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Anomaly in the air quality index (AQI) is essential to detect as an early warning of air 

pollution disasters that may occur in the future. Therefore, recognizing the characteristics 

of anomaly detection methods in AQI data is crucial. This research aims to compare the 

statistical and deep learning methods in detecting anomalies in the Jakarta AQI data. The 

data used is Jakarta AQI and calendar variation from January 1, 2019, to February 29, 2024. 

The method used in this study is a statistical method, namely distributed lag, and a deep 

learning method, namely autoencoder and LSTM autoencoder, where this method detects 

anomalies based on the four-sigma rule. The characteristics of anomaly detection using the 

distributed lag method tend to be more sensitive, with low false negative values and high 

false positive values. Meanwhile, anomaly detection using the autoencoder method tends to 

have a high false negative value with a low false positive value. On the other hand, anomaly 

detection using the LSTM autoencoder method tends to have a low false negative value 

with a false positive value that is not too high. Considering the characteristics of the 

methods, the distributed lag method is more recommended. 
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1. INTRODUCTION

An anomaly is an observation that deviates significantly 

from other observations, giving rise to suspicion that there is a 

different mechanism that forms the observation. Anomalies 

are generally viewed as unwanted observations that should be 

removed. However, anomalies can also be seen as a point of 

interest that needs to be detected. Anomaly detection has 

several benefits, namely as a reference for gaining profits and 

as an early warning of problems that may occur in the future. 

Anomaly detection can be done using various approaches, 

including the time series data approach. Time series data 

approaches in anomaly detection can be done using various 

methods, including statistical methods. Anomaly detection 

using statistical methods has several advantages, including 

that statistical methods have a clear model basis [1] and have 

relatively better computational complexity than other methods 

[2]. However, statistical methods still have several 

shortcomings. Statistical methods have shortcomings in terms 

of capturing non-linear patterns in data [3], are unable to 

model data with high complexity [4] and are only limited to 

low-dimensional data [5]. One statistical method that can be 

used is the distributed lag method. Like statistical methods in 

general, the distributed lag method detects anomalies based on 

forecasting results. If observations with forecast results are 

very different from the actual values, then these observations 

will be detected as an anomaly. 

Another anomaly detection method that can be used besides 

statistical methods is the deep learning method. Deep learning 

methods can handle nonlinear patterns in high-dimensional 

data [6], make predictions without creating specific models, 

and adapt better than statistical methods [7]. However, deep 

learning methods still have shortcomings in terms of relatively 

long computing times. Deep learning methods that can be used 

include the autoencoder method and long short-term memory 

autoencoder (LSTM autoencoder). The autoencoder and 

LSTM autoencoder methods detect anomalies based on 

reconstruction errors, which are the differences between the 

reconstructed and actual data. When observations with 

reconstruction errors tend to be large, these observations will 

be detected as anomalies [8]. 

Anomalies can occur in various aspects of life, including air 

conditions. Regarding air conditions, air pollution is becoming 

a hot issue because it is known to have contributed to 8.8 

million deaths in the world [9]. Air pollution is a significant 

cause of death because it causes various respiratory diseases, 

such as acute respiratory infections (ARIs). ARIs cases in 

Jakarta reached 299,721 cases in 2022 and will double to 

638,291 cases in 2023 [10]. This doubling of ARIs cases could 

indicate unusual conditions (anomalies) occurring in the air 

conditions. Anomalies that occur in air conditions must be 

watched for, one of which is by monitoring the air quality 

index. 

Anomalies in the air quality index are important to detect as 

a reference in formulating policies to improve air quality and 

as an early warning of air pollution disasters that may occur in 

the future. Jakarta's air quality index data, which is time series 

data, means that anomaly detection must also be done using a 

time series data approach. The time series data approach to 

detect anomalies in the air quality index can be done using 
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statistical methods such as distributed lag and deep learning 

methods such as autoencoder and LSTM autoencoder. 

Statistical methods such as distributed lag have never been 

used to detect anomalies in time series data. However, this 

method has quite good forecasting accuracy, so anomaly 

detection using the distributed lag method is still relevant. The 

distributed lag method was previously used by the study [11] 

in forecasting data on cases of death due to COVID-19 in 39 

European countries. As a result, this method has good 

forecasting accuracy, with most median absolute percentage 

error values below 20%. Meanwhile, deep learning methods 

such as Autoencoder have been used by the study [12] to detect 

anomalies in laundry equipment power consumption data. As 

a result, this method can detect anomalies well and perform 

better than the isolation forest method. On the other hand, deep 

learning methods such as LSTM autoencoder were used by the 

study [13] to detect anomalies in software network data. As a 

result, this method can detect anomalies effectively and 

perform better than the one-class support vector machine (OC-

SVM) method. 

The autoencoder and LSTM autoencoder methods have 

been proven to detect anomalies effectively and perform better 

than other methods. However, the performance of these two 

methods in detecting anomalies has not been compared 

directly in one study. The performance of these two methods 

has also never been compared with the statistical method, 

namely distributed lag. The autoencoder, LSTM autoencoder 

and distributed lag methods have not been widely used in 

detecting anomalies in the air quality index. Therefore, this 

research aims to compare the performance of deep learning 

methods, namely autoencoder and LSTM autoencoder, with 

conventional statistical methods, namely distributed lag, in 

detecting anomalies in the Jakarta air quality index. 
 

