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Cancer of the skin is one of the most prevalent and malignant diseases known to mankind. 

The most effective treatment for skin cancer is early and accurate detection. Skin lesions 

which are often complex in structure and diverse in appearance make it not easy for 

traditional machine learning methods to precisely obtain features and recognize them. We 

propose a Multi-modal CNN for Skin Cancer detection and classification to address these 

difficulties. Our approach used a Fine-tune Custom CNN multi-model (FT-MultiCNN) to 

handle and fuse image data and metadata. The processed images were then employed for 

input to the FT-MultiCNN model beside patient’s metadata as well as the extracted Class 

Activation Heat-map (CAM) features. To identify skin lesions, a CNN was used using 

parallel processing architecture and multimodal fusion. This model was trained and tested 

on a public ISIC dataset, and its performance was assessed using cross-validation and 

compared to other leading approaches. Our model beat existing machine learning and 

transfer learning models in accuracy and recall, with 0.96 ± 0.25 accuracy and 0.94 ±.34 

recall, indicating robust performance. The experiments show exceptional classification 

capabilities, producing cutting-edge outcomes in identifying diverse skin cancer forms. This 

work provides a promising line for automated non-invasive screening of skin cancer, and 

paves the way for the promise of multimodal deep learning in dermatology. 
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1. INTRODUCTION

Skin cancer is the most frequent and lethal dermatological 

disease and results in millions of new cases being diagnosed 

worldwide annually [1]. Treatment is successful only if the 

disease is detected early and accurately, because a late 

diagnosis could lead to serious effects and higher death ratios. 

Dermatologists' skills are the basis of traditional diagnostic 

methods but hand examination may be arduous, subjective, 

and subjective to human error. The deep learning approach, 

which integrates large scale medical imaging data into training 

to enhance the classification performance, has been shown to 

be powerful in protocol automation for skin cancer detection 

in recent years, since they have the capacity to extract spatial 

features, as a kind of artificial intelligence technique, the 

CNNs have been widely applied in the field of medical 

imaging analysis [2]. However, they often struggle with 

understanding the bigger picture globally. 

A general deep learning model, known as a Multimodal 

CNN, is created to process multiple types of input data, which 

concurrently considers various input data and obtaining 

increased model performance in difficult categorization tasks. 

A dual input CNN uses patient metadata and dermoscopic 

images for skin cancer recognition, where the model is 

allowed to take advantage of additional inputs to have a more 

accurate classification. In particular, convolutional neural 

networks (CNNs) can distinguish between benign and 

malignant lesions due to their learn local patterns such as 

texture, edges, and color changes through the use of 

convolutional layers to learn spatial characteristics from 

images [3]. 

Transfer learning is well suited to medical image analysis, 

as it permits models pre-trained on a large annotated image 

dataset (e.g., ImageNet) to be fine-tuned to a specific medical 

task, even if only few annotated data are available. The local 

spatial information of the ground glass opacity was 

successfully learned using CNNs, which is crucial for the 

diagnosis of the disease. In this study we propose a multi-

modal DL model that leverages transfer learning on CNN in 

order to work on dermoscopic images and to work with other 

neural network on patients' meta-data including, age, gender 

and location of the lesion. To achieve high diagnostic accuracy, 

fewer false positives and enhanced clinical decision support, 

the model integrates both image and metadata modalities in 

this study. Some example images from the ISIC dataset are 

shown in Figure 1. 

1.1 Motivation 

Skin cancer is among the most frequent malignancies in all 

populations, and therefore represents a major public health 

concern. Globally there are approximately 2-3 million 

nonmelanoma skin cancers and 132,000 melanoma skin 

cancers diagnosed annually [4] according to the World Health 
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Organization (WHO). In India SC comprises 1-2% of all CAs 

diagnosed, and is increasing as a result of continuous exposure 

to ultra violet radiation, changing lifestyle, and low knowledge 

about sun protection. The literature describes a constant 

increase in the number of reported skin carcinomas in India [5], 

thousands of new instances are diagnosed annually. Although 

skin cancer is not as common as in the West, it is daunting in 

India because of its delayed presentation and restricted access 

to specialized care especially in rural India. It reinforces the 

necessary of more attention, earlier diagnosis, and effective 

interventions for this emerging health concern. 

Figure 1. ISIC dataset sample 

1.2 Role of deep learning and transfer learning in skin 

cancer diagnosis 

CNN are capable to capture spatial hierarchies in images for 

patterns; and have revolutionized image processing. In a 

related context of skin cancer diagnostic the CNNs can be 

trained to recognize and classify skin lesions based on 

attributes like texture, color, shape, etc [6]. This allows to 

make the diagnosis of dermoscopic lesions with high 

reliability, including identification of benign and malignant 

lesions. CNNs are the ideal deep learning architecture for end-

to-end learning since they can be trained end-to-end and don't 

need manually created features to produce a diagnosis from 

unprocessed visual data. It is a more efficient and effective 

process. Higher Performance CNNs have been proven 

superior to conventional machine learning methods in the 

detection and categorization of skin cancer from images in a 

number of studies. Nevertheless, they demand a huge labeled 

dataset for training, which is the primary challenge in adoption. 

Transfer learning is a process to reuse a pre-trained model, 

typically trained on a large dataset for a different, but similar, 

task to refine it for a new, often smaller task [7]. This permits 

the model to make use of learned features and transfer them to 

new tasks with minimum retraining requirements. Advantages 

for Diagnosis of Skin Cancer With scarce labelled datasets in 

skin cancer, pre-training can be useful to obviate the need for 

collecting huge amounts of data. By transferring learned 

models of large-scale image datasets (such as ImageNet) to a 

small skin cancer dataset, the model can be fine-tuned and 

delivers high performance without the need for large quantities 

of data. Obtained Superior Accuracy with Less Data Transfer 

learning mitigates the overfitting issue for deep learning 

networks on small or imbalanced datasets, which is among the 

difficulties in analyzing medical images. 

