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Artificial intelligence is being applied in numerous industries, including healthcare among 

others. Due in great part to needs like dependable findings, data security, exact prediction, 

and a volume of data, among other things, research is being undertaken in the AI-enabled 

healthcare market. Regarding conventional deep learning models, datasets saved on a single 

device are used throughout the training process. Training the data calls for both highly 

efficient equipment and a lot of storage capacity. The work shown here suggests a federated 

learning approach suitable for five different customers. 9702 ultrasonic images of the 

gallbladder (GB) correspond with eight distinct disease types. Every client owns a part of 

the dataset with some unique classes from those of other clients. This is so since clients 

have divided the dataset. Two deep learning models applied and assessed in this work were 

CNN and VGG16. Clients used both models as well as the global ones. This paper proposes 

a possible global model solution based on the FedAvg aggregation method. The results 

show that VGG16 shows better outcomes in classification for both the client and the global 

model with a 99% accuracy rate in FL and a 94% accuracy rate for local training alone 

operations. CNN shows accuracy with a 99% in Florida and an 81% for local training 

initiatives. 
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1. INTRODUCTION

Physicians employ medical images, such as computed 

tomography (CT), magnetic resonance imaging (MRI), and X-

rays, to create reliable and accurate DL models that help in the 

diagnosis, detection, and treatment of many diseases. Different 

metrics are included in these images to aid in the extraction of 

patient information from the medical images during analysis. 

However, the objective of the analysis phase is to identify the 

processed images using a variety of techniques, including 

machine learning (ML), which are frequently employed in the 

analysis and feature extraction of medical images used for 

disease classification and diagnosis [1, 2]. 

The classification of a multiclass medical image gallbladder 

disease dataset is used in this current study.  The gallbladder, 

a vital liver organ, is crucial for digestion but can be affected 

by diseases like gallstones, cholecystitis, cancer, and others. 

Early diagnosis is essential for effective treatment, especially 

in severe cases like gallbladder cancer, which improves 

survival rates [3]. 

Deep Learning for medical image interpretation is crucial 

for improving diagnostic abilities. However, the dispersion of 

clinical data across healthcare facilities poses a challenge, as 

it cannot be combined for centralized model training due to 

privacy laws and data exchange difficulties. This limits the 

generalizability and effectiveness of diagnostic models for 

gallbladder issues [4]. 

The dataset was distributed to multiple clients using two 

methods: IID (Independent and Identically Distributed) and 

Non-IID (Independent and Identically Distributed) to replicate 

a real-world federated learning environment. IID was achieved 

by randomly dividing the dataset into equal portions for each 

client, ensuring identical assignments. The most optimal 

configuration was used to test the relative performance of the 

FL model [5]. 

In this work, we used the dataset of gallbladder diseases as 

the case study to estimate the proposed system model in the 

field of medical image classification. The dataset used is IID 

(Independent and Identically Distributed), which is distributed 

among 3 healthcare centers and is ideal for deep learning 

algorithms, as it allows for faster convergence and higher 

accuracy. 

Convolutional Neural Networks (CNNs) are a prominent 

deep learning technique that automatically extracts features 

from data and improves diagnostic accuracy in medical image 

analysis tasks. Combining CNN architectures with transfer 

learning techniques improves image classification 

performance, recognizing important visual patterns with less 

preprocessing on raw data. VGG16Net, the largest CNN 

architecture, has a high computational load [2, 6], which is 

employed to classify the gallbladder diseases dataset before 

using FL. 
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Deep learning methods' predictive abilities are influenced 

by the amount of training data, which should come from 

multiple sources [7]. Obtaining sufficient data in the field of 

medical imaging is a significant difficulty. This difficulty 

might be solved by collaboration among various institutions. 

Sharing medical data in a single location raises a number of 

legal, privacy, technological, and data-ownership issues.  

To solve these issues, Federated Learning (FL) enables 

individual hospitals to benefit from the large datasets of 

numerous non-affiliated institutions without centralizing the 

data in one location [8]. FL's privacy-preserving feature allows 

collaborations across various medical institutes [9] without 

exchanging medical data between healthcare centers. This 

helps to preserve privacy and gain model generality through 

the global model. 

