
Quantum-Resistant Identity Management via ZK-STARKs and Decentralized Storage

Khalid Maidine1* , Ahmed EL-Yahyaoui1 , Salima Trichni1;2

1 Intelligent Processing and Security of Systems, Faculty of sciences, Mohammed V University in Rabat, Rabat 10100,

Morocco
2 Department of Interdisciplinary Modules, Faculty of Economics, Legal and Social Sciences of Sale, Mohammed V University

in Rabat, Rabat 10100, Morocco

Corresponding Author Email: khalid_maidine@um5.ac.ma

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.300516 ABSTRACT

Received: 19 March 2025

Revised: 12 May 2025

Accepted: 22 May 2025

Available online: 31 May 2025

Traditional identity management systems are inherently vulnerable to critical issues,

including pervasive privacy breaches and single points of failure, which compromise the

security and integrity of sensitive user information. These centralized models require the

disclosure of personal data to third parties, thereby increasing the risk of misuse,

exploitation, and large-scale data leaks. To address these limitations alongside the emerging

threat posed by quantum computing this paper proposes a novel identity management

architecture that integrates Zero-Knowledge Scalable Transparent Arguments of

Knowledge, the InterPlanetary File System, and blockchain technology. This design enables

decentralized, privacy-preserving identity verification by allowing users to prove specific

identity attributes without revealing the underlying sensitive data, and without the need for

trusted third parties. The use of the InterPlanetary File System ensures that encrypted user

data is stored off-chain in a distributed, immutable manner, reducing exposure risks and

enhancing availability. A functional prototype of the system was developed using a Zero-

Knowledge Scalable Transparent Arguments of Knowledge cryptographic library and

evaluated to demonstrate its practical feasibility. The evaluation confirms that the

architecture is efficient, scalable, and resistant to quantum attacks, making it a strong

candidate for real-world digital identity systems. This work provides a forward-looking,

secure, and privacy-preserving alternative to traditional identity frameworks.

Keywords:

blockchain technology, IPFS, identity

management, quantum computing, smart

contract, ZK-STARK, decentralized identity,

privacy-preserving technologies

1. INTRODUCTION

1.1 Background

The proliferation of online services, while delivering

unprecedented user convenience, has simultaneously exposed

critical vulnerabilities within the foundational identity

protocols such as OAuth, OIDC, and SAML that underpin the

digital ecosystem [1]. These systems, which rely heavily on

centralized authorities [2], are particularly susceptible to

cyberattacks because they store vast amounts of sensitive user

data in one central location. This creates a "honeypot" effect,

making them attractive targets for cybercriminals. Once

breached, these systems can expose the personal information

of millions (Table 1), leading to serious privacy and security

issues.

Several recent incidents in 2025 demonstrate the extent of

vulnerabilities leading to the exposure of sensitive user

information. Cybercriminals continue to target organizations

across various sectors, successfully exfiltrating personal data

such as names, addresses, Social Security numbers, dates of

birth, and phone numbers.

For example, in May 2025, a massive data exposure, dubbed

the "Mega-Leak," came to light, affecting an estimated 184.1

million user credentials [3]. This breach involved an unsecured

online database containing plaintext usernames, passwords,

and login links for major platforms including Google, Apple,

Microsoft, Facebook, Instagram, and Snapchat. The exposed

data also included login details for banking and financial

institutions, healthcare services, and even government portals,

with some. gov email addresses found within the dataset.

Cybersecurity researcher Jeremiah Fowler, who discovered

the database, believes the data originated from widespread

infostealer malware campaigns designed to siphon sensitive

information like browser logins, cookies, and autofill data

from infected devices. The direct availability of such a vast

trove of plaintext credentials poses an extreme risk of identity

theft, financial fraud, and further targeted attacks.

The Canadian utility provider Emera Power/Nova Scotia

Power reported in April/May 2025 that a ransomware attack,

which began around March 19, 2025, and was detected on

April 25, 2025, resulted in the theft of personal and financial

data belonging to approximately 280,000 customers [4]. The

stolen information, which included names, phone numbers,

email addresses, mailing addresses, dates of birth, account

history, driver's license numbers, Social Insurance Numbers

(SINs), and bank account numbers, was subsequently

published on the dark web. The company confirmed it did not

pay the ransom demand.

Ingénierie des Systèmes d’Information
Vol. 30, No. 5, May, 2025, pp. 1297-1311

Journal homepage: http://iieta.org/journals/isi

1297

https://orcid.org/0009-0007-5926-9281
https://orcid.org/0000-0002-9385-7315
https://orcid.org/0000-0002-0323-4254
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.300516&domain=pdf

Table 1. Major data breaches in 2025

Organization Date Data Records Type of Data Mitigation

"Mega-Leak" (Google,

Apple, Microsoft,

Facebook, etc.)

May

2025
184.1 million

Usernames, passwords, email

addresses, login links (including for

bank, health, government portals)

Eliminates central data "honeypots" with decentralized

IPFS storage. Replaces vulnerable passwords with

secure wallet-based authentication, preventing password

theft.

LexisNexis Risk

Solutions

Apr

2025
364,333

Names, phone numbers, postal and

email addresses, Social Security

numbers, driver's license numbers,

dates of birth

Stores data decentrally on IPFS, preventing exposure

from a single compromised platform. Uses zk-STARKs

for verification, so raw personal data is never shared or

exposed.

Emera Power / Nova

Scotia Power

May

2025
280

Names, phone numbers, email

addresses, mailing addresses, dates of

birth, driver's license numbers, Social

Insurance Numbers, bank account

numbers

Removes the central target for ransomware via

decentralized storage. User-controlled encryption makes

stolen data files unusable to attackers.

Adidas
May

2025
Not Specified

Names, email addresses, phone

numbers, physical addresses

Reduces third-party risk by using zk-STARK proofs for

verification, so vendors never hold or store raw user

data. Users maintain direct control over their

information.

Select Medical Holdings
June

2025
Not Specified

Names, dates of birth, addresses,

provider names, dates of service,

patient account numbers, Social

Security numbers (in some cases)

Prevents vendor data breaches by storing patient data

decentrally under user control. Uses zk-STARKs to

verify information without sharing sensitive data like

SSNs.

TeleMessage
May

2025
Not Specified

Names, message fragments, contact

information of US government

personnel

Enforces user-side encryption before data is stored, so

service providers cannot access unencrypted

information. Secures identity with cryptographic wallets

instead of vulnerable service accounts.

Sportswear giant Adidas confirmed a data breach in May

2025 where customer contact information was compromised

via an attack on a third-party customer service provider [5].

The exposed data included names, email addresses, phone

numbers, and physical addresses. Adidas stated that sensitive

financial data, such as payment card details and passwords,

was not affected.

Select Medical Holdings notified patients in June 2025

about a data security incident impacting its former vendor,

Nationwide Recovery Services, Inc [6]. The breach at the

vendor was detected on July 11, 2024, and a review completed

by February 3, 2025, confirmed patient data was accessed.

Exposed information potentially included names, dates of

birth, addresses, provider names, dates of service, patient

account numbers, and, in some cases, Social Security numbers.

TeleMessage, a company providing a modified version of

the Signal messaging app for regulatory archiving, was

reportedly hacked twice in May 2025 [7]. The breach exposed

administrator credentials and unencrypted message content,

including names, message fragments, and contact information

associated with users from U.S. government agencies.

LexisNexis Risk Solutions disclosed in April 2025 that a

data breach occurring on December 25, 2024, had

compromised the personal information of 364,333 individuals

[8]. An unauthorized third party gained access to the

company's GitHub account by exploiting a vulnerability in a

third-party software platform used for software development.

The stolen data could include names, phone numbers, postal

and email addresses, Social Security numbers, driver's license

numbers, and dates of birth.

Whether through exploiting unpatched software

vulnerabilities, misconfigurations, or social engineering

attacks like phishing, cybercriminals are able to penetrate

these systems with alarming ease. The reliance on a single

point of failure means that once a system is breached, the

consequences are widespread, affecting millions of

individuals and potentially causing long-term damage to the

organization’s reputation and financial stability.

1.2 Motivation

The repeated occurrence of high-profile data breaches

underscores the critical need for more secure and decentralized

identity management systems. Centralized platforms, where

personal data is stored in a single location, are particularly

vulnerable to exploitation through cyberattacks and human

error [2]. These breaches not only lead to massive leaks of

sensitive information but also undermine public trust, making

users reluctant to share their personal data online. The impact

is profound: digital services are increasingly seen as unsafe,

slowing the adoption of innovative technologies.

