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Traditional identity management systems are inherently vulnerable to critical issues, 

including pervasive privacy breaches and single points of failure, which compromise the 

security and integrity of sensitive user information. These centralized models require the 

disclosure of personal data to third parties, thereby increasing the risk of misuse, 

exploitation, and large-scale data leaks. To address these limitations alongside the emerging 

threat posed by quantum computing this paper proposes a novel identity management 

architecture that integrates Zero-Knowledge Scalable Transparent Arguments of 

Knowledge, the InterPlanetary File System, and blockchain technology. This design enables 

decentralized, privacy-preserving identity verification by allowing users to prove specific 

identity attributes without revealing the underlying sensitive data, and without the need for 

trusted third parties. The use of the InterPlanetary File System ensures that encrypted user 

data is stored off-chain in a distributed, immutable manner, reducing exposure risks and 

enhancing availability. A functional prototype of the system was developed using a Zero-

Knowledge Scalable Transparent Arguments of Knowledge cryptographic library and 

evaluated to demonstrate its practical feasibility. The evaluation confirms that the 

architecture is efficient, scalable, and resistant to quantum attacks, making it a strong 

candidate for real-world digital identity systems. This work provides a forward-looking, 

secure, and privacy-preserving alternative to traditional identity frameworks. 
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1. INTRODUCTION

1.1 Background 

The proliferation of online services, while delivering 

unprecedented user convenience, has simultaneously exposed 

critical vulnerabilities within the foundational identity 

protocols such as OAuth, OIDC, and SAML that underpin the 

digital ecosystem [1]. These systems, which rely heavily on 

centralized authorities [2], are particularly susceptible to 

cyberattacks because they store vast amounts of sensitive user 

data in one central location. This creates a "honeypot" effect, 

making them attractive targets for cybercriminals. Once 

breached, these systems can expose the personal information 

of millions (Table 1), leading to serious privacy and security 

issues. 

Several recent incidents in 2025 demonstrate the extent of 

vulnerabilities leading to the exposure of sensitive user 

information. Cybercriminals continue to target organizations 

across various sectors, successfully exfiltrating personal data 

such as names, addresses, Social Security numbers, dates of 

birth, and phone numbers. 

For example, in May 2025, a massive data exposure, dubbed 

the "Mega-Leak," came to light, affecting an estimated 184.1 

million user credentials [3]. This breach involved an unsecured 

online database containing plaintext usernames, passwords, 

and login links for major platforms including Google, Apple, 

Microsoft, Facebook, Instagram, and Snapchat. The exposed 

data also included login details for banking and financial 

institutions, healthcare services, and even government portals, 

with some. gov email addresses found within the dataset. 

Cybersecurity researcher Jeremiah Fowler, who discovered 

the database, believes the data originated from widespread 

infostealer malware campaigns designed to siphon sensitive 

information like browser logins, cookies, and autofill data 

from infected devices. The direct availability of such a vast 

trove of plaintext credentials poses an extreme risk of identity 

theft, financial fraud, and further targeted attacks. 

The Canadian utility provider Emera Power/Nova Scotia 

Power reported in April/May 2025 that a ransomware attack, 

which began around March 19, 2025, and was detected on 

April 25, 2025, resulted in the theft of personal and financial 

data belonging to approximately 280,000 customers [4]. The 

stolen information, which included names, phone numbers, 

email addresses, mailing addresses, dates of birth, account 

history, driver's license numbers, Social Insurance Numbers 

(SINs), and bank account numbers, was subsequently 

published on the dark web. The company confirmed it did not 

pay the ransom demand. 
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Table 1. Major data breaches in 2025 

 

Organization Date Data Records Type of Data Mitigation 

"Mega-Leak" (Google, 

Apple, Microsoft, 

Facebook, etc.) 

May 

2025 
184.1 million 

Usernames, passwords, email 

addresses, login links (including for 

bank, health, government portals) 

Eliminates central data "honeypots" with decentralized 

IPFS storage. Replaces vulnerable passwords with 

secure wallet-based authentication, preventing password 

theft. 

LexisNexis Risk 

Solutions 

Apr 

2025 
364,333 

Names, phone numbers, postal and 

email addresses, Social Security 

numbers, driver's license numbers, 

dates of birth 

Stores data decentrally on IPFS, preventing exposure 

from a single compromised platform. Uses zk-STARKs 

for verification, so raw personal data is never shared or 

exposed. 

Emera Power / Nova 

Scotia Power 

May 

2025 
280 

Names, phone numbers, email 

addresses, mailing addresses, dates of 

birth, driver's license numbers, Social 

Insurance Numbers, bank account 

numbers 

Removes the central target for ransomware via 

decentralized storage. User-controlled encryption makes 

stolen data files unusable to attackers. 

Adidas 
May 

2025 
Not Specified 

Names, email addresses, phone 

numbers, physical addresses 

Reduces third-party risk by using zk-STARK proofs for 

verification, so vendors never hold or store raw user 

data. Users maintain direct control over their 

information. 

Select Medical Holdings 
June 

2025 
Not Specified 

Names, dates of birth, addresses, 

provider names, dates of service, 

patient account numbers, Social 

Security numbers (in some cases) 

Prevents vendor data breaches by storing patient data 

decentrally under user control. Uses zk-STARKs to 

verify information without sharing sensitive data like 

SSNs. 

TeleMessage 
May 

2025 
Not Specified 

Names, message fragments, contact 

information of US government 

personnel 

Enforces user-side encryption before data is stored, so 

service providers cannot access unencrypted 

information. Secures identity with cryptographic wallets 

instead of vulnerable service accounts. 

 

Sportswear giant Adidas confirmed a data breach in May 

2025 where customer contact information was compromised 

via an attack on a third-party customer service provider [5]. 

The exposed data included names, email addresses, phone 

numbers, and physical addresses. Adidas stated that sensitive 

financial data, such as payment card details and passwords, 

was not affected. 

Select Medical Holdings notified patients in June 2025 

about a data security incident impacting its former vendor, 

Nationwide Recovery Services, Inc [6]. The breach at the 

vendor was detected on July 11, 2024, and a review completed 

by February 3, 2025, confirmed patient data was accessed. 

Exposed information potentially included names, dates of 

birth, addresses, provider names, dates of service, patient 

account numbers, and, in some cases, Social Security numbers. 

TeleMessage, a company providing a modified version of 

the Signal messaging app for regulatory archiving, was 

reportedly hacked twice in May 2025 [7]. The breach exposed 

administrator credentials and unencrypted message content, 

including names, message fragments, and contact information 

associated with users from U.S. government agencies. 

LexisNexis Risk Solutions disclosed in April 2025 that a 

data breach occurring on December 25, 2024, had 

compromised the personal information of 364,333 individuals 

[8]. An unauthorized third party gained access to the 

company's GitHub account by exploiting a vulnerability in a 

third-party software platform used for software development. 

The stolen data could include names, phone numbers, postal 

and email addresses, Social Security numbers, driver's license 

numbers, and dates of birth. 

Whether through exploiting unpatched software 

vulnerabilities, misconfigurations, or social engineering 

attacks like phishing, cybercriminals are able to penetrate 

these systems with alarming ease. The reliance on a single 

point of failure means that once a system is breached, the 

consequences are widespread, affecting millions of 

individuals and potentially causing long-term damage to the 

organization’s reputation and financial stability. 