1.3 Multimodal approaches: Combining diverse data for 

more accurate diagnosis 

The use of multiple types of information (like images, 

medical records, and histopathology information) to provide a 

holistic understanding of the problem is referred to as 

multimodal learning [8]. When matching the dermoscopic 

image with clinical information, including the patient's age, 

sex, medical history, and location of the lesion, it could 

increase the accuracy of diagnosing skin cancer. Multi-modal 

allows the model to process more than one input at a time and 

making it more robust. For instance, the clinical context can 

aide in interpreting the images, and lesion attributes not 

directly perceived from the images can be incorporated into 

the diagnostic process. 

The combination of global and spatial features to enhance 

effect of skin cancer categorization is achieved by the 

proposed multi-scale CNN and transfer learning based model; 

Fine-tune Custom CNN Multi-model (FT-MultiCNN). This 

model has potential to address the shortcomings of 

conventional approaches by using the generated activation 

heat-maps from a pre-trained CNN instead of the original 

dermoscopic images. The use of heat maps allows for the 

activation of significant portions within an image that are 

pertinent to the classification decision. This can be 

accomplished by improved visualization of significant 

patterns, as opposed to concentrating on the entire image, 

which may contain background data that is not necessary. 

The FT-MultiCNN model combines a multimodal approach 

where patients' information (age, gender, lesion location) was 

added to the features (CNN, multi-scale images, and bone 

subtraction images). Moreover, the inclusion of visual 

(dermoscopic) and nonvisual (patient information) parameters 

enables a broader overview of the patient condition to be 

obtained, leading to greater diagnostic accuracy. 
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1.4 Advantages of activation heat-maps over regular 

images 

Feature Focus: Activation heat-maps serve to visibly 

emphasize the most relevant portions of an image, so that the 

model can concentrate on region that convey the most useful 

information for classification, rather than being distracted by 

less relevant features. 

Reduced Noise: By focusing on relevant attributes and 

reducing background noise or irrelevant image components, 

the heat-maps turn out to be capable of assisting the model in 

making more efficient and accurate predictions. 

Improved Interpretability: Heat-maps provide better 

interpretability of the model decision by making clear which 

areas of the image contribute to the model's prediction. This 

can support the development of trust in the model output and 

makes it easier to diagnose the model, based on the areas we 

know what we should be outputting. 

Enhanced Transfer Learning: The use of pre-trained 

network's activation heatmaps as an input feature however 

enables the model to take advantage of knowledge learned 

from large datasets, even if the new dataset is smaller or has 

reduced variability. 

By leveraging these heatmaps alongside patient-specific 

data, the FT-MultiCNN model offers a more accurate, 

interpretable, and holistic approach to skin cancer 

classification. The proposed contributions are mention below; 

1.5 Key objective 

• Development of a Multimodal Deep Learning Model:

This work aims to create a deep learning model that

integrates clinical data (e.g., patient demographics,

medical history, lesion attributes) with skin cancer

images.

• Activation Heatmap Integration for Enhanced Model

Interpretability: The use of activation heatmaps as

input features, rather than the original images, allows

the model to focus on critical areas of the skin lesions,

thereby increasing classification accuracy.

• Comparison with Deep Learning and Transfer

Learning Models: To validate the effectiveness of the

proposed FT-MultiCNN model, it is compared with

both traditional deep learning models and transfer

learning models.

The structure of the paper is as follows: The literature 

evaluation of related work is presented in Section 2, with a 

focus on the methods and advantages and disadvantages of 

each. Section 3 Related Work provides a models used for 

comparative analysis in current work. Section 4 Methodology 

provides detailed explanation of the proposed framework 

developed in this study named as FT-MultiCNN, including the 

mathematical modeling and important steps to classify skin 

cancer images. Results and Parameter Analysis of the Model 

are described in addition to detailed model parameters in 

section 5. Last, Section 6 conclude the study and suggests 

future research directions. 

2. LITERATURE REVIEW

Recent advances in deep learning and medical image 

processing have made skin cancer classification using deep 

learning in medical imaging increasingly popular and 

promising. This paper reviews deep learning and machine 

learning algorithms for skin lesion classification. The studies 

covered here include techniques across different paradigms 

such as conventional CNNs, transfer learning-based strategies 

using pre-trained models, multimodal models that embed 

clinical metadata for joint learning of dermoscopic images, 

and most recently transformer-based networks designed to 

attend over global contextual information. This review will 

compare the strengths and limitations and outcomes of these 

approaches to facilitate a comparative understanding of 

current trends and to direct attention towards successful 

strategies for enhancing diagnostic performance in the 

detection of skin cancer. 

2.1 Deep learning and transfer learning techniques 

Recent advances in artificial intelligence have 

revolutionized dermatology, notably in skin cancer detection 

and categorization. Several deep learning methods have been 

studied to increase diagnostic efficiency and accuracy. One 

such approach combines discrete wavelet transform (DWT) 

with convolutional neural networks (CNNs) for enhanced 

feature extraction [7]. By leveraging both spatial and 

frequency domain representations, this method enables more 

precise recognition of subtle lesion characteristics that are 

crucial for early diagnosis. Given its robustness and 

performance gains, this fusion technique shows strong 

potential for clinical adoption. 