 

2. LITERATURE REVIEW  
 

2.1 Anomalies in time series data 
 

An anomaly is a data pattern that does not conform to a 

well-defined notion of normal behavior [14]. The definition of 

anomaly begins with an outlier [15] is an observation that 

appears very deviant compared to other observations in a 

sample. Anomalies can be divided into three types: point 

anomalies, contextual anomalies, and collective anomalies. A 

point anomaly occurs when an observation appears 

significantly deviant from the rest of the observations. Point 

anomalies can also occur when an observation appears very 

deviant compared to other observations [16]. Point anomalies 

were found in extreme heat events during weeks where heavy 

rain occurred consistently every day. Meanwhile, a contextual 

anomaly occurs when an observation does not appear deviant 

compared to other observations as a whole but appears to be 

deviant when viewed in a particular context. For example, high 

air humidity is normal if it occurs in the rainy season, but it is 

anomalous if it occurs in the summer. On the other hand, a 

collective anomaly occurs when an observation does not 

appear deviant when observed individually but appears 

deviant when observed in a group (collectively). For example, 

high rainfall is normal in the rainy season, but continuous high 

rainfall is an anomalous condition.  

 

2.2 Distributed lag 

 

The distributed lag method is a method that models 

response variables not only based on independent variables in 

the current period but also on independent variables in the 

previous period [17]. There are two types of distributed lag 

models: models with infinite lag and models with finite lag. 

According to the study [18] in Eq. (1), the length of a model 

with unlimited lag is unknown. 
 

𝑌𝑡 = 𝛼 + 𝛽0𝑋𝑡 + 𝛽1𝑋𝑡−1 + ⋯ + 𝜀𝑡 (1) 

 

where, 𝑌𝑡 is the value of the response variable for the 𝑡 period, 

𝛼 is a constant, 𝛽 is the coefficient of the independent variable, 

and 𝜀𝑡 is the residual for the t period. In this model, parameter 

estimation can be done using the koyck method. The koyck 

method assumes that the further the lag of the independent 

variable, the smaller its influence on the response variable. 

This method assumes all 𝛽 coefficients have the same sign and 

decrease geometrically. Meanwhile, in the model with finite 

lag, the length of the lag is known as n, as stated in Eq. (2). 
 

𝑌𝑡 = 𝛼 + 𝛽0𝑋𝑡 + 𝛽1𝑋𝑡−1 + ⋯ + 𝛽𝑛𝑋𝑡−𝑛 + 𝜀𝑡 (2) 

 

where, 𝛽𝑛  is the coefficient of the 𝑡 − 𝑛 period independent 

variable, and 𝑋𝑡−𝑛 is the 𝑡 − 𝑛 period independent variable. In 

this model, parameter estimation can be done using the Almon 

method. The Almon method assumes the parameter 𝛽 follows 

a polynomial function. 
 

2.3 Autoencoder 

 

Autoencoder is a method that reduces input into simpler 

dimensions, called latent dimensions, and reconstructs these 

latent dimensions into output with the original dimensions [19]. 

Autoencoder learns important information in the data so that 

its information can be used to analyze similar data. This 

method is divided into two parts, the encoder and decoder parts, 

as shown in Figure 1. The encoder section reduces the input 

into latent dimensions based on Eq. (3). 
 

ℎ = 𝑓𝑒(W𝑒𝑥 + 𝑏𝑒) (3) 

 

where, ℎ is the latent dimension, 𝑓𝑒 is the activation function 

of the encoder section, 𝑊𝑒  is the weighting matrix of the 

encoder section, 𝑥 is the input vector, and 𝑏𝑒 is the bias vector 

of the encoder section. Meanwhile, the decoder section is 

tasked with reconstructing the latent dimensions into output 

with the original dimensions based on Eq. (4). 
 

�̂� = 𝑓𝑑(W𝑑ℎ + 𝑏𝑑) (4) 

 

where, �̂� is the output, 𝑓𝑑  is the activation function of the 

decoder section, 𝑊𝑑  is the weighting matrix of the decoder 

section, h is the latent dimension, and 𝑏𝑑 is the bias vector of 

the decoder section. 

The autoencoder method generally works by minimizing 

the loss function to form an output as similar as possible to the 

input [20]. The most commonly used loss function is mean 

square error (MSE). MSE calculations are carried out based on 

Eq. (5). 

 

𝑀𝑆𝐸 =
1

𝑚
∑(𝑥𝑖 − �̂�𝑖)

𝑛

𝑖=1

 (5) 

 

where, 𝑚 is the number of observations, 𝑥 is the input data, 

and �̂� is the output data. 
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Figure 1. Architecture of autoencoder [21] 

 

2.4 LSTM autoencoder 

 

LSTM autoencoder is an anomaly detection method in the 

form of a combination of the LSTM and autoencoder methods. 

The LSTM autoencoder method reduces input into more 

straightforward dimensions or latent dimensions using an 

LSTM encoder. Next, the latent dimensions are reconstructed 

into output with the original dimensions using an LSTM 

decoder [22]. An example of LSTM autoencoder architecture 

is shown in Figure 2. 

 

 
 

Figure 2. Architecture of LSTM autoencoder [23] 

 

 
 

Figure 3. Architecture of LSTM [24] 

 

The LSTM architecture for both the encoder and decoder 

sections is depicted in Figure 3. In general, LSTM consists of 

a forget gate, an input gate, and an output gate. Forget gates 

determine whether information will be used in a process. 

Meanwhile, the input gate determines the input that will be 

entered into the cell state memory, and the output gate 

determines what information will be generated for the new 

hidden state [25]. The equations used in LSTM are shown by 

equations below. 