1.2 Motivation 

 

The repeated occurrence of high-profile data breaches 

underscores the critical need for more secure and decentralized 

identity management systems. Centralized platforms, where 

personal data is stored in a single location, are particularly 

vulnerable to exploitation through cyberattacks and human 

error [2]. These breaches not only lead to massive leaks of 

sensitive information but also undermine public trust, making 

users reluctant to share their personal data online. The impact 

is profound: digital services are increasingly seen as unsafe, 

slowing the adoption of innovative technologies. 

To address this issue, decentralized solutions, such as those 

built on blockchain technology [9], offer a promising 

alternative. By decentralizing data storage and verification, 

these systems eliminate single points of failure and provide 

greater security. For instance, the InterPlanetary File System 

(IPFS) could be integrated into identity management 

frameworks, allowing data to be stored across a distributed 

network rather than on a single server. This would make it 

harder for attackers to locate and exploit sensitive information. 

In addition, advanced cryptographic techniques [10] like 

Zero-Knowledge Proofs can enhance privacy within these 

decentralized systems. ZKPs enable users to verify their 

identity without actually revealing their personal data, adding 

a further layer of protection against data breaches. This 

combination of blockchain, IPFS, and ZKP can result in a 

robust identity management system that reduces reliance on 

centralized control, improves security, and mitigates risks 

associated with quantum computing. 

Moreover, IPFS [11] can ensure that personal data remains 

encrypted and fragmented across various nodes, reducing the 

chances of mass data exposure. It also aligns well with future-

proofing efforts against quantum threats, which could 

potentially break traditional encryption methods. By 

integrating blockchain with IPFS and ZKP, identity 

management can evolve into a more secure, transparent, and 

resilient framework. 
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By integrating these technologies Blockchain, ZKP and 

IPFS, we can build systems that not only improve security and 

reduce reliance on centralized control but also prepare for 

future threats, such as quantum computing [12]. 

 

1.3 Contribution 

 

This paper proposes a new and innovative framework for 

identity management that incorporates blockchain technology, 

ZK-STARK, and IPFS in one unified system to solve the triad 

problems of security, privacy, and availability in digital 

identity management. Moreover, the architecture described in 

this paper shifts toward better user information protection 

from centralized systems that store data on servers because 

they require higher levels of security. In addition, due to 

blockchains decentralized nature as well as its immutability 

feature, the framework has eliminated weak spots related to 

single points of failure which is critical issue towards 

providing strong underlying infrastructure for auditable 

identity management. Also, the integration of the IPFS makes 

it possible to store user data in a distributed manner while 

maintaining redundancy which supports off-chain storage with 

guaranteed accessibility and integrity. Another contribution is 

use of ZK-STARK , which enable private attestations without 

disclosing sensitive information ， and age verification 

attesting where users can prove being older than a threshold 

age without disclosing full date of birth at which age 

calculation was performed. This prototype auspiciously attests 

system practicality and demonstrates combining zero-

knowledge proofs with decentralized storages effectiveness 

toward privacy-preserving identity verification systems. 

Additionally, this framework approaches quantum. 

 

 

2. RELATED WORKS 

 

The evolution of digital identity management has been 

marked by a significant trend away from centralized platforms 

toward decentralized, blockchain-based systems designed to 

enhance user security and control. Initial implementations of 

blockchain-based identity, such as Blockchain-based Identity 

as a Service (BIDaaS) [13], demonstrated the feasibility of 

decentralizing user authentication. However, these early 

models were limited in their decentralization, often retaining a 

central entity for managing identity attributes, which 

reintroduced risks associated with a single point of failure and 

did not fully resolve privacy concerns. This underscored the 

necessity for more advanced systems capable of both 

decentralizing control and fundamentally protecting user 

privacy during verification processes. 

To address these privacy deficiencies, subsequent research 

integrated Zero-Knowledge Proofs, which enable information 

verification without exposing the underlying data. A 

significant portion of this research utilized zk-SNARKs to 

secure identity transactions [14]. This approach was applied 

across various domains, including frameworks for digital 

identity management on the blockchain, privacy-preserving 

healthcare credentials like vaccination [15] passes, and the 

securing of electronic health records (EHRs) [16]. Other 

proposed systems combined zk-SNARKs with the Ethereum 

blockchain and the IPFS to construct Self-Sovereign Identity 

frameworks [17]. 

Another approach to attribute privacy involves specialized 

cryptographic methods like range proofs, which verify that a 

value falls within an interval without revealing the specific 

value. Addressing this, the study [18] developed an efficient 

DID system for social networks using a novel range proof 

protocol based on Pointcheval-Sanders (PS) signatures. 

Despite their utility, zk-SNARKs possess inherent 

limitations that pose considerable challenges to their 

widespread adoption. A primary vulnerability is the 

requirement of a "trusted setup," an initial parameter-

generation event that, if compromised, could undermine the 

security of the entire system. Furthermore, the computational 

overhead associated with generating zk-SNARK proofs can 

impede scalability, especially in high-throughput applications. 

Critically, the cryptographic principles that zk-SNARKs are 

built upon, such as elliptic curves and pairings, are vulnerable 

to cryptanalytic attacks from future quantum computers. 

In response to these challenges, zk-STARKs have emerged 

as a more robust and forward-looking alternative. A defining 

feature of zk-STARKs is that they do not require a trusted 

setup, which provides full transparency and eliminates a 

significant security risk. They are constructed using hash 

functions, rendering them inherently resistant to quantum 

attacks and ensuring long-term cryptographic integrity. 

Moreover, zk-STARKs offer superior scalability and 

efficiency for complex computations, making them highly 

suitable for large-scale identity management systems. While 

comparative studies have highlighted zk-STARKs as a 

promising alternative to zk-SNARKs, a key research gap 

persists in their practical application. 

Although zk-STARKs have been theoretically explored in 

identity systems [19], our framework goes further by 

implementing them in a functioning prototype with Ethereum 

and IPFS integration. The challenges associated with zk-

STARKs' larger proof sizes and the need for their efficient 

pairing with off-chain storage have remained underdeveloped 

in existing literature. This paper seeks to address this gap by 

proposing a novel architecture that synthesizes zk-STARKs, 

IPFS, and blockchain technology. By leveraging the unique 

advantages of each component, our work presents a solution 

designed to overcome the privacy, security, and scalability 

limitations of prior identity management systems. 

 

 

3. PRELIMINARIES 

 

3.1 Blockchain 

 

Since the publication of Bitcoin’s whitepaper in 2008 [20], 

followed by the launch of Bitcoin in 2009 [21], 

cryptocurrencies have significantly influenced traditional 

finance. At the heart of Bitcoin lies blockchain, a distributed 

ledger technology. In this system, peers connect individual 

blocks in a chronological sequence, forming a secure data 

structure that ensures immutability and integrity through 

cryptographic methods. Because blockchain transactions do 

not require intermediaries, they are transparent, traceable, and 

resistant to tampering. This decentralized nature establishes a 

strong trust mechanism in an environment that does not rely 

on central authorities. Blockchains can be categorized based 

on whether they require permission for peers to join or leave 

the network. Permissionless [22] or simply public blockchains, 

are fully decentralized networks where transactions and 

incentives are verified through consensus mechanisms 

involving unknown participants. This structure supports a 

decentralized model of trust, where all participants have equal 
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access to the network without the need for authorization. In 

contrast, permissioned blockchains [23] include consortium 

and private blockchains. Consortium blockchains are managed 

by a group of institutions that collectively decide the level of 

access and openness to the public, depending on the use case. 