The recent development of transfer learning has 

significantly enhanced the performance of skin cancer 

classification models, particularly when dealing with small or 

imbalanced datasets. A multimodal framework leveraging 

both clinical characteristics and dermoscopic images through 

transfer learning has demonstrated that models using multi-

input or multi-source data can more effectively distinguish 

common skin lesions compared to those relying on a single 

input or dataset [8]. This approach not only improves 

performance in data-scarce settings but also enhances 

generalization across diverse patient phenotypes. The 

framework has proven effective in managing data imbalance 

and shows promise for real-world diagnostic applications. 

Building on this foundation, the integration of transfer 

learning with federated learning has been explored to improve 

melanoma classification accuracy while preserving patient 

data privacy [9]. By training models across decentralized 

datasets without centralizing sensitive information, this 

method addresses the twin challenges of data scarcity and 

privacy—critical issues in medical AI. Federated learning, 

when combined with transfer learning, enables the deployment 

of robust diagnostic models across varied populations and 

locations, supporting the broader adoption of AI-driven tools 

in dermatological care. 

Extensive exploration of deep learning, particularly CNNs, 

has been conducted in the context of medical image-based 

cancer diagnostics [10, 11]. These investigations confirm the 

strong performance of CNNs in identifying and categorizing 

skin lesions from dermoscopic images. They also emphasize 

key challenges such as overfitting, limited data availability, 

and the critical need for large, well-annotated datasets. 

Additionally, integrating supplementary information from 

medical sources, such as clinical notes, has been suggested to 

improve model generalization and support clinical decision-

making. 

Emerging research further highlights the promise of CNN-
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based solutions for smartphone-acquired skin lesion images, 

underscoring the potential of mobile platforms to enhance 

accessibility and promote early detection, especially in 

underserved or resource-constrained settings [12]. Broader 

analyses of AI in dermatology have also underscored 

challenges including model interpretability, data diversity, and 

regulatory concerns [13]. While the benefits—such as faster 

and more accurate diagnosis—are evident, these findings 

stress the necessity of developing robust, transparent models 

and ensuring responsible clinical deployment. 

These studies reflect the growing maturity of deep learning 

and transfer learning approaches in skin cancer classification. 

2.2 Transformer models 

Following the advancements brought by deep learning and 

transfer learning, Transformer-based architectures have 

recently emerged as a powerful evolution in medical image 

analysis. These models address key limitations of 

convolutional neural networks (CNNs), particularly their 

inability to capture long-range spatial dependencies. Recent 

studies have demonstrated that Transformers, through their 

self-attention mechanisms, can introduce spatial inductive 

biases that limit viable spatial configurations without the need 

for additional refinement, achieving high accuracy on 

benchmark skin lesion datasets. This positions Transformers 

as highly effective for complex dermatological image 

classification tasks. 

In addition, enhanced Transformer architectures have been 

proposed to overcome CNNs’ restricted contextual 

understanding. By leveraging global attention, these models 

effectively encode complex lesion patterns and have achieved 

state-of-the-art results on large-scale skin cancer datasets [14]. 

Together, these developments highlight the growing potential 

of Transformer-based models in dermatology, offering high-

precision, scalable, and fully automated solutions for skin 

cancer detection and diagnostic support. 

2.3 Hybrid models 

While Transformer-based models excel at capturing long-

range dependencies and enhancing classification accuracy, 

earlier methods like CNNs and transfer learning also have their 

strengths and limitations. CNNs, particularly when combined 

with wavelet transforms and multimodal fusion, effectively 

detect local lesion patterns but struggle with global context. 

Transfer learning helps address limited annotated data, yet 

faces challenges in generalizing across diverse lesion types 

and varying image scales. 

To overcome these limitations, recent research has shifted 

toward more holistic and hybrid solutions that integrate deep 

learning with scale-adaptive and generative strategies. One 

such approach involves a multi-scale deep learning framework 

that leverages transfer learning to improve classification 

performance across varied skin lesion datasets [15]. Its multi-

resolution design enhances the model's ability to handle 

lesions of different sizes and types while requiring fewer 

annotated samples due to the use of pre-trained models. 

In addition, ensemble strategies combining transfer learning 

with conditional generative adversarial networks (CGANs) 

have been proposed to address class imbalance and data 

scarcity [16]. By generating synthetic training samples, these 

models effectively expand dataset diversity, reduce overfitting, 

and improve generalization. Group-wise methods further 

enhance prediction robustness across lesion categories. 

Similarly, mixed strategies that fine-tune pre-trained CNNs 

have proven effective in capturing subtle skin lesion features, 

particularly in resource-constrained settings, achieving high 

accuracy even with limited annotated data [17]. 

2.4 Multimodal fusion techniques 

Deep learning and transfer learning methods have shown 

notable improvements in skin lesion classification, especially 

when leveraging efficient architectures like EfficientNet and 

pre-trained CNNs [18]. These techniques enable high 

classification accuracy even with limited labeled data. 

Transfer learning enhances generalization across lesion types, 

while lightweight architectures reduce computational 

demands without compromising performance. However, such 

methods typically rely solely on visual features from 

dermoscopic images, which may not fully capture the clinical 

context—particularly when visual cues are subtle or 

ambiguous. 

To overcome these limitations, recent efforts have focused 

on multimodal fusion techniques that integrate dermoscopic 

images with clinical metadata such as age and medical history 

[19]. This approach enhances decision-making by linking 

visual patterns with relevant patient information. Further 

studies have demonstrated that multimodal data fusion not 

only boosts diagnostic accuracy but also improves robustness, 

especially in the presence of class imbalance [20, 21]. By 

incorporating data augmentation, customized loss functions, 

and enriched input representations, these models achieve more 

reliable performance in distinguishing benign from malignant 

lesions. Collectively, these findings highlight the growing 

significance of multimodal strategies in building accurate, 

robust, and clinically applicable skin cancer diagnostic 

systems. 

