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Querying and filtering multidimensional biomedical images in large datasets is one of the 

most difficult and time-consuming tasks. In this paper, a new approach called Centric Multi-

Feature-Based Medical Image Retrieval from volumetric biomedical image datasets is 

presented to improve computer vision operations for effective medical diagnosis and 

research purposes. In today's digital era, we have witnessed unexpected advances in medical 

imaging technology as well as an ever-increasing number of digital healthcare image 

datasets, which also negatively impact feature detection, matching, filtering, and 

computational time. Motivated by the performance efficiency of feature-based algorithms 

such as 3D SIFT, which enable robust feature extraction, our approach allows the 

processing and extraction of features from different types of image modalities stored in 

highly heterogeneous decentralised datasets to feed and serve computer vision and machine 

learning models in real-time. Experimental evaluations of 500 volumetric MRA brain scans 

on public datasets such as LIDC-IDRI and OASIS show that our approach achieves 100% 

query fidelity compared to conventional pairwise methods, while reducing the overall 

processing time by 55% and accelerating the query latency by 850 times The experimental 

results demonstrate the effectiveness of our approach and its potential as a pre-trained input 

to improve feature vector-based queries. 
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1. INTRODUCTION

Imaging techniques are a fundamental part of modern 

medicine; they are used to medically image the human body 

from the inside and outside. The first technique that comes to 

mind is X-ray, also called computed radiography (CR). While 

X-rays are the oldest and still the most widely used method,

many different scanners, such as magnetic resonance imaging

(MRI), computed tomography (CT), and positron emission

tomography (PET), generate large amounts of data [1].

Regardless of the imaging modality, medical images can be 

digitally stored, accessed, and shared through an integrated 

system known as PACS (Picture Archiving and 

Communication System). This system includes software 

capable of aggregating data from various imaging 

technologies and supplementing it with descriptive 

metadata—such as the physician's name, patient ID, and 

diagnostic reports—providing a structured and efficient 

method for annotating, organizing, and retrieving image-

related information for both clinical and research applications 

[2]. For instance, magnetic resonance imaging (MRI) files 

often contain detailed parameters like pulse sequence timing, 

flip angles, and acquisition counts [3]. 

Furthermore, modern PACS solutions are often integrated 

with Radiology Information Systems (RIS), enabling the 

management of complex, multidimensional image data. These 

systems utilize the standardized DICOM (Digital Imaging and 

Communications in Medicine) protocol to store and transmit 

both the raw image files and all relevant metadata concerning 

image acquisition procedures [3]. However, despite the 

advanced infrastructure, the images stored in PACS are not 

inherently useful for clinical interpretation or decision-making 

unless properly structured and annotated. For example, 

considering a repository of over 900,000 images lacking 

metadata or organization, without contextual information, 

extracting meaningful insights would require manually 

reviewing the entire dataset, which is highly impractical [4]. 

Since recent biomedical image datasets [5] contain multi-

dimensional images (3D+time), analysis by computer vision 

and biomedical image processing algorithms may take longer. 

This dimensionality of medical images is the real performance 

issue, as multidimensional computational complexity 

increases with each additional dimension since the processing 

of image data must be performed accurately with all available 

computational power. Therefore, the biomedical image data 

generated daily requires algorithms that can efficiently process 

and analyze this data to produce meaningful insights.  

Many retrieval algorithms and architectures have been 

adapted for 3D medical image retrieval, e.g. Deep 

Convolutional Neural Networks (CNNs) [6], Deep Similarity 

Learning for multimodal images [7], the algorithm developed 

[8] or the registration algorithm based on Compressive

Sensing and Local Scale-Invariant Feature Transform (SIFT)

[9]. However, a major limitation of the pairwise method, even
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when based on these algorithms, is the high computational cost 

incurred by exhaustive comparisons that scale poorly with 

increasing dataset size. Traditional retrieval pipelines often 

calculate similarity scores between a query and each entry in 

the dataset, resulting in significant delays that make such 

methods impractical for use in real-time or on a large clinical 

scale. Attempts to reduce these costs through downsampling, 

segmentation or subsampling [10-12] often result in a loss of 

accuracy and diagnostic precision. 

Consequently, there remains a need for a retrieval 

framework that avoids the computational inefficiencies of 

pairwise comparisons, eliminates the need for data reduction 

techniques, and scales effectively with the growing volume of 

3D medical image data. Our approach addresses these 

challenges through a centralised, multi-feature-based pipeline 

that supports efficient, accurate and timely retrieval without 

compromising data quality. 

 

1.1 Problem formulation 

 

Despite the advancements in medical processing, efficient 

retrieval of relevant medical images from large-scale datasets 

remains a significant challenge due to the high computational 

cost associated with traditional methods. Conventional 

approaches rely on direct image-to-image comparisons, which 

are inefficient for handling large volumetric medical datasets. 

Additionally, existing methods often lack an optimized, 

memory-efficient strategy for managing and indexing 

extracted features, leading to scalability limitations and may 

not fully utilize the potential of 3D and 4D data, leading to 

suboptimal feature extraction. 