These blockchains typically use alternative consensus 

mechanisms, such as Proof of Stake (PoS) or Practical 

Byzantine Fault Tolerance (PBFT), instead of the energy-

intensive Proof of Work (PoW). Private blockchains, on the 

other hand, restrict access to a single entity or a select group, 

making them suitable for scenarios with a limited number of 

participants. While this structure enhances control and security, 

it results in a more centralized system with a narrower scope 

of application compared to public blockchains. 
 

3.2 Smart contracts 
 

Smart contracts are programs that operate themselves in a 

decentralized manner, allowing the execution of agreements 

without the intervention of intermediaries, usually executed in 

blockchains like Ethereum [24]. They are used in various 

applications, such as financial transactions and identity 

management, where they automate tasks like verifying identity 

attributes (e.g., citizenship or educational credentials) based 

on predefined rules. For instance, a smart contract can validate 

a user’s citizenship status by confirming a valid passport 

without exposing unnecessary sensitive information, 

improving reliability and reducing the chance of human error. 

Furthermore, smart contracts dynamically manage 

Decentralized Identifiers, automatically updating or revoking 

credentials like expired professional certifications, ensuring 

only valid records are recognized. Latest improvements in 

contract security and auditing may become a turning point for 

smart contracts as vulnerability events, like the DAO attack in 

2016 [25], can bring them down completely. Techniques like 

formal verification, symbolic execution, and fuzzing have 

improved their reliability. Formal verification mathematically 

ensures contracts meet specifications, while symbolic 

execution explores potential vulnerabilities by examining all 

execution paths. Fuzzing [26, 27], since 2018, has become a 

key tool in discovering unexpected vulnerabilities by 

generating random inputs. The main focus of future 

improvements of these techniques lies on better performance, 

more effective bug detection (test oracles), as well as high-

quality initial inputs, leading to safer and more efficient smart 

contracts. 
 

3.3 Decentralized identifiers 

 

DIDs represent a major innovation in blockchain-based 

identity management that open a self-sovereign identity space 

limitless by traditional identifiers usually monitored by 

centralized entities [17]. They are fundamentally different 

from traditional ones, which are operated by third-party 

authorities such as governments or corporations, as DIDs give 

users the power to create and manage their own identifiers 

without anyone's help. Such a model removes the necessity to 

trust intermediaries, allowing people to get full ownership and 

control of their identity credentials. These identifiers, which 

are securely saved on blockchain, utilize smart contracts to 

confirm the truth of the credentials that are given, thus the 

process of verification is both smooth and safe. The 

decentralized character of DIDs not only reduces the chances 

of single points of failure which are a major weakness in 

centralized systems but also improve privacy and data security 

for users in the digital ecosystem [28]. 

 
3.4 ZK-Starks 

 
ZK-STARKs were introduced in 2018 [29] as a 

groundbreaking proof system for cryptography. The systems 

were developed by Eli Ben-Sasson and his group, ZK-

STARKs being attempts to improve the performance and 

handling of security issues of the zero-knowledge proof 

systems, for example, ZK-SNARKs, that still needed a trusted 

setup phase. The transparency of ZK-STARKs is still upheld 

due to their characteristic of not having a setup, thus removing 

the possibility of a single point of failure in the system. ZK-

STARKs implement the idea of probabilistic proofs mainly 

through the FRI algorithm, which helps them come up with 

short proofs of long computations. Such proofs are verifiable 

in a time which is sublinear. This makes them extremely 

effective and scalable, particularly in situations with large data 

samples like blockchain-based identity management systems. 

They are also noted to be logically consistent with ZK-

SNARKs in terms of quantum resistance. The source of this 

power is their reliance on randomness and hashing functions 

for security, unlike elliptic-curve and pairing-based 

cryptography that they use, which is susceptible to attacks 

from quantum computers [30]. Hence, due to the fact that no 

quantum algorithm, to date, has been proven able to efficiently 

break collision-resistant hash functions, it is safe to say that 

ZK-STARKs still stand strong against quantum adversaries 

and can provide a secure basis for the next generations of 

quantum computers. The deployment of ZK-STARKs casts 

them as a revolutionizing agent for decentralized apps that 

demand both privacy and scalability [31], mainly in situations 

where it is vital that the nature of secret information, like user 

identities, is not altered while keeping it efficient and secure. 

Their algorithmic innovation and scalability make ZK-

STARKs a critical tool for the future of secure digital identity 

systems. Table 2 and Figure 1 provides a side-by-side 

comparison of zk-STARKs and zk-SNARKs, highlighting key 

differences. The following subsections outline the process for 

generating and verification a ZK-STARK proof [29]. 

 

Table 2. Comparison of ZK-STARKs vs. ZK-SNARKs [32] 
 

Feature ZK-STARKs ZK-SNARKs 

Trusted Setup No trusted setup required Requires trusted setup 

Transparency Fully transparent (no trusted third party) Relies on a trusted third party for setup 

Proof Size Larger proof size Smaller proof size 

Verification Time Verifiable in sublinear time Efficient but slightly longer verification time 

Quantum Resistance Resistant to quantum attacks Vulnerable to quantum computing attacks 

Scalability Highly scalable, especially with large datasets Less scalable compared to ZK-STARKs 

Mathematical Basis Based on probabilistic proofs (e.g., FRI – Fast Reed-Solomon IOPP) Based on elliptic curves and pairings 

Efficiency More efficient for complex computations Efficient for smaller or simpler computations 

Application Areas 
Suitable for applications requiring transparency and scalability, like 

voting systems and identity verification. 

Used in Zcash, Filecoin, and Loopring due to 

small proof size and low storage needs. 

1300



 
 

Figure 1. ZK-STARKs vs. ZK-SNARKs 

 

Before diving into the technical mechanics, consider a 

simple analogy. Imagine you (the Prover) have solved a 

Sudoku puzzle and want to convince a friend (the Verifier) that 

your solution is correct without showing them the completed 

grid. 

1. Commitment: You write down your entire solution but 

hide it from your friend. This is the "commitment"; you 

are now bound to this specific solution and cannot change 

it. 

2. Verification through Random Sampling: Instead of 

looking at the whole grid, your friend randomly asks you 

to reveal just one specific part—for example, "Show me 

the third row" or "Show me the top-right 3×3 box." 

3. Proof: You reveal only the requested row or box. Your 

friend checks if it contains the digits 1 through 9 exactly 

once, according to the rules of Sudoku. 

4. Repeat: You repeat this process several times with 

different random requests. 

After a few successful rounds, your friend becomes 

mathematically convinced that you have a valid solution for 

the entire puzzle, even though they have never seen it in its 

entirety. They have verified your knowledge without you 

revealing the secret. 

ZK-STARKs operate on a similar principle but with 

mathematical rigor. The "rules of the game" (like the rules of 

Sudoku) are translated into polynomial equations. This 

translation process is known as “arithmetization”. 