To address this issue, decentralized solutions, such as those

built on blockchain technology [9], offer a promising

alternative. By decentralizing data storage and verification,

these systems eliminate single points of failure and provide

greater security. For instance, the InterPlanetary File System

(IPFS) could be integrated into identity management

frameworks, allowing data to be stored across a distributed

network rather than on a single server. This would make it

harder for attackers to locate and exploit sensitive information.

In addition, advanced cryptographic techniques [10] like

Zero-Knowledge Proofs can enhance privacy within these

decentralized systems. ZKPs enable users to verify their

identity without actually revealing their personal data, adding

a further layer of protection against data breaches. This

combination of blockchain, IPFS, and ZKP can result in a

robust identity management system that reduces reliance on

centralized control, improves security, and mitigates risks

associated with quantum computing.

Moreover, IPFS [11] can ensure that personal data remains

encrypted and fragmented across various nodes, reducing the

chances of mass data exposure. It also aligns well with future-

proofing efforts against quantum threats, which could

potentially break traditional encryption methods. By

integrating blockchain with IPFS and ZKP, identity

management can evolve into a more secure, transparent, and

resilient framework.

1298

By integrating these technologies Blockchain, ZKP and

IPFS, we can build systems that not only improve security and

reduce reliance on centralized control but also prepare for

future threats, such as quantum computing [12].

1.3 Contribution

This paper proposes a new and innovative framework for

identity management that incorporates blockchain technology,

ZK-STARK, and IPFS in one unified system to solve the triad

problems of security, privacy, and availability in digital

identity management. Moreover, the architecture described in

this paper shifts toward better user information protection

from centralized systems that store data on servers because

they require higher levels of security. In addition, due to

blockchains decentralized nature as well as its immutability

feature, the framework has eliminated weak spots related to

single points of failure which is critical issue towards

providing strong underlying infrastructure for auditable

identity management. Also, the integration of the IPFS makes

it possible to store user data in a distributed manner while

maintaining redundancy which supports off-chain storage with

guaranteed accessibility and integrity. Another contribution is

use of ZK-STARK , which enable private attestations without

disclosing sensitive information ， and age verification

attesting where users can prove being older than a threshold

age without disclosing full date of birth at which age

calculation was performed. This prototype auspiciously attests

system practicality and demonstrates combining zero-

knowledge proofs with decentralized storages effectiveness

toward privacy-preserving identity verification systems.

Additionally, this framework approaches quantum.

2. RELATED WORKS

The evolution of digital identity management has been

marked by a significant trend away from centralized platforms

toward decentralized, blockchain-based systems designed to

enhance user security and control. Initial implementations of

blockchain-based identity, such as Blockchain-based Identity

as a Service (BIDaaS) [13], demonstrated the feasibility of

decentralizing user authentication. However, these early

models were limited in their decentralization, often retaining a

central entity for managing identity attributes, which

reintroduced risks associated with a single point of failure and

did not fully resolve privacy concerns. This underscored the

necessity for more advanced systems capable of both

decentralizing control and fundamentally protecting user

privacy during verification processes.

To address these privacy deficiencies, subsequent research

integrated Zero-Knowledge Proofs, which enable information

verification without exposing the underlying data. A

significant portion of this research utilized zk-SNARKs to

secure identity transactions [14]. This approach was applied

across various domains, including frameworks for digital

identity management on the blockchain, privacy-preserving

healthcare credentials like vaccination [15] passes, and the

securing of electronic health records (EHRs) [16]. Other

proposed systems combined zk-SNARKs with the Ethereum

blockchain and the IPFS to construct Self-Sovereign Identity

frameworks [17].

Another approach to attribute privacy involves specialized

cryptographic methods like range proofs, which verify that a

value falls within an interval without revealing the specific

value. Addressing this, the study [18] developed an efficient

DID system for social networks using a novel range proof

protocol based on Pointcheval-Sanders (PS) signatures.

Despite their utility, zk-SNARKs possess inherent

limitations that pose considerable challenges to their

widespread adoption. A primary vulnerability is the

requirement of a "trusted setup," an initial parameter-

generation event that, if compromised, could undermine the

security of the entire system. Furthermore, the computational

overhead associated with generating zk-SNARK proofs can

impede scalability, especially in high-throughput applications.

Critically, the cryptographic principles that zk-SNARKs are

built upon, such as elliptic curves and pairings, are vulnerable

to cryptanalytic attacks from future quantum computers.

In response to these challenges, zk-STARKs have emerged

as a more robust and forward-looking alternative. A defining

feature of zk-STARKs is that they do not require a trusted

setup, which provides full transparency and eliminates a

significant security risk. They are constructed using hash

functions, rendering them inherently resistant to quantum

attacks and ensuring long-term cryptographic integrity.

Moreover, zk-STARKs offer superior scalability and

efficiency for complex computations, making them highly

suitable for large-scale identity management systems. While

comparative studies have highlighted zk-STARKs as a

promising alternative to zk-SNARKs, a key research gap

persists in their practical application.

Although zk-STARKs have been theoretically explored in

identity systems [19], our framework goes further by

implementing them in a functioning prototype with Ethereum

and IPFS integration. The challenges associated with zk-

STARKs' larger proof sizes and the need for their efficient

pairing with off-chain storage have remained underdeveloped

in existing literature. This paper seeks to address this gap by

proposing a novel architecture that synthesizes zk-STARKs,

IPFS, and blockchain technology. By leveraging the unique

advantages of each component, our work presents a solution

designed to overcome the privacy, security, and scalability

limitations of prior identity management systems.

3. PRELIMINARIES

3.1 Blockchain

Since the publication of Bitcoin’s whitepaper in 2008 [20],

followed by the launch of Bitcoin in 2009 [21],

cryptocurrencies have significantly influenced traditional

finance. At the heart of Bitcoin lies blockchain, a distributed

ledger technology. In this system, peers connect individual

blocks in a chronological sequence, forming a secure data

structure that ensures immutability and integrity through

cryptographic methods. Because blockchain transactions do

not require intermediaries, they are transparent, traceable, and

resistant to tampering. This decentralized nature establishes a

strong trust mechanism in an environment that does not rely

on central authorities. Blockchains can be categorized based

on whether they require permission for peers to join or leave

the network. Permissionless [22] or simply public blockchains,

are fully decentralized networks where transactions and

incentives are verified through consensus mechanisms

involving unknown participants. This structure supports a

decentralized model of trust, where all participants have equal

1299

access to the network without the need for authorization. In

contrast, permissioned blockchains [23] include consortium

and private blockchains. Consortium blockchains are managed

by a group of institutions that collectively decide the level of

access and openness to the public, depending on the use case.

These blockchains typically use alternative consensus

mechanisms, such as Proof of Stake (PoS) or Practical

Byzantine Fault Tolerance (PBFT), instead of the energy-

intensive Proof of Work (PoW). Private blockchains, on the

other hand, restrict access to a single entity or a select group,

making them suitable for scenarios with a limited number of

participants. While this structure enhances control and security,

it results in a more centralized system with a narrower scope

of application compared to public blockchains.

3.2 Smart contracts

Smart contracts are programs that operate themselves in a

decentralized manner, allowing the execution of agreements

without the intervention of intermediaries, usually executed in

blockchains like Ethereum [24]. They are used in various

applications, such as financial transactions and identity

management, where they automate tasks like verifying identity

attributes (e.g., citizenship or educational credentials) based

on predefined rules. For instance, a smart contract can validate

a user’s citizenship status by confirming a valid passport

without exposing unnecessary sensitive information,

improving reliability and reducing the chance of human error.

Furthermore, smart contracts dynamically manage

Decentralized Identifiers, automatically updating or revoking

credentials like expired professional certifications, ensuring

only valid records are recognized. Latest improvements in

contract security and auditing may become a turning point for

smart contracts as vulnerability events, like the DAO attack in

2016 [25], can bring them down completely. Techniques like

formal verification, symbolic execution, and fuzzing have

improved their reliability. Formal verification mathematically

ensures contracts meet specifications, while symbolic

execution explores potential vulnerabilities by examining all

execution paths. Fuzzing [26, 27], since 2018, has become a

key tool in discovering unexpected vulnerabilities by

generating random inputs. The main focus of future

improvements of these techniques lies on better performance,

more effective bug detection (test oracles), as well as high-

quality initial inputs, leading to safer and more efficient smart

contracts.