 

1.2 Major contributions 

 

This study presents an effective retrieval framework based 

on 3D SIFT feature extraction [13] in combination with FAISS 

[14], which was chosen over other deep learning techniques 

and key-point methods such as HOG, HDFS [15] and 

SuperPoint [16] due to its feature descriptor based on a 64-

dimensional descriptor, this descriptor provides higher 

efficiency than classical 128-dimensional and also for 3D 

medical image search, 3D SIFT is a GPU-optimised 

implementation that achieves about 7x speed improvement 

while maintaining robustness in MRI scans, making 3D SIFT 

both computationally efficient and robust to noise and 

intensity changes in 3D volumes resulting in similar image 

matching performance with a much larger memory footprint 

[17] and less time-consuming when dealing with large medical 

datasets to enhance both the storage and indexing of 

volumetric medical images. By replacing traditional image-to-

image comparisons with a more efficient feature-to-feature 

matching strategy, the framework substantially reduces 

computational demands while preserving high retrieval. 

Tailored for real-time diagnostic use, the architecture supports 

high-performance querying and is well-suited for large-scale 

clinical and research imaging environments. 

By tackling the key challenges associated with big medical 

data, the proposed framework delivers a robust and scalable 

solution for efficient image retrieval. Leveraging ranked 3D 

SIFT features for optimized storage and indexing, it 

significantly improves data organization and search precision, 

all while minimizing processing overhead. Its feature-driven 

architecture, combined with a high-capacity database, ensures 

fast and reliable access to relevant medical imagery, making it 

highly applicable to real-time clinical workflows, biomedical 

research, and secure data-intensive applications. 

The remainder of this paper is organized as follows: Section 

II reviews related work and current strategies for improving 

medical image storage and retrieval. Section III details the 

design and components of the proposed framework. Section 

IV presents the experimental evaluation of the system, 

analyzing its performance in terms of retrieval speed, precision, 

and scalability. Section V concludes the paper by outlining 

limitations and suggesting directions for future enhancements. 

 

 

2. RELATED WORK 

 

To effectively exploit valuable information contained in 

medical images, various retrieval techniques have been 

developed to identify image similarities using large datasets, 

where an image serves as the query input. These techniques 

include text-based image retrieval [18], content-based image 

retrieval (CBIR) [19], and hybrid approaches combining both 

[20]. In text-based systems, experts manually annotate images 

with descriptive metadata—such as keywords, labels, or 

tags—stored in a database to enable keyword-based searches. 

In contrast, CBIR focuses on analyzing the visual content of 

the image itself, rather than relying on external annotations 

[21-25]. 

CBIR systems extract and index visual features, which are 

typically divided into global features (e.g., color, texture, 

shape) and local features (e.g., keypoints like corners or edges). 

Global features represent the overall characteristics of the 

image and are useful for tasks such as classification and 

general image retrieval, while local features are more suitable 

for detailed object detection and recognition. Feature 

extraction is central to CBIR, as it enables the system to 

compute descriptors for both the query and dataset images, 

facilitating efficient matching based on visual similarity. 

Compared to single-feature approaches, multi-feature CBIR 

methods significantly improve retrieval accuracy and 

robustness. 

Unlike TBIR which is a very tedious and expensive 

approach, The Content-based image retrieval (CBIR) is a 

computer vision image search technique that uses mostly low-

level features such as color, texture, and shape to explore 

images from databases. Indeed, it saved countless lives over 

the years along with analyzing traditional 2D medical images 

(rows and columns) which have focused on Chest X-ray, such 

as plain X-rays and mammograms using Convolutional Neural 

Networks (CNNs) models like ResNet and VGG applied to 

tasks such as image classification, segmentation, and anomaly 

detection [26] or combined with Recurrent Neural Networks 

(RNNs) architecture  CNN-LSTM [27] that achieved 

unprecedented performance in medical imaging-based 

diagnosis particularly Long Short-Term Memory (LSTM) 

networks . However, these approaches may have many 

limitations especially when processing medical images with 

additional dimensions, such as a three-dimensional (3D) 

volume or 3D volume changes over time (4 dimensions), or 

much more if the images are multidimensional or n-

dimensional stored in large image databases. 

Multidimensional imaging provides flexibility to perform 

functions for traditional two-dimensional filtering in scientific 

applications. The first multimodal imaging technique used in 

clinical settings and modern hospitals combines positron 

emission tomography and computed tomography (PET-CT), 
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which produce images of the body and its functions that enable 

better cancer diagnosis and effective treatment, among other 

benefits [28]. 

To improve accuracy and increase the computational 

complexity related to these additional dimensions of medical 

images, significant new algorithms are identified for analysis 

by invariant keypoint techniques such as 3D SIFT, a powerful 

approach that performs a variety of imaging tasks, including 

classification [29], registration [30], without the need for 

training procedures or data. Our work is not intended to 

replace the 3D SIFT, but to complement it and use it to build 

an alternative based on the results of the recent study 

describing a novel implementation of the 3D SIFT algorithm 

to enhance keypoints and features extraction based on GPU 

[31]. Also, as the results prove it uses three-dimensional 

volumetric data and real objects to detect keypoints and extract 

a robust description of their contents to support a variety of 

applications such as video processing [32] and 3D object 

recognition [33]. 