 

𝑓𝑡 = 𝑓(W𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (6) 

  

𝑖𝑡 = 𝑓(W𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (7) 

�̃�𝑡 = 𝑓(W𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (8) 

 

𝑐𝑡 = 𝑓𝑡 × 𝑐𝑡−1 + 𝑖𝑡 × �̃�𝑡 (9) 

 

𝑜𝑡 = 𝑓(W𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (10) 

 

ℎ𝑡 = 𝑜𝑡 × 𝑓(𝑐𝑡) (11) 

 

where, 𝑓𝑡  is the forget gate that uses the sigmoid activation 

function, 𝑖𝑡 is the input gate that uses the sigmoid activation 

function, �̃�𝑡 is the previous cell state that uses the tanh 

activation function, 𝑐𝑡 is the cell state that has been updated, 

𝑜𝑡 is the output gate that uses the activation function tanh, ℎ𝑡 

is the new hidden state that uses the tanh activation function, 

𝑥𝑡 is the input value, 𝑏 is the bias vector, 𝑊 is the weighting 

matrix, and ℎ(𝑡−1) is the previous hidden state. 

 

 

3. MATERIAL AND METHOD  
 

3.1 Data 

 

The data used is air quality index data (Y) as a response 

variable and calendar variation data as an explanatory variable 

(X). This data is recorded in hours and ranges from January 1, 

2019 to February 29, 2024. The air quality index data used is 

sourced from www.airnow.gov, while the calendar variation 

data used is a dummy variable, which is explained in detail in 

Table 1. 

 

Table 1. Calender variation data 

 
Variable Explanation 

𝑋1 
Valued at 1 for weekdays (Monday to Friday) and 

value at 0 for others 

𝑋2 
Valued 1 for national holidays and value at 0 for 

others 

𝑋3 
Valued 1 for collective leave and value at 0 for 

others 

𝑋4 
Valued 1 for seven days before to seven days after 

Eid Al-Fitr and value at 0 for others 

𝑋5 
Valued 1 for five days before to five days after Eid 

Al-Fitr and value at 0 for others 

𝑋6 
Valued 1 for three days before to three days after Eid 

Al-Fitr and value at 0 for others 

𝑋7 Valued 1 for Eid Al-Fitr and value at 0 for others 

𝑋8 Valued 1 for Christmas day and value at 0 for others 

𝑋9 Valued 1 for new year day and value at 0 for others 

𝑋10 
Valued 1 for school holidays and value at 0 for 

others 

𝑋11 
Valued 1 for Large Scale Social Restriction and 

value at 0 for others 

𝑋12 
Valued 1 for transitional large scale social restriction 

and value at 0 for others 

𝑋13 
Valued 1 for Community Activities Restrictions 

Enforcement (CARE) and value at 0 for others 

 

3.2 Data preprocessing 

 

Data processing begins by imputing data if there is missing 

data in several periods. After the missing data has been 

successfully handled, data exploration is carried out to see 

patterns and characteristics of the data. Based on the patterns 

and characteristics of the data, labelling is carried out on the 

actual data because anomalies in the air quality index data are 

not labelled naturally. After the actual data is properly labelled, 
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a new dataset that is clean of anomalies is created. This is done 

because, according to the study [26], the training process for 

the distributed lag, autoencoder and LSTM autoencoder 

methods requires a clean dataset of anomalies. 

The dataset that is clean from anomalies is then divided into 

several windows, each consisting of a set of training and test 

data. The length of the training data in the first window is 1 

year and 2 months, while the length of the training data in the 

next window will increase according to the length of the test 

data and the window shift distance. The length of the test data 

and the window shift distance are maintained constant in each 

window in several scenarios, namely semester, quarter, and 

trimester. An illustration of the window shift scenario is shown 

in Figure 4. 

 

 
 

Figure 4. Illustration of the window shift scenario 

 

3.3 Anomaly detection using the distributed lag method 

 

For each window in each window shift scenario, anomaly 

detection using the distributed lag method begins by 

estimating parameters on the training data. The parameter 

estimation results in the training data are then used to forecast 

one period of testing data. These forecast results are then 

combined with training data and used again in the modelling 

process to predict the next period. This is done continuously 

until all test data in a window has forecast results based on the 

predetermined model. 

The forecast results on the test data are then used to 

calculate the error based on Eq. (12). 

 
𝑒 = �̂� − 𝑦 (12) 

 

where, e is the error, �̂� is predicted data and 𝑦 is actual data. 

Based on this error value, anomaly thresholds are calculated 

using the 4𝜎 rule. In the 4𝜎 rule, the upper threshold of the 

anomaly is calculated based on Eq. (13), while the lower 

threshold is calculated based on Eq. (14). 

 
𝑡𝑢 = 𝑒‾ + 4𝜎𝑝𝑜𝑜𝑙𝑒𝑑  (13) 

 
𝑡𝑙 = 𝑒‾ − 4𝜎𝑝𝑜𝑜𝑙𝑒𝑑  (14) 

 

where, 𝑡𝑢 is the upper threshold, 𝑡𝑙 is the lower threshold, �̅� is 

the average error value, and 𝜎𝑝𝑜𝑜𝑙𝑒𝑑  is composite standard 

deviation of error that is calculated based on the total sum 

squared error (SSE) divided by the total degrees of freedom of 

the entire window. Anomalies are then identified based on 

these thresholds. Data is identified as an anomaly when the 

error value exceeds the upper threshold or is less than the 

specified lower threshold. 

 

3.4 Anomaly detection using the autoencoder and LSTM 

autoencoder 

 

Anomaly detection using the autoencoder and LSTM 

autoencoder methods for each window in each window shift 

scenario begins with standardizing the data. The standardized 

data is then sequenced and converted into an array in 3D form. 

Next, the architecture is created, and the hyperparameters that 

will be used are determined. After the architecture is formed 

and the hyperparameters are determined, the data training 

process is carried out on the train data and forecasting on the 

test data. 

The forecast results on the test data are then used to 

calculate the error based on Eq. (12). The anomaly thresholds 

are calculated using the 4𝜎 rule based on the error value. In 

the 4𝜎 rule, data is identified as an anomaly if the error value 

is greater than the upper threshold calculated based on Eq. (13) 

or less than the lower threshold calculated based on Eq. (14). 