In an ideal FL system, medical institutions collaborate using 

a centralized orchestration cloud server in a trusted execution 

environment. FL allows hospitals and other medical 

institutions to keep local data by training a model across 

multiple medical data centers. The central server maintains a 

global shared model, co-owned by all participating 

institutions, while each institution maintains its local version. 

The server verifies local model quality before aggregating 

updates based on preset criteria. Global models iterate between 

aggregation servers and participating institutions, producing 

high-quality, converged, and performant FL models [10], 

which are applied to an estimated gallbladder dataset. 

Aggregation algorithms are techniques for combining the 

outcomes of several models that have been trained on the 

client's end using local data. In addition to updating the global 

model, they manage the fusion of local client training 

outcomes. In a FL scenario, several aggregation techniques are 

employed based on objectives such as convergence rate and 

user privacy. Weighted aggregation, secure aggregation, 

momentum aggregation, clipped average aggregation, and 

average aggregation are a few of these strategies. Average 

aggregation, which averages client updates, provides benefits 

like simplicity and increased model accuracy, but it can't work 

well with non-IID data and is vulnerable to fraudulent clients 

and outliers. The Federated Averaging FedAvg, FedProx, 

FedDist, and HeteroSAg aggregation algorithms are being 

developed for federated learning [11]. 

The Federated Averaging (FedAvg) is a fundamental 

algorithm that uses a central server to acquire a primary model, 

which is then trained using local data from each client. The 

model parameters are then transmitted to the central server, 

which then aggregates global models using parameters from 

other clients. The aggregated global model is then distributed 

to the clients, marking the end of one learning round. The 

process continues until the model's accuracy meets the 

required level, with both clients and the central server 

maintaining the models from previous iterations [12]. 

Alternatively, to enable distributed and privacy-preserving 

FL model training, Local data is used to train the model, and 

only the model updates are transmitted to a central server. By 

reducing the amount of data sent between devices and servers 

and decentralizing the machine learning process, federated 

learning was able to reduce the risk of data breaches due to 

malicious attacks and malfunctions in the systems.  

Privacy preservation in FL is a crucial aspect of different 

learning models, ensuring the privacy of training data while 

enabling successful model training. Robust aggregation 

techniques, such as FedAvg and secure aggregation, are used 

to address model integrity attacks, while federal transfer 

learning fine-tunes models on decentralized data, outlier 

identification and removal improve performance and model 

resilience. Different approaches to secure privacy-preserving 

methods are explored, ranging from simple averaging to more 

advanced methods such as secure multi-party computing and 

differential privacy [11, 13]. 

In this work, a federated deep learning models based on 

CNN and VGG16 has been proposed for multiple clients 

(multiple healthcare centers), each client has part of the dataset 

to train. The gallbladder dataset has been used with eight 

classes divided between five clients. The rest of the paper is 

organized as follows: in Section 2 the related work is 

described. Sections 3 and 4 show a description of the dataset. 

algorithms and methodologies used in this work are presented 

in Section 5, while the proposed system design is shown in 

Section 6. In Section 7, a discussion of the obtained results is 

presented. Finally, a conclusion is introduced in Section 8. 

 

 

2. RELATED WORK 
 

A number of research studies have been carried out in 

medical imaging analysis based on DL and FL in detection, 

segmentation, and classification. Federated Learning (FL) is 

rapidly transforming medical imaging and healthcare by 

enabling collaborative model training across multiple 

institutions while preserving patient data privacy. This section 

groups relevant studies based on their primary contributions to 

the field. 

Some recent research has significantly advanced Federated 

Learning (FL) by focusing on the critical issues of data 

heterogeneity and training stability, particularly in medical 

imaging applications. This area of focus aims to overcome 

challenges posed by the non-Independent and Identically 

Distributed (non-IID) nature of medical data across different 

institutions, which can lead to training instability and reduced 

model performance. The overarching goal within this 

grouping is to develop robust FL algorithms capable of 

effectively learning from diverse and unbalanced datasets. 