• ZK-STARK Proof Generation 

a. Problem Definition and Requirements 

The goal of a ZK-STARK proof is to provide a verifiable 

proof of computation C performed on a dataset D without 

revealing the dataset itself to ensure privacy. This process 

allows a prover P (e.g., an institution with confidential data) to 

prove a claim, such as the absence of a specific data point in 

D. The proof must reveal nothing about the dataset beyond the 

confirmed outcome. A specific output α from C (e.g., “no 

match” for DNA profile p) [29] is shared, while P must ensure 

that all computation steps align with D without needing trusted 

intermediaries or revealing sensitive data. 

b. Arithmetization-Translating Computation to Algebra 

To verify complex computational statements in a verifiable 

proof, ZK-STARK translates the steps of a computation into 

an algebraic form, known as arithmetization. This process is 

broken down as follows: 

Algebraic Intermediate Representation (AIR): 

AIR uses a set of polynomials Pi(X,Y) to represent each 

computational step as algebraic constraints. Here, X represents 

the current state, and Y the subsequent state in the computation. 

Each transition in the computation (moving from one state to 

the next) is encoded as: 

 

𝑃1(𝑋, 𝑌) = 0, 𝑃2(𝑋, 𝑌) = 0, … , 𝑃𝑠(𝑋, 𝑌) = 0 

 

This ensures that every step in the computation aligns with 

polynomial constraints, forming an algebraic “check” for each 

operation. 

Low-Degree Extension (LDE): 

LDE transforms function f, defined over the finite set S, into 

f^' over a larger set S^', ensuring consistency with the original 

function over a more extensive range. By extending the 

polynomial representation of the computation over a larger 

field or set, ZK-STARK verifies the proximity of this larger 

dataset to the original. The article emphasizes using the Fast 

Fourier Transform (FFT) method, particularly the additive 

FFT for binary fields, to efficiently calculate LDEs. 

c. Commitment to Data and Execution Trace 

This step ensures that all inputs, intermediate steps, and 

outputs are committed to in a way that they cannot be altered 

later. The commitment mechanisms provide a “snapshot” of 

the data and computation at various points. 

Reed-Solomon Encoding: 

Data and intermediate steps are encoded using Reed-

Solomon codes, creating a mathematical commitment to the 

computation’s structure and sequence. It secures the trace, 

allowing verifiers to later check specific parts without needing 

the entire dataset, making the verification more scalable. 

Merkle Tree 

A Merkle tree arranges data (encoded states of the 

computation) in a binary tree, where each node is a hash of its 

children, and the root hash commits to the entire dataset. This 

Merkle root acts as a secure, immutable “signature” for all data 

in the computation, ensuring any alteration in the data can be 

detected through inconsistent paths back to the root. 

 

Commit(𝐷) = MerkleRoot(𝑓(𝐷)) 
 

Authentication Paths 

To confirm that specific elements in the computation are 

correct, each queried element includes an authentication path 

that shows its alignment with the root commitment. 

d. Interactive Oracle Proof of Proximity (IOPP) 

Random Queries: Instead of examining all data, the verifier 

randomly samples certain points in the computation, providing 

high-confidence verification without full access. 

FRI (Fast Reed-Solomon IOP of Proximity): This protocol, 

discussed in the article, helps identify if the function f 

approximates a low-degree polynomial g, ensuring the proof 

is within an acceptable range of accuracy. 

 

𝑓 ∈ 𝑅𝑆[𝐹, 𝑆, 𝜌] such that 𝑓(𝑥) ≈ 𝑔(𝑥) 
 

e. Proof of Knowledge and Soundness 

A ZK-STARK proof must ensure two key properties: 

Completeness: If the statement is true (e.g., the DNA is not 

in the database), the prover can construct a proof that 

convinces the verifier with high probability. 

Soundness: If the statement is false, the prover cannot 

convince the verifier, except with negligible probability. 

The proof must ensure that no information is revealed about 

the data or the computation beyond the output α. This is 
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achieved by using randomness in the query responses, 

ensuring that no sensitive data points are exposed. 

• ZK-STARK Proof Verification 

a. Merkle Root Verification 

The verifier first checks that the Merkle root provided by 

the prover is consistent with the original committed data. This 

ensures data integrity, with the root 𝑅  of the Merkle tree 

representing the computation trace 𝑇 satisfying: 

 

𝑅 = hash(𝑇) 
 

b. Low-Degree Extension (LDE) 

The verifier uses a Low-Degree Extension (LDE) to 

interpolate the polynomial representing the computation trace, 

ensuring it adheres to a low-degree polynomial. 

For a function 𝑓 defined over a field 𝐹 with subsets 𝑆 ⊂ 𝑆′, 
the LDE 𝑓′ is represented by: 

 

𝑓′(𝑥) =∑𝑎𝑖

𝑑

𝑖=0

𝑥𝑖 

 

The complexity of the LDE is optimized using the Fast 

Fourier Transform (FFT), reducing operations to [29]: 

 

3 ⋅ |𝑆′|log|𝑆′|  
 

c. Reed-Solomon Interactive Oracle Proof of Proximity 

(FRI Protocol) 

To confirm that the prover’s polynomial 𝑓(𝑥) maintains a 

low degree, the FRI protocol performs proximity testing by 

sampling random values 𝑥1, 𝑥2, … , 𝑥𝑘. 

The verifier ensures that 𝑓(𝑥) approximates a polynomial 

of degree < 𝜌|𝑆|, where 𝜌 is the rate parameter: 

 

𝑓(𝑥) ≈ 𝑔(𝑥) 
 

d. Random Sampling with Merkle Path Verification 

For each random point 𝑥𝑖  queried, the verifier uses the 

Merkle paths from leaf to root to confirm the consistency with 

the committed trace. 

Path verification follows: 

 

hash(𝑥𝑖−1, 𝑥𝑖) = 𝑥parent 

 

Each path must hash to the correct parent node, ensuring 

consistency with the initial commitments. 

e. Final Consistency Check 

After passing all polynomial and Merkle checks, the verifier 

performs a final consistency test to ensure all constraints for 

each queried polynomial point align with the initial 

commitments. 

This final check confirms the integrity and validity of the 

entire computation trace, completing the ZK-STARK 

verification process. 

The following ratios determine ZK-STARK’s efficiency in 

verification time and communication size: 

 

𝜌time =
𝑇𝑉
𝑇𝐶

 and 𝜌size =
𝐶𝐶

|𝐷|
 

 

3.5 InterPlanetary File System (IPFS) 

 

The InterPlanetary File System (IPFS) is the technology that 

is being extensively applied in different scopes of work to get 

the most out of its decentralized, peer-to-peer storage 

architecture [33]. One of the most outstanding cases in the 

world of IdM is the utilization of Filecoin, A decentralized 

storage network that is built upon the IPFS protocol for 

accessing the content distribution platforms. In the Filecoin 

network, users can pool their resources for securing and 

retrieving files in a decentralized fashion, which helps in 

reducing the need for central data servers. This strategy is 

more efficient and sustainable in the manner it protects against 

data outages and censorship because the files are distributed 

among different nodes, instead of being hosted on a single 

server. 

The other significant example is a DTube, completely 

decentralized video hosting platform for creating and 

distributing videos, which is operating like Youtube but using 

IPFS for storing the video content. By making the video files 

distributed among nodes, DTube assures the content is not 

controlled or censored by a single entity, thus the users get 

more control and privacy. So, the IPFS is also used in the 

decentralized version of web hosting, where the websites exist 

as distributed across a network of nodes, which guarantees that 

the sites are always up even if some of the nodes go down. 