The reviewed studies establish a solid groundwork for 

enhancing the storage and retrieval of medical images. 

Building on these advancements, the proposed framework in 

this research is designed to tackle key challenges related to 

efficiency and scalability in managing medical images data 

stored in large datasets. 

 

 

3. MATERIALS AND METHODS 

 

The proposed method presents a lightweight, feature-centric 

biomedical storage and retrieval system aimed at improving 

the efficiency of feature extraction algorithms such as 3D SIFT 

for large-scale medical image queries. Designed to enhance 

both speed and accuracy, the framework also addresses the 

challenge of data scarcity in biomedical imaging by supporting 

scalable processing without requiring massive training 

datasets. It integrates three core components - feature 

extraction, indexing, and real-time matching- while 

optimizing overall processing time as a key performance 

indicator. Additionally, the system leverages features from 

both 2D and 3D deep learning models, enabling accurate and 

cost-efficient retrieval, making it highly suitable for advanced 

medical imaging and research applications. 

Most machine learning and computer vision workflows 

explored in this study rely on a core computational framework 

for processing image queries against reference datasets, 

summarized by the following equation: 

 

Processing Time=Fr Extraction Time + Comparison Time 

 

Feature extraction time: the period needed to generate 

meaningful descriptors from medical images using techniques 

like SIFT, CNN-based embeddings, or hybrid methods.  

Comparison time: the duration required to match these 

extracted features against those in the dataset, typically using 

similarity metrics such as Euclidean distance, cosine similarity, 

or domain-specific medical measures. 

The proposed Centric Feature-Based Retrieval Approach 

introduces a two-stage pipeline—Indexing (offline) and Query 

(online/real-time)—to optimize medical image retrieval. By 

extracting and storing features only once during the indexing 

stage, the system eliminates the need for repeated dataset 

processing at query time. This design follows the principle of 

Separation of Concerns, enabling real-time performance by 

decoupling expensive computations from the user-facing 

query phase. Unlike traditional full pairwise methods that 

perform full pairwise comparisons at every query, the Centric 

strategy drastically reduces processing overhead while 

maintaining high retrieval accuracy. It is particularly well-

suited for large-scale medical datasets, offering scalable, 

storage-efficient, and fast retrieval performance ideal for real-

time clinical applications. 

The main difference between the two approaches is 

explained in Figure 1. 

 

 
 

Figure 1. Separation of concerns of centric vs full pairwise 

approach 

 

This enhanced formulation ensures that the system not only 

extracts and compares features efficiently but also structures 

and stores extracted features in an optimized manner, 

facilitating rapid and scalable real-time retrieval. By 

incorporating indexing mechanisms, such as KD-trees, FAISS, 

or Using vector database, the proposed framework 

significantly improves query performance and scalability for 

large-scale medical imaging datasets as shown in Figure 2. 

 

 
 

Figure 2. Bloc diagram for building an end-to-end medical 

image based on multi-features approach 

 

The diagram above shows a typical workflow for indexing 

medical image features extracted from many mid-range and 

high-end biomedical datasets. Our process consists of two 

main stages line-dashed which are The Offline and Real-time 

data processing to speed up processing historically and 
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archived medical data stored in original datasets.  

The Offline processing stage consists of two blocks, the first 

one is crowling and importing images from one or more 

datasets (e.g., ultrasound, MRI, CT, and radiography) 

provided to Feature extraction algorithms (the 3D SIFT to 

extract keypoint descriptors) from the corpus of parsed images. 

To go through the scarcity of biomedical datasets, medical 

images from TCIA dataset (e.g., from ultrasound, MRI, CT, 

and radiography), are provided to the 3D SIFT extraction 

method. As shown in the diagram, multiple public datasets, 

e.g., OASIS [34], ADNI [35], and HCP [36], can be used 

simultaneously for feature extraction to feed our feature 

database. As mentioned earlier, TCIA is a service that provides 

a large archive of medical cancer images that can be publicly 

downloaded. The data are organized as “collections”; typically, 

patient images are organized by a common disease (e.g., lung 

cancer), image modality, or image type (MRI, CT, digital 

histopathology). DICOM is the primary file format used by 

TCIA for radiologic imaging. Supporting data for images such 

as patient outcomes, treatment details, genomics, and expert 

analysis are also provided when available. 

The second block addresses feature extraction using 3D 

SIFT and vectorization, a technique for converting raw data 

into numerical features that can be processed to produce what 

is known as a feature vector.3D SIFT -Rank is designed for 

feature extraction from 3D volumes. The main format is Nifti, 

but (.hdr,.nii.gz) or raw data (IEEE 32-bit float, Little Endian) 

are also supported.  