3.3 Decentralized identifiers

DIDs represent a major innovation in blockchain-based

identity management that open a self-sovereign identity space

limitless by traditional identifiers usually monitored by

centralized entities [17]. They are fundamentally different

from traditional ones, which are operated by third-party

authorities such as governments or corporations, as DIDs give

users the power to create and manage their own identifiers

without anyone's help. Such a model removes the necessity to

trust intermediaries, allowing people to get full ownership and

control of their identity credentials. These identifiers, which

are securely saved on blockchain, utilize smart contracts to

confirm the truth of the credentials that are given, thus the

process of verification is both smooth and safe. The

decentralized character of DIDs not only reduces the chances

of single points of failure which are a major weakness in

centralized systems but also improve privacy and data security

for users in the digital ecosystem [28].

3.4 ZK-Starks

ZK-STARKs were introduced in 2018 [29] as a

groundbreaking proof system for cryptography. The systems

were developed by Eli Ben-Sasson and his group, ZK-

STARKs being attempts to improve the performance and

handling of security issues of the zero-knowledge proof

systems, for example, ZK-SNARKs, that still needed a trusted

setup phase. The transparency of ZK-STARKs is still upheld

due to their characteristic of not having a setup, thus removing

the possibility of a single point of failure in the system. ZK-

STARKs implement the idea of probabilistic proofs mainly

through the FRI algorithm, which helps them come up with

short proofs of long computations. Such proofs are verifiable

in a time which is sublinear. This makes them extremely

effective and scalable, particularly in situations with large data

samples like blockchain-based identity management systems.

They are also noted to be logically consistent with ZK-

SNARKs in terms of quantum resistance. The source of this

power is their reliance on randomness and hashing functions

for security, unlike elliptic-curve and pairing-based

cryptography that they use, which is susceptible to attacks

from quantum computers [30]. Hence, due to the fact that no

quantum algorithm, to date, has been proven able to efficiently

break collision-resistant hash functions, it is safe to say that

ZK-STARKs still stand strong against quantum adversaries

and can provide a secure basis for the next generations of

quantum computers. The deployment of ZK-STARKs casts

them as a revolutionizing agent for decentralized apps that

demand both privacy and scalability [31], mainly in situations

where it is vital that the nature of secret information, like user

identities, is not altered while keeping it efficient and secure.

Their algorithmic innovation and scalability make ZK-

STARKs a critical tool for the future of secure digital identity

systems. Table 2 and Figure 1 provides a side-by-side

comparison of zk-STARKs and zk-SNARKs, highlighting key

differences. The following subsections outline the process for

generating and verification a ZK-STARK proof [29].

Table 2. Comparison of ZK-STARKs vs. ZK-SNARKs [32]

Feature ZK-STARKs ZK-SNARKs

Trusted Setup No trusted setup required Requires trusted setup

Transparency Fully transparent (no trusted third party) Relies on a trusted third party for setup

Proof Size Larger proof size Smaller proof size

Verification Time Verifiable in sublinear time Efficient but slightly longer verification time

Quantum Resistance Resistant to quantum attacks Vulnerable to quantum computing attacks

Scalability Highly scalable, especially with large datasets Less scalable compared to ZK-STARKs

Mathematical Basis Based on probabilistic proofs (e.g., FRI – Fast Reed-Solomon IOPP) Based on elliptic curves and pairings

Efficiency More efficient for complex computations Efficient for smaller or simpler computations

Application Areas
Suitable for applications requiring transparency and scalability, like

voting systems and identity verification.

Used in Zcash, Filecoin, and Loopring due to

small proof size and low storage needs.

1300

Figure 1. ZK-STARKs vs. ZK-SNARKs

Before diving into the technical mechanics, consider a

simple analogy. Imagine you (the Prover) have solved a

Sudoku puzzle and want to convince a friend (the Verifier) that

your solution is correct without showing them the completed

grid.

1. Commitment: You write down your entire solution but

hide it from your friend. This is the "commitment"; you

are now bound to this specific solution and cannot change

it.

2. Verification through Random Sampling: Instead of

looking at the whole grid, your friend randomly asks you

to reveal just one specific part—for example, "Show me

the third row" or "Show me the top-right 3×3 box."

3. Proof: You reveal only the requested row or box. Your

friend checks if it contains the digits 1 through 9 exactly

once, according to the rules of Sudoku.

4. Repeat: You repeat this process several times with

different random requests.

After a few successful rounds, your friend becomes

mathematically convinced that you have a valid solution for

the entire puzzle, even though they have never seen it in its

entirety. They have verified your knowledge without you

revealing the secret.

ZK-STARKs operate on a similar principle but with

mathematical rigor. The "rules of the game" (like the rules of

Sudoku) are translated into polynomial equations. This

translation process is known as “arithmetization”.

• ZK-STARK Proof Generation

a. Problem Definition and Requirements

The goal of a ZK-STARK proof is to provide a verifiable

proof of computation C performed on a dataset D without

revealing the dataset itself to ensure privacy. This process

allows a prover P (e.g., an institution with confidential data) to

prove a claim, such as the absence of a specific data point in

D. The proof must reveal nothing about the dataset beyond the

confirmed outcome. A specific output α from C (e.g., “no

match” for DNA profile p) [29] is shared, while P must ensure

that all computation steps align with D without needing trusted

intermediaries or revealing sensitive data.

b. Arithmetization-Translating Computation to Algebra

To verify complex computational statements in a verifiable

proof, ZK-STARK translates the steps of a computation into

an algebraic form, known as arithmetization. This process is

broken down as follows:

Algebraic Intermediate Representation (AIR):

AIR uses a set of polynomials Pi(X,Y) to represent each

computational step as algebraic constraints. Here, X represents

the current state, and Y the subsequent state in the computation.

Each transition in the computation (moving from one state to

the next) is encoded as:

𝑃1(𝑋, 𝑌) = 0, 𝑃2(𝑋, 𝑌) = 0, … , 𝑃𝑠(𝑋, 𝑌) = 0

This ensures that every step in the computation aligns with

polynomial constraints, forming an algebraic “check” for each

operation.

Low-Degree Extension (LDE):

LDE transforms function f, defined over the finite set S, into

f^' over a larger set S^', ensuring consistency with the original

function over a more extensive range. By extending the

polynomial representation of the computation over a larger

field or set, ZK-STARK verifies the proximity of this larger

dataset to the original. The article emphasizes using the Fast

Fourier Transform (FFT) method, particularly the additive

FFT for binary fields, to efficiently calculate LDEs.

c. Commitment to Data and Execution Trace

This step ensures that all inputs, intermediate steps, and

outputs are committed to in a way that they cannot be altered

later. The commitment mechanisms provide a “snapshot” of

the data and computation at various points.

Reed-Solomon Encoding:

Data and intermediate steps are encoded using Reed-

Solomon codes, creating a mathematical commitment to the

computation’s structure and sequence. It secures the trace,

allowing verifiers to later check specific parts without needing

the entire dataset, making the verification more scalable.

Merkle Tree

A Merkle tree arranges data (encoded states of the

computation) in a binary tree, where each node is a hash of its

children, and the root hash commits to the entire dataset. This

Merkle root acts as a secure, immutable “signature” for all data

in the computation, ensuring any alteration in the data can be

detected through inconsistent paths back to the root.

Commit(𝐷) = MerkleRoot(𝑓(𝐷))

Authentication Paths

To confirm that specific elements in the computation are

correct, each queried element includes an authentication path

that shows its alignment with the root commitment.

d. Interactive Oracle Proof of Proximity (IOPP)

Random Queries: Instead of examining all data, the verifier

randomly samples certain points in the computation, providing

high-confidence verification without full access.

FRI (Fast Reed-Solomon IOP of Proximity): This protocol,

discussed in the article, helps identify if the function f

approximates a low-degree polynomial g, ensuring the proof

is within an acceptable range of accuracy.

𝑓 ∈ 𝑅𝑆[𝐹, 𝑆, 𝜌] such that 𝑓(𝑥) ≈ 𝑔(𝑥)

e. Proof of Knowledge and Soundness

A ZK-STARK proof must ensure two key properties:

Completeness: If the statement is true (e.g., the DNA is not

in the database), the prover can construct a proof that

convinces the verifier with high probability.

Soundness: If the statement is false, the prover cannot

convince the verifier, except with negligible probability.

The proof must ensure that no information is revealed about

the data or the computation beyond the output α. This is

1301

achieved by using randomness in the query responses,

ensuring that no sensitive data points are exposed.