 

3.5 Evaluation and comparison of models 

 

Evaluation of anomaly detection results is calculated based 

on the balance accuracy value. Balanced accuracy shows the 

average accuracy of the majority and minority classes. 

According to the study [27], balance accuracy is good when 

dealing with imbalanced data. The balance accuracy value is 

then used to compare the anomaly detection results in each 

window shift scenario using the distributed lag, autoencoder 

and LSTM autoencoder methods. 

 

 

4. RESULT AND DISCUSSION  

 

4.1 Preprocessing data result  

 

The Jakarta air quality index data consists of 45,264 

observations, of which 2,073 are missing. The imputation 

method used adjusts the characteristics of the missing value 

encountered. If the missing value period is only one, then the 

imputation method used is linear interpolation. Suppose the 

missing value period amounts to more than one period but less 

than five periods. In that case, the imputation method is 

adjusted between seasonally decomposed missing value 

imputation (seadec) and seasonally split missing value 

imputation (seasplit). If there are more than five consecutive 

missing value periods, the data imputation process is carried 

out using daily air quality index data sourced from 

https://aqicn.org. This daily air quality index has some missing 

values that are imputed with the forecasting process using the 

LSTM method. The forecasting process using the LSTM 

method begins by building a model based on the data available 

before the appearance of missing values. The model that has 

been built is then used to predict the value in the first missing 

period. The forecasting results are then considered as actual 

data and are reused as input to predict the missing values for 

the next period. This process is carried out repeatedly until all 

missing values are successfully predicted. In the forecasting 

process, 2 LSTM layers and one dense layer are used, each 

consisting of 50 neuron units. The hyperparameters used in 

this forecasting process follow the study [28], where this study 

uses an epoch value of 50, a learning rate of 0.01, a batch size 

of 72, and a dropout of 0.0. The optimizer used in this 

forecasting process is the Adam optimizer. After all missing 

values have been successfully predicted, the imputed daily 

data is disaggregated into hourly data. Daily data 

disaggregation is carried out by paying attention to the day the 

missing value period occurred and using the average air 

quality index for each hour of that day as a weight. 
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Figure 5. Average of air quality index in every year 

 

After passing the data imputation stage, data exploration 

uses time series data plots. Data exploration is carried out to 

see patterns and characteristics of data. Exploratively, the plot 

of the average air quality index monthly in every year in Figure 

5 tends to increase from the beginning to the middle of the year. 

This increasing pattern is related to the dry season period that 

occurs in Indonesia. The dry season makes the air drier, with 

the wind blowing more slowly. This results in no dilution of 

pollutants in the air, because there are no water droplets 

trapped in particulates [29]. On the other hand, the average 

monthly air quality index tends to experience a decreasing 

pattern in the middle to the end of the year. The decreasing 

pattern is related to the rainy season period that occurs. The 

rainy season makes the air tend to be more humid and the wind 

tends to blow faster. This causes the dilution of pollutants in 

the air so that the air quality index improves. 

Based on the average air quality index pattern monthly in 

each year, generally, every year has the same pattern except in 

2022. In 2022, the average air quality index tends to have a 

stationary pattern with a lower average value compared to 

other years. This stationary pattern indicates that unusual 

conditions (anomalies) occurred that year. The anomaly that 

occurs is related to the La Nina event, which makes the rainy 

season prolonged [30]. 

The average air quality index in the hourly period is shown 

in Figure 6. The air quality index has a pattern that increases 

at the beginning of the day and peaks at 05.00. The air quality 

index then experienced a decreasing pattern after that time and 

had its lowest value at 17.00. After 17.00, the air quality index 

increased again until the day ended. Fluctuations in the air 

quality index are closely related to wind patterns in the calm 

category (<1 m/s). Calm category winds often occur in the 

morning and cause many pollutants to be trapped near the 

ground so that pollutant concentrations increase. Meanwhile, 

in the afternoon, the wind in the calm category tends to be less 

so that pollutants at the bottom can be blown upwards [31]. 

Although, in general, the air quality index has a similar 

pattern every day, there are differences in the pattern in several 

conditions, such as on Christmas Day (X8) and New Year (X9). 

On Christmas and New Year’s Day, the air quality index 

decreases from the beginning of the day until 05.00 and tends 

to be stationary after that. Apart from that, even though the air 

quality index has the same pattern in other conditions, there 

are differences in the range of air quality index values where 

conditions such as holidays (X2), collective leave (X3) and 

CARE (X13) have a lower range of air quality index values. 

This indicates that there are anomalies in these conditions. 

Anomalies in the air quality index are naturally not clearly 

labeled. Considering the pattern of the average air quality 

index, which rises and falls regularly and slowly, in this study, 

an anomaly is defined as a data point that suddenly increases 

or decreases. First, to determine which points are labeled as 

anomalies, calculate the difference between the air quality 

index value for the current period (𝑦𝑡) and the air quality index 

for the previous period (𝑦𝑡−1) based on the Eq. (15). 

 

𝑑 = 𝑦𝑡 − 𝑦𝑡−1 (15) 

 

If the difference exceeds �̅� ± 4𝜎𝑑, then the air quality index 

data for the current period will be labeled as an anomaly. 

 

 
 

Figure 6. Average of air quality index based on calendar variation 
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A dataset that is clean from anomalies is needed in the 

model training process using the distributed lag, autoencoder, 

and LSTM autoencoder methods. To form a dataset free from 

anomalies, data labeled as an anomaly must be replaced with 

another value so that the data is no longer an anomaly. In this 

research, the replacement of data values labeled as anomalies 

is carried out based on the 𝑑 value in Eq. (15). If the 𝑑 value 

is outside the 4𝜎𝑑 range, then the value will be replaced with

the 4𝜎𝑑 threshold based on Eq. (16).