The third block of the process is indexing. As the name 

suggests, indexing data refers to the process of creating a 

structured and organized reference system to efficiently 

retrieve and access specific information from a data set. 

Simply put, indexing helps to improve the speed and 

efficiency of data queries by allowing systems to quickly find 

and retrieve the desired information without having to search 

through the entire data set. 

This improvement is achieved through a Java-based multi-

feature wrapper that plays a central role in managing the flow 

between raw medical image ingestion, feature extraction and 

vector database indexing. This wrapper performs several 

automated tasks, such as error handling by automatically 

filtering out unsupported or corrupted medical images based 

on format and size constraints, as well as batch crawling, 

which allows the system to process medical volumes in 

optimized batches and what is more important is feature 

aggregation, where multiple feature vectors are encapsulated 

into a unified metadata object per image. These aggregated 

feature vectors are then passed in bulk to the FAISS-based 

indexing engine, allowing for a fast build-up of the similarity 

search index. This modular approach not only improves fault 

tolerance and scalability but also enables parallelism and pre-

fetching mechanisms that significantly reduce latency and 

indexing time. 

This modular and scalable structure allows for dynamic 

index updates each time a new image is processed, enabling 

real-time retrieval tasks such as classification, object 

recognition and clustering with significantly reduced latency, 

as illustrated in Figure 2. 
 

 

4. MORE EXPERIMENTAL EVALUATION 
 

4.1 Experimental setup 

 

Our approach is both a cloud-based platform service and can 

be run as a standalone solution on a simple machine. It is 

designed to run in a server cluster to distribute the load across 

multiple nodes. However, in our case, we can run it with only 

one node, as setting up a single node is easy to implement and 

manage, making it a good choice for development or test 

environments where high availability and scalability are not 

critical; moreover, our application is about small applications 

with low data volume, where a single node can effectively 

handle the workload. The operating system where feature 

extraction is performed on is a Mac with 10-core CPU, 16-core 

GPU, 8 GB of unified memory, 512 GB of SSD storage¹, and 

16-core neural engine. 

 

4.2 Feature vector generation and indexing 

 

In most cases, biomedical 3D images feed private lab 

datasets and they rely on famous 3D algorithms such as 3D-

SIFT for analysis and research. However, to prove the 

performance of the approach, we decided to conduct studies 

based on other extraction algorithms to prove the effectiveness 

of this intermediate multi-feature extraction system (see Fig. 

1). Besides 3D-SIFT, whose generated data is represented as a 

matrix of n vectors with M elements, three other algorithms 

are also used to extract 2D and 3D medical images from the 

original datasets over many iterations, as well as 3D-SIFT 

support algorithms (HOG) feature extraction from both 

formats, DICOM and NIFTI(.nii). 

 

 

5. RESULTS 

 

5.1 Evaluating centric feature query-based stage 

 

To rigorously evaluate our approach to medical image 

retrieval and similarity assessment, we conducted a series of 

experiments using benchmark datasets commonly employed 

in clinical research. These included the LIDC-IDRI dataset, 

consisting of 1609 2D thoracic CT scans from 214 patients for 

nodule detection, and two well-established 3D brain MRI 

datasets -OASIS and ²- which contain tumor annotations 

across multiple institutions. Additionally, the TCIA brain 

metastasis dataset was used, comprising 560 multimodal MRI 

volumes from 412 patients, annotated with over 5000 brain 

metastases, and available in both DICOM and NIfTI formats. 

These diverse, multimodal, and publicly available resources 

ensured clinical relevance and scientific reproducibility for our 

evaluation. 

Our experimental study focused specifically on 3D 

volumetric medical data, performing controlled tests using 

both the 3D SIFT and 3D HOG feature extraction algorithms. 

The datasets were scaled progressively, ranging from as few 

as 1 image to as many as 500 NIfTI volumes, totaling 

approximately 93 GB in raw (.nii) format, or 15.9 GB when 

compressed (.nii.gz). For each configuration, we compared the 

performance of two retrieval strategies: the Centric Feature 

Query-Based approach, which separates offline indexing from 

real-time querying, and the traditional method, which 

performs full pairwise comparisons at query time. Across all 

configurations, we evaluated the feature extraction time, 

indexing overhead, and similarity search latency, under 

conditions designed to reflect realistic clinical use cases as 

shown in the Tables 1-12. 

Our demonstration was primarily conducted on 3D medical 

imaging datasets, where the Centric Feature-Based Retrieval 
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Approach consistently exhibited real-time query performance, 

even at the largest tested scales. Using 3D SIFT, the total 

processing time—including a one-time offline indexing step—

was approximately 4807.67 seconds, with the query stage 

executing in under 10 seconds. Similarly, when applying 3D 

HOG, the system achieved even faster results: 3026.59 

seconds for offline processing and ~5.10 seconds per query. In 

both cases, the traditional full pairwise method required 

significantly more time—over 10,721 seconds for SIFT and 

7,322 seconds for HOG—underscoring the computational 

burden and poor scalability of full pairwise comparison 

strategies Tables 7-12. 