• ZK-STARK Proof Verification

a. Merkle Root Verification

The verifier first checks that the Merkle root provided by

the prover is consistent with the original committed data. This

ensures data integrity, with the root 𝑅 of the Merkle tree

representing the computation trace 𝑇 satisfying:

𝑅 = hash(𝑇)

b. Low-Degree Extension (LDE)

The verifier uses a Low-Degree Extension (LDE) to

interpolate the polynomial representing the computation trace,

ensuring it adheres to a low-degree polynomial.

For a function 𝑓 defined over a field 𝐹 with subsets 𝑆 ⊂ 𝑆′,
the LDE 𝑓′ is represented by:

𝑓′(𝑥) =∑𝑎𝑖

𝑑

𝑖=0

𝑥𝑖

The complexity of the LDE is optimized using the Fast

Fourier Transform (FFT), reducing operations to [29]:

3 ⋅ |𝑆′|log|𝑆′|

c. Reed-Solomon Interactive Oracle Proof of Proximity

(FRI Protocol)

To confirm that the prover’s polynomial 𝑓(𝑥) maintains a

low degree, the FRI protocol performs proximity testing by

sampling random values 𝑥1, 𝑥2, … , 𝑥𝑘.

The verifier ensures that 𝑓(𝑥) approximates a polynomial

of degree < 𝜌|𝑆|, where 𝜌 is the rate parameter:

𝑓(𝑥) ≈ 𝑔(𝑥)

d. Random Sampling with Merkle Path Verification

For each random point 𝑥𝑖 queried, the verifier uses the

Merkle paths from leaf to root to confirm the consistency with

the committed trace.

Path verification follows:

hash(𝑥𝑖−1, 𝑥𝑖) = 𝑥parent

Each path must hash to the correct parent node, ensuring

consistency with the initial commitments.

e. Final Consistency Check

After passing all polynomial and Merkle checks, the verifier

performs a final consistency test to ensure all constraints for

each queried polynomial point align with the initial

commitments.

This final check confirms the integrity and validity of the

entire computation trace, completing the ZK-STARK

verification process.

The following ratios determine ZK-STARK’s efficiency in

verification time and communication size:

𝜌time =
𝑇𝑉
𝑇𝐶

 and 𝜌size =
𝐶𝐶

|𝐷|

3.5 InterPlanetary File System (IPFS)

The InterPlanetary File System (IPFS) is the technology that

is being extensively applied in different scopes of work to get

the most out of its decentralized, peer-to-peer storage

architecture [33]. One of the most outstanding cases in the

world of IdM is the utilization of Filecoin, A decentralized

storage network that is built upon the IPFS protocol for

accessing the content distribution platforms. In the Filecoin

network, users can pool their resources for securing and

retrieving files in a decentralized fashion, which helps in

reducing the need for central data servers. This strategy is

more efficient and sustainable in the manner it protects against

data outages and censorship because the files are distributed

among different nodes, instead of being hosted on a single

server.

The other significant example is a DTube, completely

decentralized video hosting platform for creating and

distributing videos, which is operating like Youtube but using

IPFS for storing the video content. By making the video files

distributed among nodes, DTube assures the content is not

controlled or censored by a single entity, thus the users get

more control and privacy. So, the IPFS is also used in the

decentralized version of web hosting, where the websites exist

as distributed across a network of nodes, which guarantees that

the sites are always up even if some of the nodes go down.

These use cases vividly showcase IPFS’s ability to make the

life of web applications more resilient, privacy-preserving, and

decentralized.

The methodology that IPFS employs is to split the files up

into several pieces, which are then each given a unique

cryptographic hash called a content identifier (CID) [34].

These chunks are distributed across different nodes in the

network, and when a user requests a file, the network

reassembles it from the distributed pieces using the content

identifiers. Since the system is content-addressed, users

retrieve data based on the hash of the content itself, not its

location on a server. This ensures that files are immutable; any

change in the file would produce a different hash, effectively

creating a new version of the file. This process ensures data

integrity, as any tampering is immediately detectable through

hash comparison. Additionally, IPFS uses a distributed hash

table (DHT) [35] to locate which nodes store specific chunks

of data, ensuring efficient and scalable retrieval.

4. ARCHITECTURE OVERVIEW

The decentralized identity management system enables

users to manage their own digital identities securely and

privately using a blockchain infrastructure. Our architecture

incorporates zk-STARKs to ensure that users can verify their

identity attributes without revealing sensitive information,

while the use of DIDs and IPFS ensures that users maintain

full control over their identities without the need for

centralized authorities. In the following sections we will define

our architecture key components, and how the integration of

zk-STARKs and IPFS enhance the privacy, availability and

security of user’s identity. Sign up and verification flow are

also described on the next sections.

4.1 Key components

The main components of our proposed architecture are:

User: The person who interacts with the decentralized

application (Dapp) via their wallet (e.g., MetaMask). The User

provide necessary personal data (name, location, and birthday)

through a sign-up form and also authorize transactions by

1302

connecting their wallet.

Wallet: A cryptographic wallet that holds the user’s private

key and enables them to sign transactions on the Ethereum

blockchain. It connects to the Dapp, allowing the user to

register and approve smart contract interactions. It also

provides the wallet address (GetWallet () function) used for

generating Decentralized Identifiers (DID).

BLOCKID Dapp: The frontend application interface that

allows users to interact with the system. It acts as the client-

side interface where users connect their wallet and fill out the

sign-up form with personal details (name, location, birthday).

It communicates with the smart contract backend to execute

operations such as DID generation, data submission, and IPFS

storage.

Smart Contract: A decentralized program running on the

Ethereum blockchain responsible for the logic of the Dapp. It’s

used for:

- Generate DID: Creates a unique Decentralized Identifier

(DID) for each user based on their wallet address. This ensures

that each user has a verifiable identity tied to their wallet.

- Push DID: Once generated, the DID is pushed onto the

blockchain using the wallet address as a reference.

- Submit Data: The personal details (name, location,

birthday) are encrypted using zk-STARKS and submitted to

the contract.

- Store Hash: After the data is encrypted, it is stored on IPFS,

and the resulting IPFS hash is saved in the smart contract along

with the user’s DID.

IPFS (InterPlanetary File System): A decentralized

storage system that holds the encrypted personal data. After

the user data (name, location, birthday) is encrypted using zk-

STARKS, it is stored on IPFS in a distributed manner. An

IPFS hash is generated, which uniquely identifies the stored

data [33].

4.2 Sign-up workflow

As shown in Figure 2, the sign-up process is described as

below:

1. The user initiates the process by accessing the BLOCKID.

2. The user connects their Ethereum wallet (e.g., MetaMask,

TrustWallet) to the DApp to authenticate. The wallet’s

Ethereum address is retrieved and stored locally in the DApp

as the user’s on-chain identity.

3. The DID is generated by taking the user’s Ethereum

address using the W3C DID specification and applying a

prefix (did:blockid:) that aligns with Ethereum DID methods.

4. The DApp sends the generated DID and the Ethereum

wallet address to a Smart Contract deployed on Ethereum. The

contract maintains a mapping of Ethereum addresses to their

corresponding DIDs.

5. User fills out the sign-up form (Name, Location, Birthday)

and submits it.

Example:

{

"Name": "Mohammed",

"location": "Morocco",

"birthday": "1964-12-11"

}

6. The user’s name, location, and birthday are prepared for

encryption. The user data is converted into a format suitable

for zk-STARK encryption. The data is transformed into

polynomials over a finite field. This process involves

expressing the user’s data as a set of equations that can be later

used for zero-knowledge proofs. For example, the name

"Mohammed" is hashed and represented as:

𝑃name(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3

7. The DApp takes the polynomial representations and

generates a succinct proof that the data satisfies a particular set.

8. The DApp immediately validates the generated zk-

STARK proof to ensure its correctness and integrity:

- If the proof is valid: The workflow continues to the next

step.

- If the proof is invalid: The process is halted. An error is

communicated to the user, preventing the system from storing

invalid or corrupted data on IPFS. The user may be prompted

to resubmit their information.

9. The user data (name, location, birthday), along with the

zk-STARK proof, is packaged and then encrypted for extra

security before storing on IPFS, ensuring the data cannot be

accessed without the encryption key.

10. The encrypted data is uploaded to IPFS, and a Content

Identifier (CID) is generated, which acts as the reference to the

stored data.

11. The IPFS hash and zk-STARK proof are now linked to

the user’s DID and pushed to the blockchain. The smart

contract can maintain a mapping of DID to IPFS hashes.