𝑑′ = {
𝑑‾ + 4𝜎𝑑 if 𝑑 > 0

𝑑‾ − 4𝜎𝑑 if 𝑑 < 0
(16) 

Furthermore, the air quality index value for the current 

period (𝑦𝑡′) will change according to the Eq. (17).

𝑦𝑡
′ = 𝑑′ + 𝑦𝑡−1 (17) 

Based on this calculation, changes in the value of 𝑑 in one 

period can cause changes in the value of 𝑑 in the next period. 

As a result, data initially labeled as normal can be labeled as 

an anomaly due to changes in the values of 𝑑  and 𝑦𝑡 . To

overcome this problem, anomaly cleaning is carried out 

repeatedly until it is ensured that no 𝑑  values exceed the 

threshold. The dataset that has been cleaned of anomalies is 

then ready to be used in the model training process using the 

distributed lag, autoencoder, and LSTM autoencoder methods. 

The model training process for the distributed lag, autoencoder, 

and LSTM autoencoder methods is carried out by dividing the 

data into several windows with several window-shifting 

scenarios, namely semester, quarter, and trimester. The 

anomaly detection process is then carried out based on the 

forecasting results in each window in each scenario. 

4.2 Forecasting results 

Forecasting the air quality index using the distributed lag 

method begins with modeling training data. The modeling 

results on the training data are used to forecast throughout 1 

period of testing data. The results of this forecasting are used 

again at the modeling stage to carry out forecasts for the next 

period. This stage is repeated until all testing data in a window 

has forecast results based on the predetermined model. In the 

modeling process, seven air quality index variable lags were 

used by considering the ACF plot and trail error results. 

During the modeling process, the assumptions of 

homoscedasticity and normality were violated. This 

assumption violation is not addressed because the modeling 

only focuses on point forecasting. This is in accordance with 

research [32], which states that point forecasts are still relevant 

even if the homoscedasticity and normality assumptions are 

violated. 

Like the distributed lag method, forecasting using the 

autoencoder method begins with modeling the training data. 

The training data is modeled with two dense layers in the 

encoder section and two dense layers in the decoder section 

that consists of 128 and 64 neuron units, respectively, with 

tanh activation functions. The hyperparameters used in the 

modeling process was carried out based on research by the 

study [33], where this research uses a batch size value of 32, a 

learning rate of 0.001, dropout rate of 0.0 and an epoch of 50. 

The optimizer used in this research is the Adam optimizer. 

Adam optimizer is used in line with research by the study [34] 

which states that the Adam optimizer is an efficient optimizer 

used for forecasting. 

Forecasting using the LSTM autoencoder method begins 

with training data using two LSTM layers in the encoder 

section and two LSTM layers in the decoder section. Each 

layer in the encoder and decoder sections consists of 100 

neuron units. The hyperparameters used in the LSTM 

autoencoder method are the same as those used in the 

autoencoder method. The forecast accuracy results using the 

distributed lag, autoencoder, and LSTM autoencoder methods 

are shown in detail in Table 2. 

Table 2. Forecasting accuracy of distributed lag, 

autoencoder, and LSTM autoencoder methods 

Scenario 

Average MAPE Value (%) 

Distributed 

Lag 
Autoencoder 

LSTM 

Autoencoder 

Semester 8.98±1.87 13.07±4.09 9.33±1.53 

Quarter 8.99±2.60 11.31±3.45 9.77±3.52 

Trimester 8.99±2.73 11.30±4.04 9.55±2.66 

Based on Table 2, both in the semester, quarter, and 

trimester window shift scenarios, the distributed lag, 

autoencoder, and LSTM autoencoder methods can predict the 

air quality index value well, indicated by an average MAPE 

value of less than 15%. The distributed lag, autoencoder, and 

LSTM autoencoder methods show similar MAPE value 

movements between folds, except in the first and fourth folds 

of the semester scenario, the seventh fold of the quarter 

scenario, and the ninth fold of the trimester scenario (Figure 

7). The distributed lag method is always the method with the 

best forecasting results compared to other methods. This 

method also has the most stable inter-fold MAPE value 

movement in the semester and trimester scenarios. Conversely, 

the autoencoder method is always the method with the worst 

forecasting results compared to other methods. This method 

also has the most unstable inter-fold MAPE value movement 

in the semester, quarter, and trimester scenarios. Meanwhile, 

the LSTM autoencoder method is neither the best nor the worst 

in the three scenarios, but it is the method with the most stable 

inter-fold MAPE value movement in the quarter scenario.  

In the semester window shift scenario, the highest MAPE 

value of the distributed lag method occurs in the fifth fold, 

with a value of 12.17%. This is not in line with the autoencoder 

and LSTM autoencoder methods, where the highest MAPE 

value of the autoencoder method occurs in the first fold with a 

value of 19.68%, and the highest MAPE value of the LSTM 

autoencoder method occurs in the second fold with a value of 

11.95%. Meanwhile, the lowest MAPE value in the distributed 

lag method appears in the third fold with a value of 6.98%. 

This is not in line with the Autoencoder and LSTM 

autoencoder methods, which have the lowest MAPE values in 

the seventh fold. The MAPE values of these two methods in 

these folds are 8.56% and 7.47%, respectively. 

In the quarter window shift scenario, the highest MAPE 

value of the distributed lag method is in line with the 

autoencoder and LSTM autoencoder methods, namely in the 

third fold. In this fold, the MAPE values of the distributed lag, 

autoencoder, and LSTM autoencoder methods are 14.68%, 

19.60%, and 19.74%, respectively. Meanwhile, the lowest 

MAPE value of the distributed lag method is also in line with 

the lowest MAPE value of the autoencoder and LSTM 

autoencoder methods, namely in the eleventh fold. In the 

eleventh fold, the MAPE values of the distributed lag, 

autoencoder, and LSTM autoencoder methods are 5.38%, 
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6.23%, and 5.36%, respectively. 