These use cases vividly showcase IPFS’s ability to make the 

life of web applications more resilient, privacy-preserving, and 

decentralized. 

The methodology that IPFS employs is to split the files up 

into several pieces, which are then each given a unique 

cryptographic hash called a content identifier (CID) [34]. 

These chunks are distributed across different nodes in the 

network, and when a user requests a file, the network 

reassembles it from the distributed pieces using the content 

identifiers. Since the system is content-addressed, users 

retrieve data based on the hash of the content itself, not its 

location on a server. This ensures that files are immutable; any 

change in the file would produce a different hash, effectively 

creating a new version of the file. This process ensures data 

integrity, as any tampering is immediately detectable through 

hash comparison. Additionally, IPFS uses a distributed hash 

table (DHT) [35] to locate which nodes store specific chunks 

of data, ensuring efficient and scalable retrieval. 
 

 

4. ARCHITECTURE OVERVIEW 
 

The decentralized identity management system enables 

users to manage their own digital identities securely and 

privately using a blockchain infrastructure. Our architecture 

incorporates zk-STARKs to ensure that users can verify their 

identity attributes without revealing sensitive information, 

while the use of DIDs and IPFS ensures that users maintain 

full control over their identities without the need for 

centralized authorities. In the following sections we will define 

our architecture key components, and how the integration of 

zk-STARKs and IPFS enhance the privacy, availability and 

security of user’s identity. Sign up and verification flow are 

also described on the next sections. 

 

4.1 Key components 

 

The main components of our proposed architecture are: 

User: The person who interacts with the decentralized 

application (Dapp) via their wallet (e.g., MetaMask). The User 

provide necessary personal data (name, location, and birthday) 

through a sign-up form and also authorize transactions by 
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connecting their wallet. 

Wallet: A cryptographic wallet that holds the user’s private 

key and enables them to sign transactions on the Ethereum 

blockchain. It connects to the Dapp, allowing the user to 

register and approve smart contract interactions. It also 

provides the wallet address (GetWallet () function) used for 

generating Decentralized Identifiers (DID). 

BLOCKID Dapp: The frontend application interface that 

allows users to interact with the system. It acts as the client-

side interface where users connect their wallet and fill out the 

sign-up form with personal details (name, location, birthday). 

It communicates with the smart contract backend to execute 

operations such as DID generation, data submission, and IPFS 

storage. 

Smart Contract: A decentralized program running on the 

Ethereum blockchain responsible for the logic of the Dapp. It’s 

used for: 

- Generate DID: Creates a unique Decentralized Identifier 

(DID) for each user based on their wallet address. This ensures 

that each user has a verifiable identity tied to their wallet. 

- Push DID: Once generated, the DID is pushed onto the 

blockchain using the wallet address as a reference. 

- Submit Data: The personal details (name, location, 

birthday) are encrypted using zk-STARKS and submitted to 

the contract. 

- Store Hash: After the data is encrypted, it is stored on IPFS, 

and the resulting IPFS hash is saved in the smart contract along 

with the user’s DID. 

IPFS (InterPlanetary File System): A decentralized 

storage system that holds the encrypted personal data. After 

the user data (name, location, birthday) is encrypted using zk-

STARKS, it is stored on IPFS in a distributed manner. An 

IPFS hash is generated, which uniquely identifies the stored 

data [33]. 

 

4.2 Sign-up workflow 

 

As shown in Figure 2, the sign-up process is described as 

below: 

1. The user initiates the process by accessing the BLOCKID. 

2. The user connects their Ethereum wallet (e.g., MetaMask, 

TrustWallet) to the DApp to authenticate. The wallet’s 

Ethereum address is retrieved and stored locally in the DApp 

as the user’s on-chain identity. 

3. The DID is generated by taking the user’s Ethereum 

address using the W3C DID specification and applying a 

prefix (did:blockid:) that aligns with Ethereum DID methods. 

4. The DApp sends the generated DID and the Ethereum 

wallet address to a Smart Contract deployed on Ethereum. The 

contract maintains a mapping of Ethereum addresses to their 

corresponding DIDs. 

5. User fills out the sign-up form (Name, Location, Birthday) 

and submits it. 

Example: 

{ 

"Name": "Mohammed", 

"location": "Morocco", 

"birthday": "1964-12-11" 

} 

6. The user’s name, location, and birthday are prepared for 

encryption. The user data is converted into a format suitable 

for zk-STARK encryption. The data is transformed into 

polynomials over a finite field. This process involves 

expressing the user’s data as a set of equations that can be later 

used for zero-knowledge proofs. For example, the name 

"Mohammed" is hashed and represented as: 

 

𝑃name(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3 

 

7. The DApp takes the polynomial representations and 

generates a succinct proof that the data satisfies a particular set. 

8. The DApp immediately validates the generated zk-

STARK proof to ensure its correctness and integrity: 

- If the proof is valid: The workflow continues to the next 

step. 

- If the proof is invalid: The process is halted. An error is 

communicated to the user, preventing the system from storing 

invalid or corrupted data on IPFS. The user may be prompted 

to resubmit their information. 

9. The user data (name, location, birthday), along with the 

zk-STARK proof, is packaged and then encrypted for extra 

security before storing on IPFS, ensuring the data cannot be 

accessed without the encryption key. 

10. The encrypted data is uploaded to IPFS, and a Content 

Identifier (CID) is generated, which acts as the reference to the 

stored data. 

11. The IPFS hash and zk-STARK proof are now linked to 

the user’s DID and pushed to the blockchain. The smart 

contract can maintain a mapping of DID to IPFS hashes. 

 

4.3 Verification workflow 

 

Figure 3 illustrates the proposed system's verification 

workflow: 

1. The user initiates the process by requesting an access to 

a service provider (verifier). The verifier could be an external 

service that requires identity verification (e.g., a banking 

service, government portal, etc.). 

2. The user authenticates with the verifier by connecting 

their wallet used on BLOCKID App (e.g., MetaMask). 

3. The verifier retrieves the wallet address of the user to 

establish their identity. 

4. The verifier queries the Smart Contract on the Ethereum 

blockchain to retrieve the DID and the linked IPFS hash 

associated with the user’s Ethereum wallet. 

5. The Smart Contract returns the IPFS hash to the external 

service. 

6. The verifier sends a request to IPFS to retrieve the 

encrypted identity data linked to that hash. 

7. The IPFS sends back the encrypted identity data and the 

ZK-STARK proof associated with the user’s DID. 

Example: 

{ 

        "proof": "zk_stark_proof_data", 

        "encrypted_data": { 

            "name": Encrypted (Mohammed), 

            "location": Encrypted (Morocco), 

            "birthday": Encrypted (1964-12-11) 

        } 

    } 

8. The verifier verifies the ZK-STARK proof to ensure the 

integrity and authenticity of the encrypted data without 

actually revealing the sensitive information. The proof is 

validated off-chain to reduce Ethereum gas fees. 

9. If ZK-STARK proof is valid, the verifier can confidently 

confirm the user’s identity and grant access to the requested 

service. If K-STARK proof fails, the user is denied access as 

the verification process did not confirm their identity. 
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Figure 2. Proposed system sign-up workflow 

 

 
 

Figure 3. Proposed system verification workflow 

 

 

5. IMPLEMENTETION 

 

5.1 Overview of development setup 

 

The primary development was performed on a machine 

equipped with a 13th Gen i7-1355U processor, 16 GB of 

installed RAM, and running the Windows 11 Pro operating 

system. This configuration represents a standard development 

environment, indicating that the system's construction does not 

necessitate specialized or prohibitively expensive hardware. 