Table 1 displays a thorough comparison of the literature in 

which the reviewed studies are compared according to 

different methodologies, dataset, pros and cons and results. 

Table 1. Comparative analysis of literature reviews 

References Methodology Dataset(s) Used Advantages Results 

[7] 
CNN with Discrete Wavelet 

Transformation (DWT) 
HAM10000 

Improved precision and effectiveness 

in skin cancer identification 

Sensitivity of 94% and 

specificity of 91% 

[8] 
Framework for transfer learning for 

multimodal analysis of skin lesions 
ISIC 2018 

Effective integration of multimodal 

data for enhanced analysis 

Demonstrated improved 

classification performance 

[9] Federated and transfer learning methods
HAM10000 and 

BCN20000 

Preserved data privacy and leveraged 

knowledge transfer 

Achieved high classification 

accuracy 

[10] 
Deep learning for medical image-based

cancer diagnosis 

Various medical 

imaging 

Comprehensive analysis of deep 

learning applications 

Provided insights into model 

performance 

[11] 
Deep learning for skin cancer 

classification 
Collected skin image 

Systematic review of deep learning 

methods 

Highlighted challenges and 

opportunities 
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[12] 
CNNs for smartphone image-based 

diagnosis 

Smartphone-acquired 

skin images 

Comparative study on CNN 

performance 

Provided insights into model 

effectiveness 

[13] 

Review of AI-based image classification 

methods for skin cancer, covering CNNs, 

transfer learning, and hybrid models 

ISIC datasets 
Comprehensive overview of state-of-

the-art techniques 

Highlighted opportunities and 

challenges in applying AI for 

skin cancer diagnosis 

[14] 
Improved transformer network for 

classification 

Collected skin lesion 

dataset 

Captured long-range dependencies 

effectively 

Demonstrated superior 

performance in classification 

[15] 
Multi-scale deep learning and transfer 

learning 
ISIC 2018 

Enhanced detection through multi-

scale analysis 

Achieved an accuracy of 

94.42% 

[16] 
Ensemble of transfer learning models 

with GANs 
ISIC 2019 

Improved prediction through 

ensemble learning 

Demonstrated enhanced 

performance 

[17] 
Enhanced transfer learning-based 

classification 

Dermoscopic images 

from ISIC archive 

Improved diagnosis through transfer 

learning 

Achieved high classification 

accuracy 

[18] 
Deep neural network using modified 

EfficientNet 

Dermoscopic images 

from ISIC archive 

Improved detection in dermoscopic 

images 

Achieved high performance 

in skin cancer detection 

[19] 

Combining clinical data and skin 

pictures using a multimodal fusion 

technique 

Collected clinical data 
Enhanced diagnostic accuracy 

through data fusion 

Achieved an accuracy of 

80.42% 

[20] 
Multimodal evaluation of dermatological 

data that is not balanced 
HAM10000 

Addressed data imbalance and 

improved recognition 

Demonstrated effective skin 

cancer recognition 

[21] 

Multimodal deep learning approach 

combining clinical metadata with 

dermoscopic images 

ISIC 2017 Challenge 

dataset 

Improved diagnostic accuracy and 

robustness through integration of 

multimodal data 

outperforming unimodal 

counterparts in lesion 

classification accuracy 

 

 

3. METHODOLOGY 

 

ISIC, which stands for the International Skin Imaging 

Collaboration dataset, is a dataset that is frequently utilized 

and has a substantial amount of documentation. It is typically 

utilized for the identification and categorization of skin cancer. 

Dermatologists are equipped with the knowledge and skills 

necessary to read high-resolution dermoscopic pictures of skin 

lesions, which can range from benign to specific types of 

melanomas.  

 

 
 

Figure 2. Proposed system architecture 
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Figure 3. ISIC dataset CSV file sample 

 

Nevus, benign keratosis, actinic keratosis, dermatofibroma, 

squamous cell carcinoma, melanoma, and base-cell carcinoma 

are the seven patterns that correspond to the aforementioned 

conditions. An important advantage of the dataset is that it 

often comes with clinical metadata, besides photos, which 

enables development of multimodal learning. Skin cancer 

diagnosis machine learning models have been established with 

the help of the ISIC dataset that has enabled countless numbers 

of deep learning research in dermatological stream. It is 

frequently seen in computer vision and AI research, 

particularly when training Transformer-based models and 

CNNs. The dataset is part of global competitions and is 

published in the ISIC Archive to support research and 

development of medical image analysis. Figure 2 shows the 

architecture diagram of the suggested system. 

 

3.1 Load dataset 

 

The process of loading the ISIC dataset involves obtaining 

dermoscopic images and corresponding labels, which 

categorizes skin lesions as benign or malignant. First, the 

dataset is downloaded from the ISIC Archive or Kaggle, 

followed by loading image files and clinical metadata. Images 

are resized (e.g., 224×224 pixels) and normalized to improve 

model efficiency. After that, the dataset is partitioned into 

training and validation sets by employing stratified sampling 

in order to achieve a balanced distribution of classes. 

In the final step, the images and labels are transformed into 

NumPy arrays or TensorFlow datasets, which prepares them 

for the training of DL models. 

Figure 3 illustrated the ISIC dataset, which is commonly 

employed for skin cancer classification, features a sample 

metadata table displayed. The lesion ID, image ID, diagnosis 

(dx), diagnostic type, patient age, sex, localization (body part), 

image path, cell type, and cell type index are among the 

important details regarding each skin lesion that are included 

in the table. Benign keratosis-like lesions, or "bkl", are 

indicated in the diagnosis (dx) column of this sample. 