In the trimester window shift scenario, the distributed lag 

method has the highest MAPE value in the tenth fold, with a 

value of 14.64%. This is not in line with the autoencoder and 

LSTM autoencoder methods, where both have the highest 

MAPE values in the fourth fold, with values of 20.46% and 

13.31%, respectively. However, the lowest MAPE value for 

the distributed lag method occurs in the same fold as the 

autoencoder and LSTM autoencoder methods, namely in the 

fifteenth fold. In this fold, the MAPE values of the distributed 

lag, autoencoder, and LSTM autoencoder methods are 5.04%, 

5.94%, and 4.97%, respectively.

  

 
 

Figure 7. Forecast accuracy of distributed lag, autoencoder, and LSTM autoencoder 

 

In general, folds with small MAPE values are folds with 

forecast error values that tend to be uniform without any error 

values that are too large. This can indicate the presence of 

anomalies that are not too steep with a small amount. 

Meanwhile, folds with large MAPE values can be caused by 

two possibilities. The first possibility is the presence of 

observations with huge error values followed by other 

observations with small error values. This can indicate the 

presence of steep anomalies with a small amount. The second 

possibility is the presence of several observations with 

relatively large error values without being followed by 

observations with huge error values. This can indicate the 

presence of anomalies that are not too steep with a large 

amount. 

 

4.3 Anomaly detection results 

 

Anomaly detection in the air quality index using the 

distributed lag, autoencoder, and LSTM autoencoder methods 

is based on the forecasting results. Data is detected as an 

anomaly if the forecast error is outside the range of 4 sigma. 

In the semester window shift scenario, anomaly detection 

using the distributed lag method produces the largest number 

of anomalies in the second fold. This does not follow the actual 

conditions where the second fold is a fold with a small number 

of anomalies compared to other folds. This condition makes 

the false positive value of the distributed method in this fold 

high (Figure 8). Most of the observations that are predicted to 

be anomalies are not anomalies in actual conditions. This is 

closely related to the forecasting performance of the 

distributed lag method, which is further explained in section  

However, the false negative value in this fold is the lowest 

compared to other folds. 

In contrast to the distributed lag method, anomaly detection 

using the autoencoder method produces the largest number of 

anomalies in the first fold. This follows the actual conditions 

where the first fold has the largest number of anomalies. 

However, not all anomalies detected in this fold are anomalies 

in the actual conditions. This can be seen from the false 

positive value of the autoencoder method on this fold, which 

is very high. A very high false negative value accompanies this 

very high false positive value. The false positive and false 

negative values on this fold are the highest compared to other 

folds. 

In contrast to the distributed lag and autoencoder methods, 

anomaly detection using the LSTM autoencoder method 

produces the largest number of anomalies in the third fold. 

Although the third fold is a fold with a large number of 

anomalies, the false positive value of the LSTM autoencoder 

method in this fold is the highest, even exceeding the false 

positive values of other methods. This is because the error 

value in this fold tends to be large and spread out, while the 

standard deviation of the error used as the anomaly detection 

threshold is the same for each fold. In line with the 

autoencoder method, this fold has a very high false positive 

value and is also accompanied by a high false negative value. 

This makes the false positive and false negative values in this 

fold the highest compared to other folds. 

In the distributed lag method and LSTM autoencoder, the 

fifth fold is the least number of anomalies detected in the 

semester window shift scenario. This follows the actual 

conditions where the fifth fold has the smallest number of 

anomalies. In this fold, the very extreme forecast error value 

makes the anomaly threshold tend to be wider. This makes the 

detected anomalies more selective, where observations 

detected as anomalies are indeed anomalies in the actual 

conditions. As a result, the false positive value in this fold is 

one of the smallest compared to other folds [35]. The false 

positive value of the LSTM autoencoder method in this fold 

even reaches 0. 

In contrast to the distributed lag and LSTM autoencoder 

methods, the smallest number of anomalies detected by the 

autoencoder method in the semester window shift scenario is 

in the sixth fold. In this fold, the forecast error value of the 

autoencoder method is not too large. However, the wide 

anomaly thresholds make observations whose actual 

conditions are not correctly detected as anomalies, so the false 

negative value in this fold tends to be large. However, in this 

fold, the anomalies detected tend to be more selective, whereas 

observations detected as anomalies are indeed anomalies in 

their actual conditions [36]. As a result, the false positive value 

in this fold reaches 0. Apart from this fold, most of the folds 

in the semester shift scenario in the autoencoder method have 

a false positive value of 0. 
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Figure 8. Confusion matrix of anomaly detection using distributed lag, autoencoder and LSTM autoencoder 

 

In the quarterly window shift scenario, anomaly detection 

using the distributed lag method produces the largest number 

of anomalies in the twelfth fold. Meanwhile, anomaly 

detection using the autoencoder and LSTM autoencoder 

methods produces the largest number of anomalies in the first 

and fourth folds, respectively. This is in line with the actual 

conditions where the twelfth fold owns the largest number of 

anomalies, the first and fourth fold with the same value of 13. 

The characteristics of the anomalies detected in the three folds 

also tend to be the same. All three folds detect anomalies 

where the anomalies have a high forecast error value without 

any forecast error value that is too steep. This causes the 

anomaly boundaries not to be too wide and the number of 

anomalies detected to be greater. The large number of 

anomalies detected makes the chance of observations with 

actual anomalous conditions being detected as anomalies 

greater so that the false negative value tends to be small. 