This aspect is pertinent as it suggests broader accessibility for 

future research, development, and potential adoption of similar 

architectures. The core technology stack selected for this 

project comprises (Table 3) Ganache for local blockchain 

simulation [36], IPFS Desktop for managing decentralized file 

storage [37], React.js for crafting the decentralized application 

front-end, and the Winterfell library [38], for the generation 

and verification of ZK-STARKs. 

 

5.2 Zkstark library 

 

In the critical selection of a ZK-STARK library, a rigorous 

evaluation of available options was undertaken, primarily 

focusing on libSTARK and Winterfell. libSTARK, a C++ 
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implementation [39] originating from the authors of the 

foundational STARK academic paper, was initially considered 

for its direct lineage. However, preliminary assessments raised 

concerns regarding its perceived reliance on a specialized 

circuit design notation, which could potentially impede 

seamless integration with the project's established 

programming paradigm. Furthermore, libSTARK's self-

characterization as "academic grade" and its explicit 

disclaimer of likely containing "multiple serious security 

flaws" rendered it less optimal for the development of a robust 

prototype. 

 

Table 3. Tools used for prototype implementation 

 
Tool Version Role in Project Benefit for This Project 

Ganache [36] 2.7.1 
Local Ethereum environment for smart contract 

deployment, testing, and DApp interaction. 
Enables rapid, cost-free iterative development and testing in 

a controlled, deterministic environment. 
IPFS Desktop 

[37] 
0.39.0 

Managing local IPFS node for storing and 

retrieving encrypted user data off-chain. 
Simplifies IPFS usage via GUI, facilitating decentralized 

storage management integral to the system's privacy model. 

React.js  
Building the user interface for registration, data 

input, and wallet interaction. 
Facilitates modular UI development with a rich ecosystem 

for web3 and IPFS integration. 

Winterfell 

[38] 
0.8.1 

Generating and verifying ZK-STARK proofs for 

privacy-preserving identity attribute validation. 

Chosen for its Rust implementation, perceived good 

documentation, active development, and STARK 

capabilities. 

 

Consequently, the Winterfell library [38], a Rust-based 

crate, emerged as the preferred alternative. This decision was 

predicated on several compelling factors: Winterfell presented 

as a well-implemented solution, distinguished by provided 

documentation, and was in active development. It is 

engineered to offer a relatively simple interface for describing 

general computations and exhibits advantageous genericity 

over finite fields and hash functions, thereby affording greater 

implementation flexibility. The choice of Rust, a language 

increasingly recognized for its performance and memory 

safety attributes in cryptographic contexts, further solidified 

Winterfell's suitability [40]. Ease of integration offered by 

Winterfell provided a more pragmatic and convincing pathway 

for the successful incorporation of advanced ZK-STARK 

cryptographic proofs into the proposed identity management 

framework. 

 

5.3 Smart contracts 

 

The on-chain logic of the decentralized identity 

management system is articulated through smart contracts, 

which were meticulously authored in the Solidity 

programming language, specifically targeting version 0.8.0 or 

compatible iterations thereof. For the systematic deployment 

and instantiation of these smart contracts onto the Ganache 

local test blockchain, the Truffle development suite was 

employed. Truffle's migration scripts facilitated the staging 

and execution of deployment tasks, ensuring the compiled 

Solidity bytecode was correctly migrated to the Ganache 

network, typically by configuring Ganache as a designated 

network within the truffle-config.js file [41, 42] and 

subsequently invoking the truffle migrate --network command. 

An exemplary smart contract, DIDManager, serves as the 

cornerstone for managing Decentralized Identifiers (DIDs) 

within the proposed architecture. This contract is responsible 

for the lifecycle management of DIDs, including their creation, 

revocation, and retrieval. It maintains a historical record of 

DIDs associated with user addresses, ensuring that each user 

can possess only one active DID at any given time. The 

contract defines a DIDRecord structure to store pertinent 

information such as the DID string, creation and revocation 

timestamps, and an activity status flag. Key functionalities 

include createDID (Figure 4) for registering a new DID, 

revokeDID for deactivating an existing DID, and getter 

functions like getActiveDID and getDIDHistory to query the 

status and historical data of DIDs. Events such as DIDCreated 

and DIDRevoked are emitted to log significant state changes, 

enhancing transparency and auditability. Modifiers are 

employed to enforce preconditions, such as ensuring a user has 

no active DID before creating a new one, or possesses an 

active DID before attempting revocation. 

 
DIDManager Code 

pragma solidity ^0.8.0; 

 

contract DIDManager { 

    struct DIDRecord { 

        string did; 

        uint256 creationDate; 

        uint256 revocationDate; 

        bool active; 

    } 

    //Mapping from address to their DID history 

    mapping(address=>DIDRecord[]) private didHistory; 

 

    //Events 

    event DIDCreated (address indexed owner, string did, 

uint256 timestamp); 

    event DIDRevoked (address indexed owner, string did, 

uint256 timestamp); 

    // Modifiers 

    modifier hasNoActiveDID () { 

        bool hasActive=false; 

        if (didHistory[msg.sender]. length>0) { 

            hasActive= 

didHistory[msg.sender][didHistory[msg.sender]. length-1]. 

active; 

        } 

        require (!hasActive, "An active DID already exists"); 

        _; 

    } 

    modifier hasActiveDID () { 

        bool hasActive=false; 

        if (didHistory[msg.sender]. length>0) { 

            hasActive = 

didHistory[msg.sender][didHistory[msg.sender]. length-1]. 

active; 

        } 

        require (hasActive, "No active DID found"); 

        _; 

    } 

 

    // Create a new DID 

    function createDID (string memory did) external 
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hasNoActiveDID { 

        DIDRecord memory newRecord = DIDRecord ({ 

            did: did, 

            creationDate: block.timestamp, 

            revocationDate: 0, 

            active: true 

        }); 

 

        didHistory[msg.sender]. push (newRecord); 

        emit DIDCreated (msg.sender, did, block.timestamp); 

    } 

 

    // Revoke the current active DID 

 

    function revokeDID () external hasActiveDID { 

        uint256 lastIndex=didHistory[msg.sender]. length-1; 

        didHistory[msg.sender][lastIndex]. active=false; 

        didHistory[msg.sender][lastIndex]. revocationDate= 

block. timestamp; 

         

        emit DIDRevoked ( 

            msg.sender, 

            didHistory[msg.sender][lastIndex]. did, 

            block.timestamp 

        ); 

 

    } 

    //Get the currently active DID 

    function getActiveDID (address user) external view returns 

(DIDRecord memory) { 

        require(didHistory[user]. length>0, "No DID history 

found"); 

         

        DIDRecord memory lastRecord = 

didHistory[user][didHistory[user]. length-1]; 

        require (lastRecord.active, "No active DID found"); 

         

        return lastRecord; 

    } 

    //Get the complete DID history for an address 

    function getDIDHistory(address user) external view returns 

(DIDRecord[] memory) { 

        return didHistory[user]; 

    } 

} 

 

 
 

Figure 4. DIDManager contract call createDID 

 

Table 4 presents the gas consumption of key functions in 

the DIDDataManager contract. Both createDID and add Data 

Hash ToDID used their full gas limits (151,047 and 117,148), 

indicating predictable execution. The revokeDID function 

used 59,932 out of 64,732 gas, completing with unused 

capacity suggesting conditional or less intensive operations. 