Additionally, the dataset offers histopathological diagnosis 

("histo"), which is necessary for AI model training. 

By enabling models to include both image and clinical 

features for increased skin cancer diagnosis accuracy, such 

metadata aids in multimodal learning. 

The suggested multimodal model is trained and assessed 

using data from the ISIC. Dermoscopic images of various skin 

lesions, both benign and malignant, are added in the dataset. 

 
 

Figure 4. ISIC dataset samples per label 

 

Figure 4 shows the dataset class distribution across classes 

mention above. It covers a variety of classes, including: 

• Melanoma (MEL) 

• Squamous Cell Carcinoma (SCC) 

• Actinic Keratosis (AKIEC) 

• Benign Keratosis (BKL) 

• Basal Cell Carcinoma (BCC) 

• Dermatofibroma (DF) 

• Nevus (NV) 

 

3.2 Data pre-processing 

 

The preprocessing steps include image resizing, 

normalization, augmentation, and handling class imbalance 

using oversampling, under sampling, or weighted loss 

functions. The dataset is preprocessed to ensure high-quality 

input for the model. In order to get the ISIC dataset suitable 

for being used for deep learning model training, the pre-

processing of the data is a crucial step. To guarantee high-

quality inputs, it entails cleaning the image data and CSV 

metadata files. A thorough explanation of the data pre-

processing workflow is explained below: 

 

3.2.1 CSV file processing 

Prior to combining with image data, the patient and lesion-

related information in the CSV metadata file needs to be 

cleaned. 
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Remove Null Values Data from CSV files. Missing values 

in patient age, sex, or lesion localization can affect training, so 

we drop or impute them. 

Remove Duplicates. Duplicate entries can cause data 

leakage and affect model performance, so we drop them. 

3.2.2 Image file processing 

Remove Corrupted Images from Image Data. All 

photographs are properly formatted, labeled, and scaled before 

being fed into the model thanks to pre-processing image data. 

Label Encoding. Some image files may be corrupted or 

unreadable, which can cause issues during training. We check 

for such images and remove them. 

Image Resizing. Deep learning models require numeric 

labels instead of text. We convert diagnosis labels into integer 

class indices. 

3.2.3 Apply data augmentation (Image data) 

A key method in deep learning for increasing dataset variety, 

decreasing overfitting, and boosting model generalization is 

data augmentation. It entails altering images in different ways 

while keeping their class designations intact. The 

enhancement methods used on images of skin lesions are listed 

below: 

Transpose(p=0.5). The transpose operation swaps the x and 

y axes of the image, effectively rotating it by 90 degrees or 

flipping it diagonally. 

Mathematically, given an image matrix I (x, y), the 

transposed image I'(y, x) is obtained as: 

𝐼′(𝑦, 𝑥) = 𝐼(𝑥, 𝑦)

Probability p=0.5 means this transformation is applied to 50% 

of the images. 

VerticalFlip(p=0.5). A vertical flip inverts the image along 

the horizontal axis. 

Given a pixel coordinate (x, y), the transformation results in: 

𝐼′(𝑥, 𝑦) = 𝐼(𝑥, 𝐻 − 𝑦)

where, H is the image height. 

HorizontalFlip (p=0.5). A horizontal flip inverts the image 

along the vertical axis. 

Mathematically, it is defined as: 

𝐼′(𝑥, 𝑦) = 𝐼(𝑊 − 𝑥, 𝑦)

where, W is the image width. 

Rotate (p=0.5). Random rotation applies clockwise or 

counterclockwise rotation to the image. The transformation 

follows a rotation matrix: 

[
𝑥′
𝑦′
] = [

cos⁡(𝜃) −sin⁡(𝜃)
sin⁡(𝜃) cos⁡(𝜃)

] [
𝑥
𝑦]

where, θ is the random angle (in degrees), and p=0.5 ensures a 

50% probability of applying rotation. 

RandomBrightness (limit=0.2, p=0.5). Adjusts the 

brightness by scaling pixel values within a given limit. If I (x, 

y) represents the original pixel intensity, brightness adjustment

is:

𝐼′(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) + 𝛽

where, β∈[-0.2, 0.2] is a random factor. 

RandomContrast (limit=0.2, p=0.5). Modifies the contrast 

of the image by adjusting pixel intensities. The transformation 

is: 

𝐼′(𝑥, 𝑦) = 𝛼 ∙ (𝐼(𝑥, 𝑦) − 𝜇) + 𝜇

where, α is a random contrast factor within [1-limit, 1+limit], 

and μ is the mean pixel intensity. 

GaussianBlur (blur_limit=5, p=0.25). Applies Gaussian 

blurring to smooth the image and reduce noise. The Gaussian 

kernel function is: 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒
−
𝑥2+𝑦2

2𝜎2

where, σ (standard deviation) determines the blurring intensity. 

Normalize (max_pixel_value=255.0, p=0.5). 

Normalization scales pixel values between 0 and 1 to stabilize 

training. Given an original pixel intensity I (x, y): 

𝐼′(𝑥, 𝑦) =
𝐼(𝑥. 𝑦)

255.0

ShiftScaleRotate(shift_limit=0.1, scale_limit=0.1, 

rotate_limit=15, border_mode=0, p=0.85). This applies a 

random shift, scaling, and rotation transformation 

simultaneously. Shifting moves the image in x and y directions: 

𝐼′(𝑥, 𝑦) = 𝐼(𝑥 + ∆𝑥, 𝑦 + ∆𝑦)

where, Δx, Δy are random shifts within [-0.1, 0.1] of the image 

size. 