Conversely, the large number of anomalies detected also 

increases the false positive value, where observations that 

should be predicted as normal observations are predicted as 

anomalies [37]. 

The least number of anomalies in the quarterly window shift 

scenario occurs in the eighth fold in both the distributed lag, 

autoencoder and LSTM autoencoder methods. This is in line 

with the actual conditions where the eighth fold has the 

smallest number of anomalies. This fold has a very high 

forecast error value, which makes the anomaly thresholds 

wider. The wider anomaly thresholds make the anomaly 

detection process should be more selective, where the 

observations detected as anomalies are anomalies in their 

actual conditions. In reality, this only applies to the 

autoencoder and LSTM autoencoder methods. In the 

distributed lag method, more than half of the observations 

detected as anomalies are not anomalies in their actual 

conditions. However, in the distributed lag method, all data 

whose actual conditions are anomalous can be perfectly 

detected as anomalies in the distributed lag method marked 

with a false negative value of 0. 

In the trimester window shift scenario, anomaly detection 

using the distribution lag method produces the largest number 

of anomalies in the third fold. Meanwhile, anomaly detection 

using the autoencoder and LSTM autoencoder methods 

produces the largest number of anomalies in the fifth fold. This 

does not align with the conditions where the second fold owns 

the largest number of anomalies. In the first fold of the 

distribution lag method and the fifth fold of the autoencoder 

and LSTM autoencoder methods, the forecast error values 

produced tend to be high without any forecast error values that 

are too steep. This causes the anomaly boundaries to tend not 

to be too wide and the number of anomalies detected to be 

greater. The large number of anomalies detected makes the 

chance of observations with actual anomalous conditions 

being detected as anomalies greater so that false negative 

values are small and false positives are large. 

Anomaly detection using the distribution lag, autoencoder 

and LSTM autoencoder methods produces the smallest 

number of anomalies in the tenth fold. This follows the actual 

conditions where the tenth fold is the fold with the fewest 

number of anomalies. There is a very extreme forecast error 

value in this fold, so the anomaly boundaries become wider, 

and anomaly detection becomes clearer. This should make the 

observations detected as anomalies indeed anomalies in their 

actual conditions. In reality, this only applies to the 

autoencoder and LSTM autoencoder methods. Even the 

autoencoder method can detect anomalies perfectly without 

misclassification so that the false negative and false positive 

values of the autoencoder method on this flip are zero. 

Meanwhile, in the lag distribution method, most anomalies 

detected are not anomalies in their actual conditions. 

Furthermore, the lag distribution and LSTM autoencoder 

methods can also not detect anomalies well, where these 

methods classify observations whose actual conditions are 

anomalous into normal observations. 

The measure that can be used to detect anomaly detection 
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results using the lag distribution, autoencoder, and LSTM 

autoencoder methods is balance accuracy. Balance accuracy is 

a good measure to use when faced with unbalanced data. The 

average balance accuracy value for the third method in the 

third scenario is shown in Table 3. 
 

Table 3. Balance accuracy of distributed lag, autoencoder, 

and LSTM autoencoder methods 
 

Scenario 

Average Balance Accuracy Value (%) 

Distributed 

Lag 
Autoencoder 

LSTM 

Autoencoder 

Semester 93.86±2.38 65.64±7.00 87.10±3.89 

Quarter 93.73±3.08 85.14±8.23 88.15±6.24 

Trimester 92.52±6.93 90.36±6.87 86.38±7.20 

 

Based on Table 3, the distributed lag method has a higher 

balance accuracy value than the autoencoder and LSTM 

autoencoder methods in the semester, quarter and trimester 

window shift scenarios. The balance accuracy value of the 

distributed lag method reaches the highest value in the 

semester window shift scenario and the lowest value in the 

trimester window shift scenario. In the semester window shift 

scenario, the distributed lag method generally can detect 

anomalies well and consistently, indicated by a high balance 

accuracy value above 89%. In line with the semester window 

shift scenario, in the quarter window shift scenario, the 

distributed lag method can detect anomalies well and 

consistently with the lowest balance accuracy value in the 

seventh fold with a value of 88.85% and the highest balance 

accuracy in the eighth fold with a value of 99.93% (Figure 9). 

Meanwhile, in the trimester window shift scenario, the 

distributed lag method can generally detect anomalies quite 

well, where this method has a high balance accuracy value. 

However, in the tenth fold, which has the fewest anomalies, 

the distributed lag method cannot detect anomalies well, as 

indicated by a balance accuracy value of 74.91%. 

 

 
 

Figure 9. Balance accuracy of distributed lag, autoencoder, and LSTM autoencoder 

 

The autoencoder method finds high balance accuracy values 

in the trimester window shift scenario, followed by the quarter 

and semester window shift scenarios. In the semester window 

shift scenario, the highest balance accuracy value is found in 

the second fold, which aligns with the lowest false negative 

value. Meanwhile, the lowest balance accuracy value is found 

in the seventh fold with a high false negative value. In this 

scenario, the anomaly detection results are not very good, with 

a balance accuracy value below 80%. Unlike the semester 

window shift scenario, in the quarter window shift scenario, 

anomaly detection using the autoencoder method tends to have 

good results where most folds have a balance accuracy value 

above 80%. In this scenario, the highest balance accuracy 

value is owned by the first fold with a value of 96% and the 

lowest balance accuracy value is owned by the eleventh fold 

with a value of 77.28%. Meanwhile, in the trimester window 

shift scenario, there are three folds with perfect detection 

results with a balance accuracy value of 100%, namely in the 

seventh, tenth and thirteenth folds. Anomaly detection in this 

scenario also tends to be consistent, with most folds having a 

balance accuracy value above 85%. Anomaly detection in this 

scenario performs better than the LSTM autoencoder method 

for all scenarios. 