 

Table 4. Gas usage of DIDDatamanager smart contract 

functions executed on ethereum 

 

Function Gas Limit Gas Used Block 
createDID 151047 151047 226 

addDataHashToDID 117148 117148 228 
revokeDID 64732 59932 224 

 

5.4 IPFS integration 

 

A pivotal component of the system's privacy [42] enhancing 

architecture involves the secure off-chain management of user 

data, leveraging the IPFS for decentralized storage. To uphold 

principles of user sovereignty and fortify data security, a user-

centric cryptographic protocol is instituted. As depicted in the 

user interface for profile updates (Figure 5), when an 

individual submits or modifies their personal attributes via the 

DApp, a cryptographic signature is solicited. The user's wallet 

prompts them to sign a specific message, explicitly stating, 

"Sign this message to derive your encryption key". This 

signature, uniquely generated via the user's private key, serves 

as the basis for deriving a symmetric encryption key. 

Subsequently, the user's personal data is encrypted client-side 

within the DApp environment using this derived key, 

employing robust cryptographic standards such as AES-256, a 

detail corroborated by the system's output metadata (Figure 6). 

 

 
 

Figure 5. Signature prompt 

 

Following client-side encryption, the resultant encrypted 

data package is committed to the IPFS network [43]. Upon 

successful ingestion, IPFS furnishes a unique Content 

Identifier (CID), exemplified by values such as 

QmNNGd1ouzCB6d5SnvgeDMuqvXE6RiL5N4K9Umw3Ph

gK9. This CID functions as an immutable and content-

addressed pointer to the encrypted data payload residing on the 

distributed IPFS network. The final step in this workflow 

involves the on-chain registration of this CID, associating it 

with the user's DID within the smart contract. This 

architectural design ensures that sensitive user information 

remains confidential and under the user's exclusive control, 
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decipherable only with the key derived from their unique 

signature, while the integrity and verifiability of the data's 

existence and linkage are maintained by the blockchain and 

IPFS. 

 

 
 

Figure 6. IPFS CID hash and content 

 

Table 5 summarizes the IPFS storage metrics for a typical 

encrypted identity record. The file size was 551 bytes, and 

both the CID generation and upload processes were completed 

rapidly within 5ms and 8ms respectively using a local IPFS 

node. The content was encoded using the dag-pb (UnixFS) 

codec and hashed with the sha2-256 multihash function, 

resulting in a 256-bit (32-byte) digest. These results 

demonstrate the suitability of IPFS for fast and lightweight off-

chain storage in decentralized identity systems [44]. 

 

Table 5. IPFS storage metric 

 
Metric Value 

Size 551 bytes 

Generation time 5ms 

Upload time 8ms 

Codec dag-pb (UnixFS) 

Multihash Function sha2-256 

Digest Size 256 bits (32 bytes) 

 

5.5 Winterfell library 

 

In this prototype, we used Winterfell for age verification, a 

process that leverages zero-knowledge STARKs to confirm an 

individual's is adult without revealing their birthdate. The core 

logic, which is a simplified calculation like current_year-

birth_year≥18, is translated into an Algebraic Intermediate 

Representation (AIR). This arithmetization is a fundamental 

step in zk-STARK systems, ensuring that a computational 

statement is true through a set of polynomial constraints. The 

user's birthdate acts as a private input for the prover, while 

public inputs include the current date and the required age 

threshold, in this case, 18. The Winterfell library's 

documentation outlines the general methodology for defining 

an AIR and constructing the necessary execution trace. 

The fundamental relationship we need to prove is: 

 

current-birthdate≥EIGHTEEN_YEARS_IN_SECONDS 

 

where, current is a public input, known to both the Prover and 

Verifier. birthdate is a private input (the witness), known only 

to the Prover. EIGHTEEN_YEARS_IN_SECONDS is a 

public constant, defined as 568,036,800. 

STARKs are most efficient at proving polynomial equalities, 

not inequalities. Therefore, we transform the inequality into an 

equality and a range check. We introduce a new variable, 

remainder, such that: 

 

current-

birthdate=EIGHTEEN_YEARS_IN_SECONDS+remainder. 

 

By rearranging, we get: 

 

remainder=current-EIGHTEEN_YEARS_IN_SECONDS-

birthdate 

 

If we can prove that remainder ≥0, we have successfully 

proven the original inequality. Proving remainder ≥0 is 

accomplished via a range check, where we prove that 

remainder is a value that can be expressed within a certain 

number of bits (e.g., 63 bits), which mathematically 

guarantees it is a non-negative number within the finite field. 

 

Table 6. Impact of blowup factor on STARK proof 

generation, size, and verification time 

 

Blowup Factor 
Proof 

Generated (ms) 

Proof Size 

(KB) 

Proof Verified 

(ms) 

8 27 15.7 0.7 

16 30 18.3 1.0 

32 32 21.0 1.2 

64 33 23.4 1.4 

128 37 26.5 1.5 

 

 
 

Figure 7. Performance metrics vs. blowup factor in ZK-

STARK proofs 

 

To measure the system's real-world performance, we 

conducted benchmarks on a standard laptop with 16GB RAM. 

Our analysis focuses on a minimal computation, represented 

by a trace length of just 7. For such a small trace, the proof's 

integrity does not stem from the complexity of the 

computation itself, but rather from its robust cryptographic 

security parameters. Table 6 illustrates how performance 

scales with the blowup factor, a critical parameter that directly 

governs the trade-off between prover workload and the 

security level. By expanding the trace's evaluation domain, a 

larger blowup factor makes it significantly harder for a 

dishonest prover to forge a proof. To isolate its specific impact, 

the blowup factor was varied while other crucial security 

parameters, such as the number of queries (28), were kept 
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constant. 

As shown in Figure 7, increasing the blowup factor leads to 

a gradual rise in both proof size and generation time, which is 

expected due to the higher computational demands required 

for stronger soundness guarantees. However, the proof 

verification time remains relatively stable ranging only from 

0.7ms to 1.5ms despite the growing size and complexity of the 

proofs. 

 

 

6. DISCUSSION 

 

Table 7 provides a comprehensive comparison between the 

proposed Blockchain, zk-STARK and IPFS based identity 

management architecture and several related works. Each 

works is evaluated based on its technical implications in 

privacy preservation, scalability, quantum resistance, and data 

integrity. By exploring them, we underline how our 

framework stands out, providing a secure, decentralized, and 

future-proof solution. The proposed architecture represents a 

prototype solution that addresses many of the limitations 

identified in existing identity management systems. By 

combining Blockchain, zk-STARKs and IPFS, this 

architecture enhances privacy, scalability, and 

decentralization, offering distinct advantages across key 

indicators. 