Scaling resizes the image by a factor s: 

𝐼′(𝑥, 𝑦) = 𝐼(𝑠𝑥, 𝑠𝑦)

where, s∈ [0.9, 1.1]. Rotation follows the same rotation matrix 

used earlier with a limit of ±15 degrees. 

By adding artificial variations to the dataset, these 

augmentation strategies strengthen DL models for the 

classification of skin cancer. The model learns discriminative 

features and improves generalization by incorporating 

transformations like flipping, rotation, brightness shifts, and 

blurring, which lowers the possibility of overfitting. 

3.3 Extract class activation heatmap from images 

Class Activation Maps (CAMs) visually identify the regions 

of an image that are most influential in the model’s prediction 

[22]. CAM features—such as the feature maps from the 

gradient-based weights, and their weighted combinations—are 

critical as they highlight the spatial areas that have the biggest 

impact on the categorization result. By confirming that the 

model focuses on meaningful features, CAMs enhance 

diagnostic reliability and build trust in AI-assisted decision-

making. Figure 5 illustrates the workflow for extracting Class 

Activation Heatmaps from images. 

3.3.1 Get image data 

• To generate a heatmap, we first retrieve the image
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and preprocess it to match the model’s expected input 

format. 

• The image is loaded, resized, and normalized as

required by the trained deep learning model.

• The image is then converted into a tensor so it can be

fed into a neural network for inference.

• If the model requires batch inputs, the image is

expanded to include a batch dimension (e.g., shape (1,

224, 224, 3)).

3.3.2 Compute heatmap 

• To compute the Class Activation Map (CAM), we

extract the feature maps from the last convolutional

layer of a CNN-based model (e.g., ResNet,

EfficientNet).

• The model’s prediction is obtained, and the gradient

of the output class is computed with respect to the

final convolutional layer.

• The gradients are weighted and integrated with the

feature maps to create a heatmap that highlights

significant areas in the image.

• These gradients demonstrate how essential each

feature map is for the projected class.

• The heatmap matrix is normalized to values between

0 and 1 to enhance visualization.

Mathematically, the Class Activation Map CAM(x,y) is 

computed as: 

𝐶𝐴𝑀(𝑥, 𝑦) = 𝑅𝑒𝐿𝑈 (∑𝑤𝑘𝑓𝑘(𝑥, 𝑦)

𝑘

) 

where, 

𝑓𝑘(𝑥, 𝑦) are feature maps from the final convolutional layer.

𝑤𝑘 is weights obtained from the class-specific gradients.

𝑅𝑒𝐿𝑈  ensures only positive activations contribute to the 

heatmap. 

Figure 5. Workflow of extraction of class activation heatmap 

from images 

3.3.3 Rescale heatmap to a range 0-255. 

Since the heatmap is originally scaled between 0 and 1, it 

must be rescaled to 0-255 (pixel intensity range) for proper 

visualization. 

• This is done by multiplying the normalized heatmap

by 255.

• This transformation enhances contrast, making the

high-activation areas (important regions) more

visible in the final overlay.

• A colormap (e.g., Jet, Plasma) can be applied to

enhance interpretability by coloring high-importance 

areas in red and low-importance areas in blue. 

The rescaling formula is: 

𝐻𝑒𝑎𝑡𝑚𝑎𝑝𝑠𝑐𝑎𝑙𝑒𝑑(𝑥, 𝑦) = (
𝐻𝑒𝑎𝑡𝑚𝑎𝑝(𝑥, 𝑦) − 𝑚𝑖𝑛

𝑚𝑎𝑥 − 𝑚𝑖𝑛
) × 255 

where, min and max are the minimum and maximum values of 

the heatmap. 

3.3.4 Convert the image from BGR format to the RGB format 

By default, the majority of image processing libraries, 

including OpenCV, load images in BGR format. Nevertheless, 

visualization tools like Matplotlib and deep learning models 

like TensorFlow and PyTorch require RGB format. 

• To ensure correct visualization, we convert BGR

images to RGB before overlaying the heatmap.

• This step ensures that colors are displayed correctly

when blending the original image with the heatmap

overlay.

This process is critical in medical imaging, where accurate 

visualization of lesion areas can aid in clinical interpretation 

and model explain ability. 

Class Activation Maps (CAMs) offer visual information 

about CNN-based models and aid in the explanation of how 

they classify skin cancer. Dermatologists and researchers can 

confirm that the model is focused on pertinent lesion locations 

by extracting and superimposing CAMs on photos. This 

enhances the interpretability and reliability of AI-assisted 

medical diagnosis. 

Figure 6 shows The Class Activation Map (CAM) 

visualization for a skin lesion classification model. The 

original dermoscopic image is depicted on the left, a heatmap 

emphasizing the key areas utilized for classification is 

displayed in the middle, and the heatmap is combined with the 

original image on the right to improve interpretability. This 

method aids in comprehending model choices and guarantees 

that the AI concentrates on clinically significant regions for 

the diagnosis of skin cancer. 

Figure 6. Class activation heatmap of images 

3.4 Deep learning and transfer learning model on image 

data 

3.4.1 CNN 

CNNs are essential for diagnosing skin cancer and are 

commonly employed in image classification tasks in deep 

learning applications [23]. CNN architectures typically have 

convolutional layers that extract spatial data, pooling layers 

that reduce dimensionality, and fully connected classification 

layers. Convolutional filters help identify skin cancer by 

catching edges, textures, and abnormalities. CNNs can 

identify complicated and delicate medical picture patterns 
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because they learn hierarchical data representations. CNNs are 

essential to AI-powered dermatological diagnostic systems 

because they can distinguish benign from malignant skin 

lesions. 