4.3 Verification workflow

Figure 3 illustrates the proposed system's verification

workflow:

1. The user initiates the process by requesting an access to

a service provider (verifier). The verifier could be an external

service that requires identity verification (e.g., a banking

service, government portal, etc.).

2. The user authenticates with the verifier by connecting

their wallet used on BLOCKID App (e.g., MetaMask).

3. The verifier retrieves the wallet address of the user to

establish their identity.

4. The verifier queries the Smart Contract on the Ethereum

blockchain to retrieve the DID and the linked IPFS hash

associated with the user’s Ethereum wallet.

5. The Smart Contract returns the IPFS hash to the external

service.

6. The verifier sends a request to IPFS to retrieve the

encrypted identity data linked to that hash.

7. The IPFS sends back the encrypted identity data and the

ZK-STARK proof associated with the user’s DID.

Example:

{

 "proof": "zk_stark_proof_data",

 "encrypted_data": {

 "name": Encrypted (Mohammed),

 "location": Encrypted (Morocco),

 "birthday": Encrypted (1964-12-11)

 }

 }

8. The verifier verifies the ZK-STARK proof to ensure the

integrity and authenticity of the encrypted data without

actually revealing the sensitive information. The proof is

validated off-chain to reduce Ethereum gas fees.

9. If ZK-STARK proof is valid, the verifier can confidently

confirm the user’s identity and grant access to the requested

service. If K-STARK proof fails, the user is denied access as

the verification process did not confirm their identity.

1303

Figure 2. Proposed system sign-up workflow

Figure 3. Proposed system verification workflow

5. IMPLEMENTETION

5.1 Overview of development setup

The primary development was performed on a machine

equipped with a 13th Gen i7-1355U processor, 16 GB of

installed RAM, and running the Windows 11 Pro operating

system. This configuration represents a standard development

environment, indicating that the system's construction does not

necessitate specialized or prohibitively expensive hardware.

This aspect is pertinent as it suggests broader accessibility for

future research, development, and potential adoption of similar

architectures. The core technology stack selected for this

project comprises (Table 3) Ganache for local blockchain

simulation [36], IPFS Desktop for managing decentralized file

storage [37], React.js for crafting the decentralized application

front-end, and the Winterfell library [38], for the generation

and verification of ZK-STARKs.

5.2 Zkstark library

In the critical selection of a ZK-STARK library, a rigorous

evaluation of available options was undertaken, primarily

focusing on libSTARK and Winterfell. libSTARK, a C++

1304

implementation [39] originating from the authors of the

foundational STARK academic paper, was initially considered

for its direct lineage. However, preliminary assessments raised

concerns regarding its perceived reliance on a specialized

circuit design notation, which could potentially impede

seamless integration with the project's established

programming paradigm. Furthermore, libSTARK's self-

characterization as "academic grade" and its explicit

disclaimer of likely containing "multiple serious security

flaws" rendered it less optimal for the development of a robust

prototype.

Table 3. Tools used for prototype implementation

Tool Version Role in Project Benefit for This Project

Ganache [36] 2.7.1
Local Ethereum environment for smart contract

deployment, testing, and DApp interaction.
Enables rapid, cost-free iterative development and testing in

a controlled, deterministic environment.
IPFS Desktop

[37]
0.39.0

Managing local IPFS node for storing and

retrieving encrypted user data off-chain.
Simplifies IPFS usage via GUI, facilitating decentralized

storage management integral to the system's privacy model.

React.js
Building the user interface for registration, data

input, and wallet interaction.
Facilitates modular UI development with a rich ecosystem

for web3 and IPFS integration.

Winterfell

[38]
0.8.1

Generating and verifying ZK-STARK proofs for

privacy-preserving identity attribute validation.

Chosen for its Rust implementation, perceived good

documentation, active development, and STARK

capabilities.

Consequently, the Winterfell library [38], a Rust-based

crate, emerged as the preferred alternative. This decision was

predicated on several compelling factors: Winterfell presented

as a well-implemented solution, distinguished by provided

documentation, and was in active development. It is

engineered to offer a relatively simple interface for describing

general computations and exhibits advantageous genericity

over finite fields and hash functions, thereby affording greater

implementation flexibility. The choice of Rust, a language

increasingly recognized for its performance and memory

safety attributes in cryptographic contexts, further solidified

Winterfell's suitability [40]. Ease of integration offered by

Winterfell provided a more pragmatic and convincing pathway

for the successful incorporation of advanced ZK-STARK

cryptographic proofs into the proposed identity management

framework.

5.3 Smart contracts

The on-chain logic of the decentralized identity

management system is articulated through smart contracts,

which were meticulously authored in the Solidity

programming language, specifically targeting version 0.8.0 or

compatible iterations thereof. For the systematic deployment

and instantiation of these smart contracts onto the Ganache

local test blockchain, the Truffle development suite was

employed. Truffle's migration scripts facilitated the staging

and execution of deployment tasks, ensuring the compiled

Solidity bytecode was correctly migrated to the Ganache

network, typically by configuring Ganache as a designated

network within the truffle-config.js file [41, 42] and

subsequently invoking the truffle migrate --network command.

An exemplary smart contract, DIDManager, serves as the

cornerstone for managing Decentralized Identifiers (DIDs)

within the proposed architecture. This contract is responsible

for the lifecycle management of DIDs, including their creation,

revocation, and retrieval. It maintains a historical record of

DIDs associated with user addresses, ensuring that each user

can possess only one active DID at any given time. The

contract defines a DIDRecord structure to store pertinent

information such as the DID string, creation and revocation

timestamps, and an activity status flag. Key functionalities

include createDID (Figure 4) for registering a new DID,

revokeDID for deactivating an existing DID, and getter

functions like getActiveDID and getDIDHistory to query the

status and historical data of DIDs. Events such as DIDCreated

and DIDRevoked are emitted to log significant state changes,

enhancing transparency and auditability. Modifiers are

employed to enforce preconditions, such as ensuring a user has

no active DID before creating a new one, or possesses an

active DID before attempting revocation.

DIDManager Code

pragma solidity ^0.8.0;

contract DIDManager {

 struct DIDRecord {

 string did;

 uint256 creationDate;

 uint256 revocationDate;

 bool active;

 }

 //Mapping from address to their DID history

 mapping(address=>DIDRecord[]) private didHistory;

 //Events

 event DIDCreated (address indexed owner, string did,

uint256 timestamp);

 event DIDRevoked (address indexed owner, string did,

uint256 timestamp);

 // Modifiers

 modifier hasNoActiveDID () {

 bool hasActive=false;

 if (didHistory[msg.sender]. length>0) {

 hasActive=

didHistory[msg.sender][didHistory[msg.sender]. length-1].

active;

 }

 require (!hasActive, "An active DID already exists");

 _;

 }

 modifier hasActiveDID () {

 bool hasActive=false;

 if (didHistory[msg.sender]. length>0) {

 hasActive =

didHistory[msg.sender][didHistory[msg.sender]. length-1].

active;

 }

 require (hasActive, "No active DID found");

 _;

 }

 // Create a new DID

 function createDID (string memory did) external

1305

hasNoActiveDID {

 DIDRecord memory newRecord = DIDRecord ({

 did: did,

 creationDate: block.timestamp,

 revocationDate: 0,

 active: true

 });

 didHistory[msg.sender]. push (newRecord);

 emit DIDCreated (msg.sender, did, block.timestamp);

 }

 // Revoke the current active DID

 function revokeDID () external hasActiveDID {

 uint256 lastIndex=didHistory[msg.sender]. length-1;

 didHistory[msg.sender][lastIndex]. active=false;

 didHistory[msg.sender][lastIndex]. revocationDate=

block. timestamp;

 emit DIDRevoked (

 msg.sender,

 didHistory[msg.sender][lastIndex]. did,

 block.timestamp

);

 }

 //Get the currently active DID

 function getActiveDID (address user) external view returns

(DIDRecord memory) {

 require(didHistory[user]. length>0, "No DID history

found");

 DIDRecord memory lastRecord =

didHistory[user][didHistory[user]. length-1];

 require (lastRecord.active, "No active DID found");

 return lastRecord;

 }

 //Get the complete DID history for an address

 function getDIDHistory(address user) external view returns

(DIDRecord[] memory) {

 return didHistory[user];

 }

}

Figure 4. DIDManager contract call createDID

Table 4 presents the gas consumption of key functions in

the DIDDataManager contract. Both createDID and add Data

Hash ToDID used their full gas limits (151,047 and 117,148),

indicating predictable execution. The revokeDID function

used 59,932 out of 64,732 gas, completing with unused

capacity suggesting conditional or less intensive operations.