 

Table 1. Traditional full pairwise comparisons at query time 

using ResNet50 model 

 

Total 

Images 

Data 

Size 

(KB) 

Feature 

Extraction 

Time(s) 

Comparison 

Time(s) 

Overall Total 

Processing 

Time(≈s) 

1 16 3.52 0.7343 4 

10 350 6.22 8.2823 14 

50 1351 20.61 38.4243 59 

100 2447 39.12 80.1948 119 

150 2539 60.70 125.163 185 

200 3215 77.27 160.073 237 

250 4679 97.99 197.2865 295 

300 6604 112.95 243.1207 356 

350 7802 137.41 276.9598 414 

500 9113 192.48 397.6731 590 

1000 24371 386.60 786.8337 1173 

2000 43622 777.87 1661.0856 2438 

2500 52224 980.08 2078.7321 3058 

 

Table 2. Indexing stage of centric feature-based extraction 

using ResNet50 model 

 

Total 

Images 

Data Size 

(KB) 

Indexing Stage(s) 

Feature 

Extraction Time 

Indexing 

Time 

Overall 

Processing Time 

1 0.01 0.01 0 0.01 

10 0.06 0.08 0.000099 0.08 

50 13.53 0.63 0.000085 0.64 

100 12.82 18.8 0.000089 18.81 

150 13.45 21.13 0.000098 21.13 

200 13.88 20.35 0.000061 20.35 

250 13.48 19.72 0.000063 19.74 

300 13.45 20.93 0.00008 20.94 

350 12.44 21.65 0.000051 21.66 

500 12.83 19 0.000077 19.01 

1000 13.18 19.43 0.000056 19.44 

2000 34.33 20.92 0.000055 20.93 

2500 80.39 20.35 0.000081 20.41 

 

Table 3. Query stage of centric feature-based extraction 

using ResNet50 model 

 

Total 

Images 

Data 

Size 

(KB) 

Query Stage(s) 

Query Feature 

Extraction 

Similarity 

Comparison 

Time 

Overall Total 

Processing 

Time 

1 0.01 0.0052 0.0001 0.0053 

10 0.06 0.0051 0.0001 0.0051 

50 13.53 0.0053 0.000073 0.0053 

100 12.82 0.4135 0.000079 0.4136 

150 13.45 0.0043 0.000095 0.0044 

200 13.88 0.4636 0.000105 0.4636 

250 13.48 0.4407 0.000056 0.4408 

300 13.45 0.456 0.000062 0.4561 

350 12.44 0.0042 0.000043 0.0042 

500 12.83 0.0046 0.000045 0.0047 

1000 13.18 0.3247 0.00006 0.3248 

2000 34.33 0.3139 0.000075 0.314 

2500 80.39 0.4382 0.000054 0.4382 

 

Table 4. Traditional full pairwise comparisons at query time 

using VGG16 model 

 

Total 

Images 

Data 

Size 

(KB) 

Feature 

Extraction 

Time(s) 

Comparison 

Time(s) 

Overall Total 

Processing 

Time(≈s) 

1 16 0.4682 0.4683 1.205 

10 350 6.8388 6.8407 15.0307 

50 1351 32.2695 32.2763 65.9343 

100 2447 87.8673 87.8820 176.4271 

150 2539 141.0949 141.1187 283.1777 

200 3215 191.9745 191.9995 385.0010 

250 4679 246.9657 247.0018 494.6738 

300 6604 293.5808 293.6212 587.8835 

350 7802 348.2412 348.2912 697.1526 

500 9113 489.1017 489.1657 979.6022 

1000 24371 1004.2016 1004.3512 2009.2659 

2000 43622 1988.1951 1988.4769 3977.3399 

2500 52224 2499.1334 2499.4762 4999.3054 

 

 

Table 5. Indexing stage of centric feature-based extraction 

using VGG16 model 

 

Total 

Images 

Data Size 

(KB) 

Indexing Stage(s) 

Feature 

Extraction Time 

Indexing 

Time 

Overall 

Processing Time 

1 0.01 0.01 0.000099 0.01 

10 0.06 0.06 0.000071 0.06 

50 13.53 0.54 0.000077 0.55 

100 12.82 0.24 0.000050 0.24 

150 13.45 0.26 0.000077 0.26 

200 13.88 0.19 0.000122 0.19 

250 13.48 0.26 0.000056 0.27 

300 13.45 0.30 0.000055 0.0043 

350 12.44 0.26 0.000063 0.26 

500 12.83 0.29 0.000089 0.29 

1000 13.18 0.3 0.00007 0.31 

2000 34.33 0.24 0.000067 0.25 

2500 80.39 0.3 0.000078 0.32 

 

Table 6. Query stage of centric feature-based extraction 

using VGG16 model 

 

Total 

Images 

Data 

Size 

(KB) 

Query Stage(s) 