3.4.2 ResNet50 

To address the issue of disappearing gradients in deep 

designs, a deep convolutional neural network known as 

ResNet50 (Residual Network with 50 layers) [24] use residual 

learning. Skip connections are used to improve the stability of 

the training since they allow the gradients to flow along the 

network uninterrupted. ResNet50 can extract complex features 

from dermoscopic images efficiently, so it is widely adopted 

in medical imaging. ResNet50 can be trained for skin cancer 

classification with transfer learning from pre-trained weights 

of ImageNet, and still achieve high accuracy with fewer 

labeled data. It performs medical AI very effectively due to its 

deep hierarchical feature extraction. 

3.4.3 InceptionV3 

A deep learning model called InceptionV3 is tuned for 

multi-scale feature extraction and computational efficiency. It 

presents inception modules, which use several convolutional 

filters (1×1, 3×3, 5×5) in tandem to capture both large-scale 

structures and fine-grained details at the same time. By 

improving model efficiency, this architecture lowers 

computing expenses without sacrificing accuracy. Pre-trained 

on ImageNet, InceptionV3 can be improved for the 

identification of skin cancer, hence increasing generalization. 

It is especially helpful for seeing subtle yet important patterns 

in medical imaging because of its adaptable receptive fields. 

InceptionV3 is a popular AI tool in dermatology for early 

melanoma diagnosis and lesion classification. 

3.5 Fine-tune custom CNN multimodal (FT-MultiCNN) 

Multimodal learning enhances model performance by 

integrating many data sources, such as images and information. 

A multimodal DL model for skin cancer identification 

integrates clinical metadata (e.g., patient age, sex, and lesion 

location) with CNN-based image features to provide a more 

thorough diagnosis. 

The proposed model, Fine-tune custom CNN multimodal 

(FT-MultiCNN), integrates image and clinical metadata 

through a dual-branch architecture that combines CNN-based 

visual feature extraction with metadata processing, followed 

by feature fusion via concatenation for robust multiclass skin 

cancer classification 

After independently processing the image data through a 

CNN branch and the clinical metadata through a dense neural 

network branch, the extracted feature representations from 

both modalities are merged using concatenation. This fusion 

step is critical for enabling the model to jointly reason about 

both visual patterns in the skin lesion and patient-specific 

contextual information. From the CNN branch, the output 

from the final convolutional block is flattened into a one-

dimensional feature vector that captures high-level spatial and 

textural patterns from the dermoscopic image. Simultaneously, 

the clinical metadata—such as patient age, sex, lesion location, 

and other relevant variables—is passed through a fully 

connected layer to produce a separate, dense feature 

embedding. This embedding captures relationships between 

different metadata attributes and learns a compact 

representation that is informative for classification. 

In the concatenation layer, these two feature vectors—one 

from the image and one from the metadata—are combined into 

a single unified vector. This operation does not perform any 

mathematical transformation but simply aligns the two vectors 

side-by-side, allowing the subsequent layers to access and 

learn from both sources of information simultaneously. The 

fused representation is then passed through one or more fully 

connected (dense) layers, which are responsible for learning 

the joint feature space and making the final multiclass 

classification decision. 

The given architecture (Figure 7) is an example of a custom 

multimodal CNN model that concurrently processes clinical 

metadata and dermoscopic images. An analysis of the 

functional model summary can be found below: 

3.5.1 CNN-based image feature extraction 

• The input layer accepts 128×128×3 images,

representing RGB dermoscopic images.

• Three convolutional blocks extract spatial features

with increasing depth:

• Conv2D layers (32, 64, 128 filters) learn low-to-high-

level patterns.

• MaxPooling layers reduce spatial dimensions,

retaining important features.

• The Flatten layer converts extracted features into a

dense representation.

3.5.2 Clinical metadata processing 

• A separate InputLayer (7 features) processes clinical

metadata.

• A Dense layer (64 neurons) learns feature

embeddings from metadata.

3.5.3 Feature fusion via concatenation 

• Features from the CNN image branch and the clinical

metadata branch are concatenated.

• A final Dense layer (7 neurons) performs multiclass

classification.

3.5.4 Fine-ttuning for improved performance 

• Pre-trained CNN backbones (e.g., ResNet50,

EfficientNet) can replace the current CNN layers for

better feature extraction.

• Dropout and Batch Normalization layers are added to

prevent overfitting.

• Hyper-parameter tuning (learning rate, batch size)

further optimizes model performance.

In comparison to image-only models, this customized 

multimodal CNN model effectively combines image-based 

and metadata-based learning, increasing the accuracy of skin 

cancer detection. Further improving diagnostic performance 

can be achieved through fine-tuning using data augmentation, 

feature engineering, and transfer learning. Figure 7 presents 

the architecture summary of a multimodal deep learning model. 

By integrating features from both modalities, this fusion 

strategy improves the model’s ability to capture complex 

interactions between visual and clinical cues—something that 

would not be possible if the modalities were processed in 

isolation. As a result, the model can make more accurate and 

context-aware predictions, ultimately improving diagnostic 

performance. 
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Figure 7. Fine-tune custom CNN multimodal (FT-MultiCNN) 

4. RESULT ANALYSIS

4.1 Experimental setup 

The experiments were conducted using PYTHON software 

on a Google Colab having ~13GB of RAM and ~15GB of 

GPU. The network's hyper-parameters included a batch size of 

32, 50 epochs, the Adam optimizer, cross-entropy as the loss 

function, and ReLU and Softmax as the activation functions. 

This setup ensured a robust framework for evaluating the 

model's performance. 