Table 4. Gas usage of DIDDatamanager smart contract

functions executed on ethereum

Function Gas Limit Gas Used Block
createDID 151047 151047 226

addDataHashToDID 117148 117148 228
revokeDID 64732 59932 224

5.4 IPFS integration

A pivotal component of the system's privacy [42] enhancing

architecture involves the secure off-chain management of user

data, leveraging the IPFS for decentralized storage. To uphold

principles of user sovereignty and fortify data security, a user-

centric cryptographic protocol is instituted. As depicted in the

user interface for profile updates (Figure 5), when an

individual submits or modifies their personal attributes via the

DApp, a cryptographic signature is solicited. The user's wallet

prompts them to sign a specific message, explicitly stating,

"Sign this message to derive your encryption key". This

signature, uniquely generated via the user's private key, serves

as the basis for deriving a symmetric encryption key.

Subsequently, the user's personal data is encrypted client-side

within the DApp environment using this derived key,

employing robust cryptographic standards such as AES-256, a

detail corroborated by the system's output metadata (Figure 6).

Figure 5. Signature prompt

Following client-side encryption, the resultant encrypted

data package is committed to the IPFS network [43]. Upon

successful ingestion, IPFS furnishes a unique Content

Identifier (CID), exemplified by values such as

QmNNGd1ouzCB6d5SnvgeDMuqvXE6RiL5N4K9Umw3Ph

gK9. This CID functions as an immutable and content-

addressed pointer to the encrypted data payload residing on the

distributed IPFS network. The final step in this workflow

involves the on-chain registration of this CID, associating it

with the user's DID within the smart contract. This

architectural design ensures that sensitive user information

remains confidential and under the user's exclusive control,

1306

decipherable only with the key derived from their unique

signature, while the integrity and verifiability of the data's

existence and linkage are maintained by the blockchain and

IPFS.

Figure 6. IPFS CID hash and content

Table 5 summarizes the IPFS storage metrics for a typical

encrypted identity record. The file size was 551 bytes, and

both the CID generation and upload processes were completed

rapidly within 5ms and 8ms respectively using a local IPFS

node. The content was encoded using the dag-pb (UnixFS)

codec and hashed with the sha2-256 multihash function,

resulting in a 256-bit (32-byte) digest. These results

demonstrate the suitability of IPFS for fast and lightweight off-

chain storage in decentralized identity systems [44].

Table 5. IPFS storage metric

Metric Value

Size 551 bytes

Generation time 5ms

Upload time 8ms

Codec dag-pb (UnixFS)

Multihash Function sha2-256

Digest Size 256 bits (32 bytes)

5.5 Winterfell library

In this prototype, we used Winterfell for age verification, a

process that leverages zero-knowledge STARKs to confirm an

individual's is adult without revealing their birthdate. The core

logic, which is a simplified calculation like current_year-

birth_year≥18, is translated into an Algebraic Intermediate

Representation (AIR). This arithmetization is a fundamental

step in zk-STARK systems, ensuring that a computational

statement is true through a set of polynomial constraints. The

user's birthdate acts as a private input for the prover, while

public inputs include the current date and the required age

threshold, in this case, 18. The Winterfell library's

documentation outlines the general methodology for defining

an AIR and constructing the necessary execution trace.

The fundamental relationship we need to prove is:

current-birthdate≥EIGHTEEN_YEARS_IN_SECONDS

where, current is a public input, known to both the Prover and

Verifier. birthdate is a private input (the witness), known only

to the Prover. EIGHTEEN_YEARS_IN_SECONDS is a

public constant, defined as 568,036,800.

STARKs are most efficient at proving polynomial equalities,

not inequalities. Therefore, we transform the inequality into an

equality and a range check. We introduce a new variable,

remainder, such that:

current-

birthdate=EIGHTEEN_YEARS_IN_SECONDS+remainder.

By rearranging, we get:

remainder=current-EIGHTEEN_YEARS_IN_SECONDS-

birthdate

If we can prove that remainder ≥0, we have successfully

proven the original inequality. Proving remainder ≥0 is

accomplished via a range check, where we prove that

remainder is a value that can be expressed within a certain

number of bits (e.g., 63 bits), which mathematically

guarantees it is a non-negative number within the finite field.

Table 6. Impact of blowup factor on STARK proof

generation, size, and verification time

Blowup Factor
Proof

Generated (ms)

Proof Size

(KB)

Proof Verified

(ms)

8 27 15.7 0.7

16 30 18.3 1.0

32 32 21.0 1.2

64 33 23.4 1.4

128 37 26.5 1.5

Figure 7. Performance metrics vs. blowup factor in ZK-

STARK proofs

To measure the system's real-world performance, we

conducted benchmarks on a standard laptop with 16GB RAM.

Our analysis focuses on a minimal computation, represented

by a trace length of just 7. For such a small trace, the proof's

integrity does not stem from the complexity of the

computation itself, but rather from its robust cryptographic

security parameters. Table 6 illustrates how performance

scales with the blowup factor, a critical parameter that directly

governs the trade-off between prover workload and the

security level. By expanding the trace's evaluation domain, a

larger blowup factor makes it significantly harder for a

dishonest prover to forge a proof. To isolate its specific impact,

the blowup factor was varied while other crucial security

parameters, such as the number of queries (28), were kept

1307

constant.

As shown in Figure 7, increasing the blowup factor leads to

a gradual rise in both proof size and generation time, which is

expected due to the higher computational demands required

for stronger soundness guarantees. However, the proof

verification time remains relatively stable ranging only from

0.7ms to 1.5ms despite the growing size and complexity of the

proofs.

6. DISCUSSION

Table 7 provides a comprehensive comparison between the

proposed Blockchain, zk-STARK and IPFS based identity

management architecture and several related works. Each

works is evaluated based on its technical implications in

privacy preservation, scalability, quantum resistance, and data

integrity. By exploring them, we underline how our

framework stands out, providing a secure, decentralized, and

future-proof solution. The proposed architecture represents a

prototype solution that addresses many of the limitations

identified in existing identity management systems. By

combining Blockchain, zk-STARKs and IPFS, this

architecture enhances privacy, scalability, and

decentralization, offering distinct advantages across key

indicators.

Table 7. Comparison of proposed identity management

system (Blockchain, zk-STARK and IPFS) vs. related works

Feature
Proposed

System
[14] [13] [18] [17] [16]

Privacy Preservation H M L H M M

Quantum Resistance H L - M M L

Setup Transparency H L L H M M

On-Chain Data Minimization H M M M H M

Verification Speed H M M H M L

Scalability H L M M M L

User Control & Decentralization H M L H H M

Security H M L H H M

Interoperability H M L M M M

Cost Efficiency H L M H M M

Data Immutability & Integrity H M L H H M

H: High; M: Moderate; L: Low

In evaluating privacy preservation, our proposed system

demonstrates a distinct advantage due to the integration of zk-

STARKs, which ensures high levels of zero-knowledge

privacy for identity verification. This level of privacy

preservation outperforms many existing systems that still rely

on traditional cryptographic methods, often requiring trusted

setups that may not fully protect user data. Some related works

have demonstrated moderate privacy capabilities by

employing zk-SNARKs or other privacy-enhancing

techniques. However, these approaches still risk exposing

sensitive data to trusted third parties for validation [11, 12].

Regarding quantum resistance, our system is built using zk-

STARKs, which are inherently resistant to quantum attacks.

This distinguishes it from other solutions based on zk-

SNARKs, as highlighted in studies such as [17]. While zk-

SNARKs remain effective against current cryptographic

challenges, their reliance on elliptic curve cryptography makes

them potentially vulnerable to future quantum computing

threats. In contrast, our system’s quantum resistance is derived

from its reliance on collision-resistant hash functions rather

than elliptic curves, positioning it as a more future-proof

solution for identity management [18, 28].

Setup transparency also highlights a critical distinction. Our

proposed prototype requires no trusted setup. This transparent

setup model provided by using zk-STARKs minimizes

dependency on centralized trust models and offers a reliable

framework that enhances user trust. In contrast, several related

identity management systems still depend on trusted setups,

which can introduce potential vulnerabilities like single point

of failure [16]. By eliminating the need for such setups, our

approach aligns with the goal of full transparency in

decentralized identity verification.