Query 

Feature 

Extraction 

Similarity 

Comparison 

Time 

Overall 

Total 

Processing 

Time 

1 0.01 0.0041 0.000054 0.0042 

10 0.06 0.0042 0.000048 0.0042 

50 13.53 0.0047 0.000062 0.0047 

100 12.82 0.0037 0.000041 0.0038 

150 13.45 0.0053 0.000061 0.0053 

200 13.88 0.0039 0.000046 0.0039 

250 13.48 0.0071 0.000047 0.0071 

300 13.45 0.0043 0.000051 0.0043 

350 12.44 0.0042 0.000045 0.0042 

500 12.83 0.0044 0.000051 0.0045 

1000 13.18 0.0049 0.00006 0.005 

2000 34.33 0.0075 0.000063 0.0075 

2500 80.39 0.0061 0.000068 0.0061 
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Table 7. Traditional full pairwise comparisons at query time 

using 3D SIFT 

Total 

Images 

Data 

Size 

(KB) 

Feature 

Extraction 

Time(s) 

Comparison 

Time(s) 

Overall 

Total 

Processing 

Time(≈s) 

1 10.9 5.44 5.85 11.29 

5 56.7 42.92 45.35 88.27 

10 115 111.36 141.36 252.72 

50 604 575.24 699.34 1274.58 

70 860 775.75 933.46 1709.21 

100 1023 1146.85 1212.68 2359.52 

130 1065 1488.18 1580.34 3068.52 

150 1093 1703.74 1831.17 3534.91 

200 2063 2163.62 2436.14 4599.75 

300 3087 3096.75 3396.96 6493.71 

500 6043 5081.41 5640.18 10721.59 

Table 8. Indexing stage centric feature-based extraction 

using 3D SIFT 

Total 

Images 

Data 

Size 

(KB) 

Indexing Stage(s) 

Feature 

Extraction 

Time 

Indexing 

Time 

Overall 

Processing 

Time 

1 10.9 10.59 0.007696 10.6 

5 56.7 55.99 0.000123 55.99 

10 115 100.9 0.000092 100.9 

50 604 511.73 0.000073 511.73 

70 860 715.44 0.000086 715.44 

100 1023 968.08 0.000074 968.08 

130 1065 1218.12 0.007834 1218.13 

150 1093 1406.3 0.000175 1406.3 

200 2063 1922.84 0.00039 1922.84 

300 3087 2840.71 0.001226 2840.71 

500 6043 4807.64 0.019482 4807.67 

Table 9. Query stage of centric feature-based extraction 

using 3D SIFT 

Total 

Images 

Data 

Size 

(KB) 

Query Stage 

Query 

Feature 

Extraction 

Similarity 

Comparison 

Time 

Overall 

Total 

Processing 

Time 

1 10.9 8.145 0.004036 8.149 

5 56.7 8.7178 0.0001 8.7179 

10 115 9.2392 0.000086 9.2393 

50 604 9.1528 0.000091 9.1529 

70 860 10.1524 0.000056 10.1525 

100 1023 12.59 0.000215 12.5902 

130 1065 8.4019 0.00432 8.4062 

150 1093 8.4324 0.000076 8.4324 

200 2063 9.5973 0.000121 9.5975 

300 3087 9.6777 0.000409 9.6781 

500 6043 9.9755 0.01 9.9855 

Table 10. Traditional full pairwise comparisons at query time 

using 3D HOG 

Total 

Images 

Data 

Size 

(KB) 

Feature 

Extraction 

Time(s) 

Comparison 

Time(s) 

Overall 

Total 

Processing 

Time(≈s) 

1 10.9 5.93 6.39 19.57 

5 56.7 32.8 45.59 85.11 

10 115 66.03 89.78 162.3 

50 604 334.3 466.78 807.46 

70 860 470.05 470.05 1108.59 

100 1023 667.85 758.4 1432.89 

130 1065 867.19 976.73 1850.76 

150 1093 1008.21 1008.21 2157 

200 2063 1317.51 1482.97 2806.96 

300 3087 2019.53 2233.84 4262.98 

500 6043 3416.02 3899.84 7322.72 

Table 11. Indexing stage of centric feature-based extraction 

using 3D HOG 

Total 

Images 

Per 

(Folder) 

Data 

Size 

(KB) 

Indexing Stage 

Feature 

Extraction 

Time(s) 

Indexing 

Time(s) 

Overall 

Processing 

Time(s) 

1 10.9 4.00 0.000067 4.26 

5 56.7 22.87 0.000155 30.55 

10 115 43.06 0.000085 60.61 

50 604 237.43 0.000248 255.69 

70 860 335.74 0.000281 442.15 

100 1023 452.42 0.000384 603.68 

130 1065 795.37 0.01666 879.38 

150 1093 929.38 0.000782 1039.32 

200 2063 1246.9 0.001293 1387.1 

300 3087 1865.68 0.001883 2105.8 

500 6043 2338.87 0.020366 3026.59 

Table 12. Query stage of centric feature-based extraction 

using 3D HOG 

Total 

Images 

Data 

Size 

(KB) 

Query Stage(s) 