 

Table 7. Comparison of proposed identity management 

system (Blockchain, zk-STARK and IPFS) vs. related works 

 

Feature 
Proposed 

System 
[14] [13] [18] [17] [16] 

Privacy Preservation H M L H M M 

Quantum Resistance H L - M M L 

Setup Transparency H L L H M M 

On-Chain Data Minimization H M M M H M 

Verification Speed H M M H M L 

Scalability H L M M M L 

User Control & Decentralization H M L H H M 

Security H M L H H M 

Interoperability H M L M M M 

Cost Efficiency H L M H M M 

Data Immutability & Integrity H M L H H M 

 

H: High; M: Moderate; L: Low 

In evaluating privacy preservation, our proposed system 

demonstrates a distinct advantage due to the integration of zk-

STARKs, which ensures high levels of zero-knowledge 

privacy for identity verification. This level of privacy 

preservation outperforms many existing systems that still rely 

on traditional cryptographic methods, often requiring trusted 

setups that may not fully protect user data. Some related works 

have demonstrated moderate privacy capabilities by 

employing zk-SNARKs or other privacy-enhancing 

techniques. However, these approaches still risk exposing 

sensitive data to trusted third parties for validation [11, 12]. 

Regarding quantum resistance, our system is built using zk-

STARKs, which are inherently resistant to quantum attacks. 

This distinguishes it from other solutions based on zk-

SNARKs, as highlighted in studies such as [17]. While zk-

SNARKs remain effective against current cryptographic 

challenges, their reliance on elliptic curve cryptography makes 

them potentially vulnerable to future quantum computing 

threats. In contrast, our system’s quantum resistance is derived 

from its reliance on collision-resistant hash functions rather 

than elliptic curves, positioning it as a more future-proof 

solution for identity management [18, 28]. 

Setup transparency also highlights a critical distinction. Our 

proposed prototype requires no trusted setup. This transparent 

setup model provided by using zk-STARKs minimizes 

dependency on centralized trust models and offers a reliable 

framework that enhances user trust. In contrast, several related 

identity management systems still depend on trusted setups, 

which can introduce potential vulnerabilities like single point 

of failure [16]. By eliminating the need for such setups, our 

approach aligns with the goal of full transparency in 

decentralized identity verification. 

On-chain data minimization is a significant advantage of 

our approach. In our prototype, only the IPFS hash and user 

DID are saved on the blockchain, reducing the amount of 

sensitive data on-chain and alleviating potential blockchain 

bloat issues. This strategy contrasts with some related 

solutions [11, 16] that still retain user data or verifiable 

attributes on-chain, which can lead to exposure risks. Our 

method provides a practical balance by securing sensitive data 

off-chain, stored on IPFS while maintaining verification 

integrity on the blockchain. 

In terms of scalability, the proposed architecture 

demonstrates the capacity to efficiently support larger datasets, 

primarily due to the stable and rapid verification performance 

afforded by zk-STARKs. As evidenced by the prototype 

evaluation results (Table 7), increases in proof size—resulting 

from higher blowup factors—lead to only marginal increases 

in verification time, which remains consistently low, ranging 

from 0.7ms to 1.5ms. This stability indicates that the 

verification process is not significantly impacted by the 

complexity or size of the proof, thereby ensuring sustained 

performance under high-load conditions. Additionally, the 

integration of IPFS for off-chain storage enables the system to 

manage large encrypted identity data without overburdening 

the blockchain. This architectural choice contrasts with prior 

systems employing zk-SNARKs [13, 11], which frequently 

encounter scalability limitations due to higher computational 

overhead and slower verification times as proof complexity 

increases. 

Unlike the centralized systems critiqued by Anusuya [16], 

which restrict user autonomy, our model is architected to 

empower the individual. Through the integration of 

decentralized identifiers (DIDs) and off-chain IPFS storage, 

we shift the locus of control away from central authorities, 

thereby enabling users to manage their own data. This design 

philosophy aligns our work directly with the principles of 

decentralized identity management. 

In terms of security evaluation, our architecture offers 

strong cryptographic assurances through zk-STARKs, which 

not only ensure that the data is intact but also do not require a 

trusted setup. This is different from certain current systems 

that are secure, however, they still have vulnerabilities due to 

their dependence on trusted setups and are at risk of quantum 

attacks. Our method plays a part in minimizing these hazards 

by spreading out the identity management operations and 

employing cryptography that is resistant to quantum [16]. 

Because our proposed system employs open standards such 

as DIDs and zk-STARKs, which are interoperable with several 

decentralized protocols, the interoperability with other 

decentralized applications is improved to a great extent. 

However, the BiDaas system which is also decentralized, has 

some shortcomings in the integration of different ecosystems 

due to it still using traditional verification methods. Our 
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system’s compatibility with decentralized protocols makes it 

versatile and adaptable, ideal for cross-platform identity 

verification use cases. 

Cost efficiency represents a significant advantage of the 

proposed system. By minimizing on-chain storage through the 

use of IPFS, where only the CID and DID are stored on-chain, 

the architecture substantially reduces gas consumption during 

identity verification operations. This off-chain strategy avoids 

the high costs typically incurred by systems that store user 

attributes or verifiable credentials directly on the blockchain. 

In the prototype implementation, encrypted identity records 

averaged just 551 bytes and were uploaded to IPFS with a total 

processing time of under 13 milliseconds. Furthermore, the 

lightweight nature of zk-STARK verification remaining 

within the 0.7ms to 1.5ms range regardless of proof size 

translates to lower computational demands during validation. 

Combined, these characteristics reduce both on-chain 

transaction fees and the processing overhead required for 

proof verification. In contrast, systems that rely on zk-

SNARKs and on-chain data retention often experience 

elevated costs, particularly in large-scale deployments. 

Finally, data immutability and integrity are strengthened in 

our system by leveraging zk-STARKs for cryptographic 

proofs and IPFS for secure storage. This dual approach ensures 

that data remains unaltered once uploaded, a critical feature 

for identity management systems where data tampering could 

have severe consequences. While Anusuya [16] discusses data 

immutability in centralized systems, our decentralized model 

provides an additional layer of reducing risks associated with 

single points of failure. 

 

 

7. CONCLUSION 

 

In conclusion, the proposed design that drew strengths from 

Blockchain, zk-STARKs, and IPFS presents a highly 

innovative and scalable approach that logically solves the age-

old problems in the identity management field. As illustrated 

in the comparative analysis in Table 7, our framework offers 

significant advantages over existing systems. Explicitly 

contrasting with the related works, our system achieves a high 

degree of privacy preservation by using zk-STARKs, which, 

unlike the zk-SNARK-based approaches in other studies, do 

not require trusted setups that can expose user data. A primary 

differentiator is our framework's high quantum resistance, a 

critical feature for future-proofing digital identity. This stands 

in direct opposition to several referenced systems that remain 

vulnerable to quantum computing attacks due to their reliance 

on traditional cryptographic methods. Furthermore, our model 

ensures high setup transparency and decentralization, 

eliminating the risks associated with a single point of failure 

inherent in systems requiring a trusted setup. The performance 

of our architecture is built upon two pillars: radical on-chain 

data minimization via IPFS and highly efficient computation 

using zk-STARKs. First, by storing only a hash and a DID on-

chain, we mitigate the cost and privacy risks of blockchain 

bloat. The efficiency of this off-chain approach was validated 

in our prototype, which processed and stored encrypted 

identity records (avg. 551 bytes) in under 13ms. Second, zk-

STARKs handle complex computations with minimal 

overhead, ensuring that verification speeds do not degrade at 

scale. Our benchmarks demonstrate this clearly, with stable 

verification times (0.7ms-1.5ms) despite increasing proof 

sizes (15.7KB to 26.5KB). This dual architecture provides a 

cohesive solution to the security, privacy, and scalability 

challenges that pervade existing systems. 
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