In the LSTM autoencoder method, the highest balance 

accuracy value is found in the quarter window shift scenario. 

In contrast, the trimester window shift scenario finds the 

lowest balance accuracy value. This result is inconsistent with 

the distributed lag and autoencoder methods. Like the 

distributed lag method, anomaly detection using the LSTM 

autoencoder method tends to have consistent results marked 

by the difference in balance accuracy values between folds in 

each scenario, which is not too high. In the semester window 

shift scenario, the highest balance accuracy value is found in 

the first fold, with a value of 90.76%. Meanwhile, the lowest 

balance accuracy value is found in the seventh fold, at 80.78%. 

In the quarter window shift scenario, anomaly detection tends 

to be more consistent than other scenarios. In this scenario, the 

highest balance accuracy value is found in the first fold, with 

a value of 96%, while the lowest is found in the eleventh fold, 

at 77.26%. Meanwhile, in the trimester window shift scenario, 

the LSTM autoencoder method can detect anomalies almost 

perfectly with a balance accuracy value of 99.84%, namely in 

the first fold. However, this method can detect anomalies in 

other folds quite consistently, with the lowest balance 

accuracy value being in the fourth fold, which has a value of 

74.95%. In the trimester window shift scenario, the 

autoencoder method tends to have a small balance accuracy 

value in folds with a small number of anomalies. 

 

4.4 Comparison of distributed lag, autoencoder, and 

LSTM autoencoder methods in detecting anomalies in the 

air quality index 

 

The forecasting ability of each method dramatically 

influences the ability to detect anomalies. The method with the 

highest forecasting capability, in this case, distributed lag, has 

anomaly thresholds that tend to be narrower than other 

methods. This makes anomaly detection more sensitive, and 

more anomalies are detected. The large number of anomalies 

detected means that the chances of an observation whose 
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actual condition is an anomaly being detected as an anomaly 

also becomes higher. As a result, the false negative value for 

this method tends to be lower, while the balance accuracy 

value tends to be higher. However, the number of anomalies 

detected does not necessarily reflect the actual conditions. In 

the distributed lag method, the majority of the many 

observations detected as anomalies are not anomalies in actual 

conditions. This causes the distributed lag method’s false 

positive value to be higher than other methods. The distributed 

lag method tends to have good performance with high balance 

accuracy values on folds with a large number of actual 

anomalies. Folds like this usually have anomalous 

characteristics that are not too steep. On the other hand, this 

method tends to perform less well on folds with a small 

number of actual anomalies. 

In methods with forecasting capabilities that tend to be less 

suitable than other methods, in this case, the autoencoder 

method, the anomaly thresholds tend to be wider because the 

variety of forecasting errors tends to be larger. This causes 

anomaly detection to be less sensitive and the number of 

anomalies detected to be fewer. However, the high anomaly 

thresholds and the small number of anomalies make the 

autoencoder method tend to be more selective in detecting 

anomalies. Observations detected as anomalies are indeed 

anomalies in actual conditions. This makes the false positive 

value for this method smaller than that of other methods. Most 

of the folds in this method have a false positive value of zero. 

However, the wide range of anomaly detection makes this 

method less suitable for detecting not too steep anomalies. As 

a result, there are observations whose actual conditions are 

anomalies classified as normal observations. This makes the 

false negative value for this method tend to be high, 

accompanied by the balance accuracy value, which tends to be 

low. However, this method is quite suitable for detecting 

anomalies in folds with a few actual anomalies with steep 

anomaly characteristics. The balance accuracy value of the 

autoencoder method on folds with these characteristics reaches 

100%. 

In the LSTM autoencoder method, the forecasting ability at 

each fold of this method is better than the autoencoder method 

but not better than the distributed lag method. The anomaly 

threshold of this method is also quite wide, where this method 

has a wider anomaly threshold than the distributed lag method 

but not wider than the autoencoder method. This causes the 

number of detected anomalies to be quite large. The large 

number of anomalies detected makes the chance of an 

observation in which the actual condition of the anomaly being 

detected as an anomaly becomes greater so that the false 

negative value tends to be low and the balance accuracy value 

tends to be high. However, this does not necessarily make the 

false positive value of this method high. In several folds in the 

three scenarios, the false positive value for this method 

reached 0. However, several folds were also found with very 

high false positive values. This is because the error in the fold 

is relatively large and spread out, while the standard deviation 

of error used as a threshold in anomaly detection is set the 

same for each fold. The LSTM autoencoder method works 

well on folds with anomalous characteristics that are not too 

steep and have many anomalies. 

 

 

5. CONCLUSIONS  

 

The distributed lag method has excellent forecasting 

performance with anomaly thresholds that tend to be narrow. 

Anomaly detection using this method tend to be more sensitive, 

with low false negative values and high false positive values. 

This method is suitable for anomaly detection with no steep 

characteristics. Meanwhile, the autoencoder method has a 

forecasting performance that is not very good compared to 

other methods. Anomaly detection using this method tends to 

have a high false negative rate with a very low false positive 

rate. This method is suitable for detecting anomalies with steep 

characteristics. On the other hand, the LSTM autoencoder 

method has better forecasting performance than the 

autoencoder method but not better than the distributed lag 

method. This method has a false negative rate, which tends to 

be low, and a false positive rate, which is not too high. This 

method is quite suitable for both anomalies with 

characteristics that are not too steep and detect anomalies with 

quite steep characteristics.  

Anomaly detection in this study is only limited to air quality 

index data. Air quality index data has characteristics that may 

differ from other data. The characteristics of anomaly 

detection methods in air quality index data cannot necessarily 

be generalized to other datasets. To generalize the 

characteristics of the three anomaly detection methods, further 

research can be carried out on simulated data generated with 

various scenarios. 
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