Query 

Feature 

Extraction 

Similarity 

Comparison 

Time 

Overall 

Total 

Processing 

Time 

1 10.9 4.9475 0.000104 4.9476 

5 56.7 4.6932 0.00006 4.6933 

10 115 4.2852 0.000112 4.2853 

50 604 4.6594 0.000145 4.6596 

70 860 4.6394 0.000305 4.6397 

100 1023 4.8789 0.000287 4.8792 

130 1065 5.5825 0.007281 5.5898 

150 1093 5.5712 0.000445 5.5716 

200 2063 6.0327 0.000643 6.0333 

300 3087 5.4867 0.0008 5.4875 

500 6043 5.0964 0.001186 5.0976 

Table 13. Computing accuracy and consistency of traditional 

full pairwise strategy based on 3D SIFT 

Total 

Images 

Traditional Feature-Based Extraction 

Image Label 
Score (L2 

Distance) 

500 

IXI050-Guys-to-1-MRA.nii.gz 0.0000 

IXI050-Guys-to-2-MRA.nii.gz 0.0000 

IXI050-Guys-to-3-MRA.nii.gz 0.0000 

IXI050-Guys-to-311-MRA.nii.gz 1.9126 

IXI050-Guys-to-309-MRA.nii.gz 1.9126 

Table 14. Computing accuracy and consistency of centric 

similarity search strategy based on 3D SIFT 

Total Images 
Centric Feature-Based 

Image Label Score (Cosine) 

500 

IXI050-Guys-to-1-MRA.nii.gz 1.0000 

IXI050-Guys-to-2-MRA.nii.gz 1.0000 

IXI050-Guys-to-3-MRA.nii.gz 1.0000 

IXI050-Guys-to-311-MRA.nii.gz 0.9905 

IXI050-Guys-to-309-MRA.nii.gz 0.9905 
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Table 15. Computing accuracy and consistency 3D HOG 

traditional full pairwise strategy 

 

Total Images 

Traditional Feature-Based Extraction 

Image Label 
Score 

(Cosine) 

500 

IXI050-Guys-to-1-MRA.nii.gz 0.0000 

IXI050-Guys-to-2-MRA.nii.gz 0.0000 

IXI050-Guys-to-3-MRA.nii.gz 0.0000 

IXI050-Guys-to-175-MRA.nii.gz 9.4248 

IXI050-Guys-to-176-MRA.nii.gz 9.4248 

 

Table 16. Computing accuracy and consistency of centric 

similarity search strategy based on 3D HOG 

 

Total Images 
Centric Feature-Based 

Image Label Score (Cosine) 

500 

IXI050-Guys-to-1-MRA.nii.gz 0.0000 

IXI050-Guys-to-2-MRA.nii.gz 0.0000 

IXI050-Guys-to-3-MRA.nii.gz 0.0000 

IXI050-Guys-to-175-MRA.nii.gz 88.8264 

IXI050-Guys-to-176-MRA.nii.gz 88.8264 

 

A key advantage of the Centric architecture is the explicit 

separation between indexing and querying. The indexing 

phase, which is executed offline, is remarkably efficient (e.g. 

~0.02 seconds), so that only the lightweight query phase needs 

to be executed in real-time. This decoupled design ensures low 

latency and scalable performance, making the method ideal for 

high-throughput clinical environments. After validating our 

approach for large 3D volumes, we extended our evaluation to 

2D image datasets using deep learning-based feature 

extraction models (VGG16 and ResNet50) Tables 1-6 to 

demonstrate the generality and robustness of our framework 

for different modalities and architectures. 

Having analysed the computational advantages of each 

approach, we now focus on another crucial aspect: the 

accuracy and consistency of the search results presented in the 

Tables 13-16.  

 

5.2 Evaluating efficiency of feature search queries 

 

To evaluate the accuracy and retrieval consistency of the 

two approaches, we conducted a comparative assessment on 

the same datasets of high-resolution 3D MRA brain scans. 

Feature extraction was performed using 3D SIFT and 3D HOG 

descriptors as shown in Tables 9 and 10, chosen for their 

robustness in preserving spatial and structural features. The 

Traditional method employed full pairwise comparisons with 

cosine similarity, while the Centric approach relied on 

approximate nearest neighbor (ANN) search using L2 distance 

for 3D HOG and cosine similarity for 3D SIFT. Despite 

differences in similarity metrics and numerical score scales, 

both methods retrieved the exact same Top 5 most similar 

images for each query. This validates that the Centric Feature-

based approach maintains 100% retrieval fidelity when 

equivalent feature representations and comparable metrics are 

used. 

While score values varied due to the nature of the distance 

measures—L2 distance in Centric queries producing lower-is-

better values (e.g., 0.0000 to ~1.91), and cosine similarity in 

Traditional comparisons yielding higher-is-better results (e.g., 

1.0000 to ~0.9905)—the relative ranking of retrieved results 

remained identical. This ranking consistency is crucial for 

content-based medical image retrieval, where diagnostic 

decisions may depend on precise match ordering. 

Consequently, the Centric approach offers not only superior 

computational efficiency but also retrieval accuracy 

equivalent to full pairwise methods, making it highly suitable 

for real-time clinical applications.  