4.2 Performance parameters 

In order to prove the overall success of categorization 

models, a number of metrics are utilized in the process of 

analyzing their performance. In this study, we have used 

accuracy, precision, recall, F1-score, loss, and the confusion 

matrix to assess the models. Below are the performance 

parameters formulas: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦⁡𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑⁡𝑆𝑎𝑚𝑝𝑙𝑒

𝑇𝑜𝑡𝑎𝑙⁡𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑆𝑎𝑚𝑝𝑙𝑒

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒⁡𝑆𝑎𝑚𝑝𝑙𝑒

𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒⁡𝑆𝑎𝑚𝑝𝑙𝑒
+𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝐹𝑎𝑙𝑠𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒⁡𝑆𝑎𝑚𝑝𝑙𝑒

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒⁡𝑆𝑎𝑚𝑝𝑙𝑒

𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝑇𝑟𝑢𝑒⁡𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒⁡𝑆𝑎𝑚𝑝𝑙𝑒
+𝑁𝑢𝑚𝑏𝑒𝑟⁡𝑜𝑓⁡𝐹𝑎𝑙𝑠𝑒⁡𝑁𝑒𝑔𝑖𝑡𝑖𝑣𝑒⁡𝑆𝑎𝑚𝑝𝑙𝑒

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
4.3 Results 

This analysis demonstrates the superiority of our proposed 

Fine-tune Custom CNN Multi-Model (FT-MultiCNN) over 

existing methods. We have compared our model with CNN, 

ResNet50, and InceptionV3, evaluating its performance 

against these cutting edge DL architectures. Figure 8 presents 

the comparative analysis of all models, demonstrating that the 

suggested Fine-tune Custom CNN Multi-Model (FT-

MultiCNN) outperforms CNN, ResNet50, and InceptionV3 in 

terms of accuracy and F1-score. 

In Figure 9(a), the graphs depict the loss (right) and training 

and validation accuracy (left) curves for a deep learning model 
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used to classify skin cancer. Both training and validation 

accuracy improve steadily, as seen by the accuracy curve, 

which stabilizes at 80.0%, suggesting successful learning. The 

loss curve indicates that the model is optimizing well because 

it shows a sharp decline in both training and validation loss. 

Minor variations in validation loss and accuracy, however, 

might point to a small amount of overfitting. Dropout, data 

augmentation, and early halting are some methods that can be 

used to enhance generalization. 

Figure 9(b), the graphs displayed the Training and 

validation accuracy (left) and training and validation loss 

(right) curves spanning several epochs. With a consistent rise 

to over 92%, the accuracy curves demonstrate successful 

learning. 

Figure 8. Comparative analysis of models 

(a) CNN model accuracy and loss curve

(b) ResNet50 accuracy and loss curve
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(c) InceptionV3 accuracy and loss curve

(d) Fine-tune custom CNN muti-model accuracy and loss curve

Figure 9. Accuracy and loss comparison graph 

Figure 10. Confusion matrix of FT-MultiCNN 

Figure 9(c), the accuracy and loss curves for the 

InceptionV3 model are displayed on the graph. Strong learning 

ability is demonstrated by the training and validation accuracy 

(left), which increases progressively to over 91%. Both curves 

closely follow one another, showing minimal overfitting and 

good generalization when the training and validation loss 

(right) steadily decline. This shows that InceptionV3 performs 

effectively for classifying skin cancer. 

Figure 9(d) displays the accuracy and loss curves for the 

customized CNN multi-model that has been optimized. 

Training accuracy (left) steadily increases to around 96%. The 

test loss decreases as the number of epochs increases, 

suggesting that the model can effectively generalize to 

unidentified data. 

The results highlight the effectiveness of our model in 

achieving superior classification performance for skin cancer 

detection. Figure 10 shows the confusion matrix of FT-

MultiCNN. 

5. CONCLUSIONS

Multimodal CNN for Skin Cancer Detection and 

Classification, integrating both image data and patient 

metadata to enhance diagnostic accuracy is proposed. By 

employing the Fine-tune Custom CNN Multi-Model (FT-

MultiCNN) and leveraging Class Activation Heatmap features, 

our model effectively captured complex patterns in skin 

lesions. The multimodal fusion approach, coupled with 

parallel processing architecture, enabled superior 

classification performance. Experimental results demonstrated 

that our model outperformed traditional deep learning, transfer 

learning, and metadata fusion techniques, achieving 96% 
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accuracy and 94% recall. These findings demonstrate the 

potential of multimodal deep learning in dermatology, offering 

a highly accurate, automated, and non-invasive method for 

early skin cancer detection. This research underscores the 

promise of AI-driven solutions in improving skin cancer 

diagnostics and patient outcomes. 

The proposed multimodal architecture based on CNN and 

Transformer–autoregressive models may be one of the steps in 

improving accuracy of automatic diagnosis. However, there 

are several aspects that are still in need of further study and 

enhancement. Firstly, increasing the variety of medical 

imaging modalities such as 3D imaging and histology might 

increase the accuracy of the classification by giving insight 

into the lesion architecture. Second, clinical adoption will 

depend on improving model interpretability using explainable 

AI (XAI) techniques, which will provide dermatologists 

confidence in AI-generated judgments. To ensure fairness and 

reduce prediction bias, future work should also consider 

raising the model's performance in different demographic 

subgroups. Furthermore, by enabling the training of models 

over the decentralized datasets and maintaining patient 

confidentially, federated learning can enhance data privacy. 

Development of lightweight AI models for mobile and edge 

devices to facilitate remote and real time skin cancer screening 

is also a major area to explore. Taken together, the continued 

advances in AI-based dermatology solutions holds great 

promise for revolutionizing early detection of skin cancer and 

enhancing patient outcomes everywhere. 
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