4%, recall score of 87.9%, F1 score of 89.1%, and 

AUC score of 93.6%.  

 

 
Figure 8. Feature importance of cross-validated random forest classifier model 

 

5.3 Feature importance of optimal model 
 

The idea of feature importance entails scoring input features 

to determine their importance in a particular model. The 

relative importance of each attribute is shown by these scores 

as illustrated in Figure 8. A high value suggests that a 

particular feature has a greater impact on the model's 

predictive capabilities to predict a given variable [23]. 

The feature importance analysis reveals the top five 

influential features in the dataset: ST_Slope, Oldpeak, MaxHR, 

Cholesterol, and Age using the random forest classifier, the 

model with the highest performance. This means that any 
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increase in these features will increase the probability of the 

model predicting the presence of heart disease. As a result, it 

is advised that patients with a likelihood of developing heart 

diseases regularly monitor these features and take steps to 

reduce the weight of these features and any possibilities of an 

increase in weight. By doing so, it lowers the risk of 

developing heart disease. Even if the age element might be 

unavoidable, proactive management of the other features 

might assist minimize the risk of heart disease.  
 

5.4 Implication of study finding 
 

One of the primary benefits of employing machine learning 

algorithms is their ability to facilitate early detection of heart 

disease, which is crucial for effective intervention. Early 

identification allows healthcare providers to implement timely 

treatment strategies, potentially preventing the progression of 

the disease and reducing the risk of severe complications or 

mortality. This tailored approach not only improves patient 

management but also optimizes resource allocation within 

healthcare systems, as clinicians can prioritize interventions 

for those at the highest risk.  

The implications of this study underscore the transformative 

potential of machine learning in early heart disease detection 

and risk stratification. By harnessing these advanced 

technologies, clinicians can enhance diagnostic accuracy, 

tailor treatment strategies, and contribute to more efficient 

healthcare delivery systems. As such, integrating machine 

learning into routine clinical practice represents a promising 

avenue for addressing the global burden of heart disease and 

improving patient care. 

Machine learning models can augment existing Clinical 

Decision Support Systems (CDSS) by providing real-time data 

analysis and predictive insights. These systems can assist 

clinicians in interpreting diagnostic results, thereby reducing 

the potential for misdiagnosis and enhancing the overall 

quality of care. By integrating machine learning outputs into 

CDSS, healthcare professionals can receive recommendations 

for further testing or intervention based on predictive analytics, 

streamlining the decision-making process. 

 

 

6. CONCLUSION 

 

The research suggested using predictive classification 

machine learning models to make predictions for heart 

diseases. The predictive classification machine learning 

models were trained, executed, and examined on a combined 

heart disease dataset having 918 records and 18 attributes. 

using baseline models and cross-validated models (stratified 

k-fold and GridSearchCV) for the dataset. In conclusion, the 

results from both the baseline models and cross-validation 

models, illustrate that the random forest classifier model is 

more effective than the other models, in the prediction of heart 

diseases. The evaluation of the selected techniques was 

measured based on accuracy, precision, recall, f1-score, 

support, and area under the Receiver Operating Characteristic 

(ROC) curve.  

This study makes several key contributions to the field of 

heart disease detection using machine learning. First, it 

employs a larger and more diverse dataset than many previous 

studies, improving the generalizability of the findings. Second, 

it advances the state-of-the-art by integrating cross-validation 

techniques and hyperparameter optimization, which have been 

underutilized in prior research. Third, this study highlights the 

importance of model interpretability, ensuring that the 

developed models can be feasibly integrated into clinical 

practice. The use of Random Forest not only maximizes 

predictive performance but also offers valuable insights into 

feature importance, making it easier for clinicians to trust and 

adopt machine learning tools in their daily workflows. These 

advancements significantly enhance the potential for machine 

learning to transform heart disease detection and management. 

In conclusion, adopting the random forest classifier with 

hyper-parameters and values of {'n_estimators': 

list(range(5,40,3)), 'max_features': ['log2', 'sqrt']}, produced 

the best performance of: accuracy score of 87.5%, precision 

score of 90.4%, recall score of 87.9%, F1 score 89.1% and 

AUC score of 93.6%.  

This indicates that the random forest has a higher ability to 

classify heart diseases, compared to other models. Hence, it is 

apparent that the proposed model has higher predictive 

performance and viability for diagnosing heart abnormalities, 

and may equally provide a valid medical support.  

Nevertheless, the results must be scrutinized by 

professionals to verify their practicality in clinical research 

proceedings. 
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NOMENCLATURE 
 

TA Typical Angina 

ATA Atypical Angina 

NAP Non-Anginal Pain 

ASY Asymptomatic 

ST ST-T wave abnormalities 

LVH Possible left ventricular hypertrophy 

MaxHR Maximum heart rate during physical activities 

beats per minute 

Y Yes 

N No 

RestingBP Resting Blood Pressure 

FastingBS Fasting Blood Sugar 

RestingECG Resting Electrocardiogram 

 

1122