To consolidate the insights gained from the results 

presented above, we now provide a comprehensive summary 

of the experimental studies conducted across both 2D 

(ResNet50 and VGG16) and 3D (3D SIFT and 3D HOG) 

feature extraction models across a wide range of dataset sizes 

to assess scalability, efficiency, and retrieval performance 

focusing 3D algorithms like 3D SIFT for Summarizing 

experimental studies and compared two strategies: a 

traditional approach, which performs real-time pairwise 

comparisons for every query, and a Centric Approach, which 

decouples the pipeline into offline indexing and fast real-time 

querying stages. Among all models and settings, the 3D SIFT-

based evaluation on a large 500 files of 6.5 GB volumetric 

brain MRA dataset highlighted the most significant 

performance distinctions between the two paradigms 

illustrated on Tables 13-16, Using 3D SIFT features, the 

Traditional approach required over 10,700 seconds per query 

(5081.41s for feature extraction + 5640.18s for comparison), 

making it impractical for real-time applications. In contrast, 

the Centric pipeline processed the same dataset in 4820.26 

seconds total, with the majority (4807.64s) spent during a one-

time offline indexing phase. At query time, only 12.59 seconds 

were needed for feature extraction, and FAISS similarity 

search executed in just 0.0002 seconds, enabling truly 

responsive queries. This design as shown in Figure 3 yields 

more than 55% reduction in total processing time, but more 

importantly, an 850× speedup in online execution—

demonstrating that separating concerns between indexing and 

querying not only optimizes resource use but transforms the 

retrieval system into a scalable, real-time solution for medical 

imaging applications. 

 

 
 

Figure 3. 3D SIFT accuracy and retrieval consistency 

comparison of traditional full pairwise and centric similarity 

search strategies 

 

Experimental results highlight the effectiveness and 

practicality of the proposed Centric feature-based method. Its 

core strength lies in the architectural separation between 

offline indexing and online querying, which allows for rapid, 

real-time retrieval without the need to reprocess the entire 

dataset for each query. This design ensures seamless 

responsiveness, making the system highly suitable for real-

time applications, including clinical and machine learning 

environments. The indexing process, performed only once and 

offline, enables the system to handle queries almost instantly, 

even on large-scale datasets. 

In addition to its performance benefits, the method is both 

flexible and resource-efficient. It does not require prior image 
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segmentation [10] and runs effectively on standard computing 

hardware, avoiding reliance on costly GPU setups  

. The indexing structure supports both visual and textual 

queries and can easily accommodate various feature extraction 

algorithms, whether replacing 3D SIFT with HOG or 

integrating GPU-accelerated methods for more demanding 

applications. Offline processing tasks can also be scheduled 

during low-demand periods, further optimizing system 

efficiency. 

Table 17. Requirements and resources for experimental 

study 

Total Memory 
Distributed Across Multiple 

Nodes 

A Single Pool of 

RAM 

Operating 

System 
Linux MacOS 

RAM Per Node 12.7 GB 32 GB 

CPU Cores 8 16-core

GPU Cores - 16-core

Hard Disk 107.7 GB 512 GB SSD 

Entire server 

RAM 
Configurable per node Entire server RAM 

Flexibility Distributed workload Single workload 

Complexity More complex setup Simpler setup 

Importantly, the Centric approach also offers a significant 

advantage in terms of data privacy and security. Because it 

stores only extracted features rather than raw medical images, 

it minimizes the risk of exposing sensitive patient information. 

This feature-centric design reduces the need to handle or share 

original data directly, thereby enhancing compliance with 

privacy regulations and contributing to more secure medical 

data management. Altogether, the Centric approach presents a 

scalable, secure, and adaptable solution for managing and 

retrieving large volumes of medical imaging data in support of 

precision medicine and biomedical research. 

6. CONCLUSIONS

In this article, we first provided an overview of medical 

image modalities stored as multidimensional datasets and 

highlighted the major challenges in analyzing and extracting 

diagnostic insights from large, heterogeneous archives. These 

challenges include high computational costs and limited 

accessibility for clinical practitioners. To overcome them, we 

proposed the Centric Approach, which separates one-time 

feature indexing from real-time retrieval. This concept 

provides a scalable and efficient solution for 3D medical 

image retrieval that achieves the same precision as traditional 

pairwise methods while drastically reducing processing time - 

ideal for real-time clinical applications and large medical 

archives. 

Our method also simplifies tedious manual data entry and 

retrospective analyses by enabling automatic, batch 

processing of historical data. In addition, the system is 

extensible to support 2D feature extraction and hybrid 

multimodal queries. Although the experimental evaluations in 

this article were performed with curated datasets, the 

architecture is designed to scale to large clinical repositories 

and integrate seamlessly with PACS environments, enabling 

direct interoperability with radiologists' workflows. This 

opens the door for intelligent queries, automated tagging and 

fast similarity-based retrieval in the clinical environment. 

Future work will explore the extension of this system to 4D 

modalities and closer coupling with real-time diagnostic 

decision aids. 
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