On-chain data minimization is a significant advantage of

our approach. In our prototype, only the IPFS hash and user

DID are saved on the blockchain, reducing the amount of

sensitive data on-chain and alleviating potential blockchain

bloat issues. This strategy contrasts with some related

solutions [11, 16] that still retain user data or verifiable

attributes on-chain, which can lead to exposure risks. Our

method provides a practical balance by securing sensitive data

off-chain, stored on IPFS while maintaining verification

integrity on the blockchain.

In terms of scalability, the proposed architecture

demonstrates the capacity to efficiently support larger datasets,

primarily due to the stable and rapid verification performance

afforded by zk-STARKs. As evidenced by the prototype

evaluation results (Table 7), increases in proof size—resulting

from higher blowup factors—lead to only marginal increases

in verification time, which remains consistently low, ranging

from 0.7ms to 1.5ms. This stability indicates that the

verification process is not significantly impacted by the

complexity or size of the proof, thereby ensuring sustained

performance under high-load conditions. Additionally, the

integration of IPFS for off-chain storage enables the system to

manage large encrypted identity data without overburdening

the blockchain. This architectural choice contrasts with prior

systems employing zk-SNARKs [13, 11], which frequently

encounter scalability limitations due to higher computational

overhead and slower verification times as proof complexity

increases.

Unlike the centralized systems critiqued by Anusuya [16],

which restrict user autonomy, our model is architected to

empower the individual. Through the integration of

decentralized identifiers (DIDs) and off-chain IPFS storage,

we shift the locus of control away from central authorities,

thereby enabling users to manage their own data. This design

philosophy aligns our work directly with the principles of

decentralized identity management.

In terms of security evaluation, our architecture offers

strong cryptographic assurances through zk-STARKs, which

not only ensure that the data is intact but also do not require a

trusted setup. This is different from certain current systems

that are secure, however, they still have vulnerabilities due to

their dependence on trusted setups and are at risk of quantum

attacks. Our method plays a part in minimizing these hazards

by spreading out the identity management operations and

employing cryptography that is resistant to quantum [16].

Because our proposed system employs open standards such

as DIDs and zk-STARKs, which are interoperable with several

decentralized protocols, the interoperability with other

decentralized applications is improved to a great extent.

However, the BiDaas system which is also decentralized, has

some shortcomings in the integration of different ecosystems

due to it still using traditional verification methods. Our

1308

system’s compatibility with decentralized protocols makes it

versatile and adaptable, ideal for cross-platform identity

verification use cases.

Cost efficiency represents a significant advantage of the

proposed system. By minimizing on-chain storage through the

use of IPFS, where only the CID and DID are stored on-chain,

the architecture substantially reduces gas consumption during

identity verification operations. This off-chain strategy avoids

the high costs typically incurred by systems that store user

attributes or verifiable credentials directly on the blockchain.

In the prototype implementation, encrypted identity records

averaged just 551 bytes and were uploaded to IPFS with a total

processing time of under 13 milliseconds. Furthermore, the

lightweight nature of zk-STARK verification remaining

within the 0.7ms to 1.5ms range regardless of proof size

translates to lower computational demands during validation.

Combined, these characteristics reduce both on-chain

transaction fees and the processing overhead required for

proof verification. In contrast, systems that rely on zk-

SNARKs and on-chain data retention often experience

elevated costs, particularly in large-scale deployments.

Finally, data immutability and integrity are strengthened in

our system by leveraging zk-STARKs for cryptographic

proofs and IPFS for secure storage. This dual approach ensures

that data remains unaltered once uploaded, a critical feature

for identity management systems where data tampering could

have severe consequences. While Anusuya [16] discusses data

immutability in centralized systems, our decentralized model

provides an additional layer of reducing risks associated with

single points of failure.

7. CONCLUSION

In conclusion, the proposed design that drew strengths from

Blockchain, zk-STARKs, and IPFS presents a highly

innovative and scalable approach that logically solves the age-

old problems in the identity management field. As illustrated

in the comparative analysis in Table 7, our framework offers

significant advantages over existing systems. Explicitly

contrasting with the related works, our system achieves a high

degree of privacy preservation by using zk-STARKs, which,

unlike the zk-SNARK-based approaches in other studies, do

not require trusted setups that can expose user data. A primary

differentiator is our framework's high quantum resistance, a

critical feature for future-proofing digital identity. This stands

in direct opposition to several referenced systems that remain

vulnerable to quantum computing attacks due to their reliance

on traditional cryptographic methods. Furthermore, our model

ensures high setup transparency and decentralization,

eliminating the risks associated with a single point of failure

inherent in systems requiring a trusted setup. The performance

of our architecture is built upon two pillars: radical on-chain

data minimization via IPFS and highly efficient computation

using zk-STARKs. First, by storing only a hash and a DID on-

chain, we mitigate the cost and privacy risks of blockchain

bloat. The efficiency of this off-chain approach was validated

in our prototype, which processed and stored encrypted

identity records (avg. 551 bytes) in under 13ms. Second, zk-

STARKs handle complex computations with minimal

overhead, ensuring that verification speeds do not degrade at

scale. Our benchmarks demonstrate this clearly, with stable

verification times (0.7ms-1.5ms) despite increasing proof

sizes (15.7KB to 26.5KB). This dual architecture provides a

cohesive solution to the security, privacy, and scalability

challenges that pervade existing systems.

REFERENCES

[1] Maidine, K., El-Yahyaoui, A. (2023). Cloud identity

management mechanisms and issues. In 2023 IEEE 6th

International Conference on Cloud Computing and

Artificial Intelligence: Technologies and Applications

(CloudTech). Marrakech, Morocco, pp. 1-9.

https://doi.org/10.1109/CloudTech58737.2023.1036617

8

[2] Maidine, K., El-Yahyaoui, A. (2024). Key mechanisms

and emerging issues in cloud identity systems. In

International Conference of Cloud Computing

Technologies and Applications. Springer, Cham, pp. 64-

88. https://doi.org/10.1007/978-3-031-78698-3_5

[3] Over 184m passwords from Apple, Google, Facebook,

Microsoft exposed in massive leak. (2025). Hindustan

Times.

https://www.hindustantimes.com/technology/over-

184m-passwords-from-apple-google-facebook-

microsoft-exposed-in-massive-leak-

101748580879587.html, accessed on Jun. 12, 2025.

[4] Over 184m passwords from Apple, Google, Facebook,

Microsoft exposed in massive leak. (2025). Hindustan

Times.

https://www.hindustantimes.com/technology/over-

184m-passwords-from-apple-google-facebook-

microsoft-exposed-in-massive-leak-

101748580879587.html, accessed on Jun. 12, 2025.

[5] Dhaliwal, J. (2025) Adidas data breach: What consumers

need to know and how to protect yourself, McAfee Blog.

https://www.mcafee.com/blogs/internet-security/adidas-

data-breach-what-consumers-need-to-know-and-how-

to-protect-yourself/, accessed on Jun. 12, 2025.

[6] Select Medical Holdings Data Breach Lawsuit

Investigation. (2025). ClassAction. org.

https://www.classaction.org/data-breach-lawsuits/select-

medical-holdings-june-2025, accessed on Jun. 12, 2025.

[7] Cluley, G. TeleMessage, the signal clone used by US

government officials, suffers hack, Hot for Security.

https://www.bitdefender.com/en-

us/blog/hotforsecurity/telemessage-signal-clone-us-

government-hack, accessed on Jun. 12, 2025.

[8] PLLC, S.B. (2025). LexisNexis Risk solutions data

breach investigation-Strauss Borrelli PLLC, Strauss

Borrelli PLLC-.

https://straussborrelli.com/2025/05/28/lexisnexis-risk-

solutions-data-breach-investigation/, accessed on Jun. 12,

2025.

[9] Thorve, A., Shirole, M., Jain, P., Santhumayor, C.,

Sarode, S. (2022). Decentralized identity management

using blockchain. 2022 4th International Conference on

Advances in Computing, Communication Control and

Networking (ICAC3N), Greater Noida, India, pp. 1985-

1991.

https://doi.org/10.1109/ICAC3N56670.2022.10074477

[10] El-Yahyoui, A., EC-Chrif El Kettani, M.D. (2017). Fully

homomorphic encryption: Searching over encrypted

cloud data. In 2nd international Conference on Big Data,

Cloud and Applications, Tetouan, Morocco.

https://doi.org/10.1145/3090354.3090364

1309

[11] Ma, S., Zhang, X. (2024). Integrating blockchain and

ZK-ROLLUP for efficient healthcare data privacy

protection system via IPFS. Scientific Reports, 14(1):

11746. https://doi.org/10.1038/s41598-024-62292-9

[12] Seddik, S., Routaib, H., Elmounadi, A., Haddadi, A.E.

(2024). Enhancing African market predictions:

Integrating quantum computing with Echo State

Networks. Scientific African, 25: e02299.

https://doi.org/10.1016/j.sciaf.2024.e02299

[13] Lee, J.H. (2017). BIDaaS: Blockchain based ID as a

service. IEEE Access, 6: 2274-2278.

https://doi.org/10.1109/ACCESS.2017.2782733

[14] Yang, X., Li, W. (2020). A zero-knowledge-proof-based

digital identity management scheme in blockchain.

Computers & Security, 99: 102050.

https://doi.org/10.1016/j.cose.2020.102050

[15] Barros, M.D.V., Schardong, F., Custódio, R.F. (2022).

Leveraging self-sovereign identity, blockchain, and zero-

knowledge proof to build a privacy-preserving

vaccination pass. arXiv Preprint arXiv: 2202.09207.

https://doi.org/10.48550/arXiv.2202.09207

[16] Anusuya, R., Karthika Renuka, D., Ghanasiyaa, S.,

Harshini, K., Mounika, K., Naveena, K.S. (2021).

Privacy-preserving blockchain-based ehr using zk-

snarks. In International Conference on Computational

Intelligence, Cyber Security, and Computational Models.

Cham: Springer International Publishing. Springer,

Cham, pp. 109-123. https://doi.org/10.1007/978-3-031-

15556-7_8

[17] Lohar, S. (2024). Decentralization of identity using

ethereum and IPFS. Communications on Applied

Nonlinear Analysis, 31(4s): 378-391.

https://doi.org/10.52783/cana.v31.917

[18] Zhu, X., He, D., Bao, Z., Luo, M., Peng, C. (2023). An

efficient decentralized identity management system

based on range proof for social networks. IEEE Open

Journal of The Computer Society, 4: 84-96.

https://doi.org/10.1109/OJCS.2023.3258188

[19] Panait, A.E., Olimid, R.F. (2020). On using zk-SNARKs

and zk-STARKs in blockchain-based identity

management. In International Conference on Information

Technology and Communications Security. Cham:

Springer International Publishing, pp. 130-145.

https://doi.org/10.1007/978-3-030-69255-1_9

[20] Wright, C.S. (2008). Bitcoin: A peer-to-peer electronic

cash system. SSRN Electronic Journal, 3440802: 10-

2139. https://doi.org/10.2139/ssrn.3440802.

[21] Nakamoto, S. (2009). Bitcoin: A peer-to-peer electronic

cash system. Bitcoin. org. Disponible En.

https://bitcoin.org/en/bitcoin-paper.

[22] Garg, R. (2023). Blockchain ecosystem. In Blockchain

for Real World Applications, pp. 23-42.

https://doi.org/10.1002/9781119903765.ch3

[23] Ramachandran, M. (2025). Introduction to blockchain

concepts. In Blockchain technologies, pp. 3-33.

https://doi.org/10.1007/978-981-96-4360-8_1

[24] Abdelgalil, L., Mejri, M. (2023). HealthBlock: A

framework for a collaborative sharing of electronic

health records based on blockchain. Future Internet, 15:

87. https://doi.org/10.3390/fi15030087

[25] Atzei, N., Bartoletti, M., Cimoli, T. (2017). A survey of

attacks on Ethereum Smart Contracts (SoK). In

Principles of Security and Trust. POST 2017. Lecture

Notes in Computer Science, Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-662-54455-6_8

[26] Ji, S., Wu, J., Qiu, J., Dong, J. (2023). Effuzz: Efficient

fuzzing by directed search for smart contracts.

Information and Software Technology, 159: 107213.

https://doi.org/10.1016/j.infsof.2023.107213

[27] Zhou, H., Milani Fard, A., Makanju, A. (2022). The state

of ethereum smart contracts security: Vulnerabilities,

countermeasures, and tool support. Journal of

Cybersecurity and Privacy, 2(2): 358-378.

https://doi.org/10.3390/jcp2020019

[28] Dhar, S., Khare, A., Dwivedi, A.D., Singh, R. (2024).

Securing IoT devices: A novel approach using

blockchain and quantum cryptography. Internet of

Things, 25: 101019.

https://doi.org/10.1016/j.iot.2023.101019

[29] Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.

(2018). Scalable, transparent, and post-quantum secure

computational integrity. Cryptology ePrint Archive.

[30] Chen, T., Lu, H., Kunpittaya, T., Luo, A. (2022). A

review of ZK-SNARKs. arXiv preprint

arXiv:2202.06877.

https://doi.org/10.48550/arxiv.2202.06877

[31] Gong, Y., Jin, Y., Li, Y., Liu, Z., Zhu, Z. (2022).

Analysis and comparison of the main zero-knowledge

proof scheme. In 2022 International Conference on Big

Data, Information and Computer Network (BDICN),

Sanya, China, pp. 366-372.

https://doi.org/10.1109/BDICN55575.2022.00074

[32] Fong, D.K.Z., Selvarajah, V., Nabi, M.S. (2022). Secure

server storage based IPFS through Multi-Authentication.

In 2022 International Conference on Advancements in

Smart, Secure and Intelligent Computing (ASSIC),
Bhubaneswar, India, pp. 1-7.

https://doi.org/10.1109/ASSIC55218.2022.10088338

[33] Boumezbeur, I., Zarour, K., Keddari, D. (2024). Secure

EHR sharing using blockchain and IPFS. Studies in

Science of Science 42(7): 1-14.

[34] Khudhur, N., Fujita, S. (2019). Siva-The IPFS search

engine. In 2019 Seventh International Symposium on

Computing and Networking (CANDAR), Nagasaki,

Japan, pp. 150-156.

https://doi.org/10.1109/CANDAR.2019.00026

[35] Singh, S., Chakraverty, S. (2022). Implementation of

proof-of-work using ganache. In 2022 IEEE Conference

on Interdisciplinary Approaches in Technology and

Management for Social Innovation (IATMSI), Gwalior,

India, pp. 1-4.

https://doi.org/10.1109/IATMSI56455.2022.10119271

[36] Qureshi, J.N., Farooq, M.S., Ali, U., Khelifi, A., Atal, Z.

(2024). Exploring the integration of blockchain and

distributed DevOps for secure, transparent, and traceable

software development. IEEE Access, 13: 15489-15502.

https://doi.org/10.1109/ACCESS.2024.3509036

[37] Facebook. Facebook/Winterfell: A stark prover and

verifier for arbitrary computations. GitHub.

https://github.com/facebook/winterfell.

[38] Elibensasson. Elibensasson/libSTARK: A library for

zero knowledge (ZK) scalable transparent argument of

Knowledge (Stark). GitHub.

https://github.com/elibensasson/libSTARK.

[39] El-Hajj, M., Oude Roelink, B. (2024). Evaluating the

efficiency of zk-snark, zk-stark, and bulletproof in real-

world scenarios: A benchmark study. Information

(Switzerland), 15(8): 463.

1310

https://doi.org/10.3390/info15080463

[40] McCabe, C., Mohideen, A.I.C., Singh, R. (2024). A

blockchain-based authentication mechanism for

enhanced security. Sensors, 24(17): 5830.

https://doi.org/10.3390/s24175830

[41] Verma, R., Dhanda, N., Nagar, V. (2022). Application of

truffle suite in a blockchain environment. In Proceedings

of Third International Conference on Computing,

Communications, and Cyber-Security: IC4S 2021.

Singapore: Springer Nature Singapore. Ghaziabad, India,

Springer: Berlin/Heidelberg, Germany, Springer,

Singapore, pp. 693-702. https://doi.org/10.1007/978-

981-19-1142-2_54

[42] El-Yahyaoui, A., Omary, F. (2022). An improved

framework for biometric database’s privacy.

International Journal of Communication Networks and

Information Security (IJCNIS), 13(3).

https://doi.org/10.17762/ijcnis.v13i3.5143

[43] Sangeeta, N., Nam, S.Y. (2023). Blockchain and

interplanetary file system (IPFS)-based data storage

system for vehicular networks with keyword search

capability. Electronics, 12(7): 1545.

https://doi.org/10.3390/electronics12071545

[44] Eren, H., Karaduman, Ö., Gençoğlu, M.T. (2025).

Security challenges and performance trade-offs in on-

chain and off-chain blockchain storage: A

comprehensive review. Applied Sciences, 15(6): 3225.

https://doi.org/10.3390/app15063225

1311