For instance, to mitigate training instability stemming from 

medical data heterogeneity, FedSLD (Federated Learning with 

Shared Label Distribution) was proposed and rigorously tested 

on OrganMNIST and PathMNIST datasets under various non-

IID settings [14]. Similarly, HarmoFL was introduced to 

harmonize local and global drifts in FL on heterogeneous 

medical images. This approach normalizes image amplitudes 

in the frequency domain and utilizes client weight perturbation, 

with both theoretical analysis and empirical demonstrations 

confirming its superior convergence [15]. Furthermore, 

SplitAVG presented a heterogeneity-aware FL method that 

leverages network splitting and feature map concatenation to 

encourage unbiased model training, achieving results 

comparable to baseline centralized training even in highly 

heterogeneous environments [16]. The impact of data 

heterogeneity on FL algorithms was also empirically 

investigated using the COVIDx CXR-3 dataset, revealing a 

considerable reduction in global accuracy with non-IID data, 

especially for smaller datasets, while larger datasets showed 

improved accuracy [17]. 

Another area of research in FL focuses on enhancing model 

efficiency, overall performance, and generalization 

capabilities. This involves improving the computational 

efficiency of FL frameworks, boosting model accuracy, and 

ensuring that models trained via FL generalize effectively to 
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unseen data from diverse sources. The ultimate aim is to make 

FL a more practical and effective solution for real-world 

clinical applications. 

For instance, studies have investigated communication-

efficient FL frameworks for multi-institutional medical image 

classification, demonstrating improvements in model training 

efficiency for methods like FedAvg and FedProx. One such 

study reported a 2% improvement in testing accuracy and a 

28% reduction in training loss on a diabetic retinopathy dataset 

[18]. A comprehensive comparison between single-institution 

models, collaborative data sharing (CDS), and FL for brain 

tumor segmentation highlighted FL's superior model quality 

and generalization, achieving approximately 99% accuracy 

using the BraTS dataset from ten institutions [19]. 

Research has also concentrated on the application of FL 

with specific deep learning architectures and advanced feature 

engineering techniques. This explores how various deep 

learning models and sophisticated feature extraction methods 

are integrated within FL frameworks to address particular 

medical imaging tasks, leveraging the power of deep learning 

in a privacy-preserving distributed setting. 

One approach utilized an ensemble of top-performing pre-

trained CNN models (Inception V3, VGG19, DenseNet121) 

within an FL framework for brain tumor detection from MRI 

images, noting a trade-off where FL maintained privacy with 

91.05% accuracy, compared to 96.68% for a centralized CNN 

[20]. The effectiveness of FL's pre-trained models has been 

evaluated by combining EfficientNet with CNN and 

incorporating traditional image processing techniques like 

Gray-Level Co-occurrence Matrix (GLCM) and Local Binary 

Patterns (LBP) for liver CT and brain MRI image 

classification, demonstrating high accuracy rates (98.8% for 

CT and 97.4% for MRI) [21]. Additionally, a cooperative FL 

architecture based on the Inception-V3 model has been 

proposed for classifying lung and colon malignancies from 

histological images, achieving exceptionally high 

classification accuracy (99.867% for lung and 100% for colon 

cancer) [22]. 

Beyond standard diagnostic image classification, FL is 

demonstrating its versatility through creative applications in a 

range of healthcare contexts, including clinical outcome 

prediction and solving weakly-supervised learning problems. 

For instance, an FL model trained on data from 20 global 

institutes was developed to predict the future oxygen 

requirements of symptomatic COVID-19 patients using vital 

signs, laboratory data, and chest X-rays. This model achieved 

an average AUC >0.92, showing a significant improvement in 

generalizability (38%) compared to single-site models [23]. 

For multi-site fMRI analysis, privacy-preserving FL combined 

with domain adaptation has been addressed, proposing a 

decentralized iterative optimization algorithm and a 

randomization mechanism for shared local model weights. 

This approach demonstrates promise for boosting neuroimage 

analysis without direct data sharing [24]. Another FL 

framework, incorporating differential privacy, has been 

proposed for improving histopathology image classification 

using a multiple model approach. This framework was applied 

to histopathology images, examining the effects of IID and 

non-IID distributions, healthcare provider numbers, and 

dataset sizes using the Cancer Genome Atlas dataset. The 

study concluded that FL is a reliable and efficient framework 

for collaborative model development, achieving performance 

similar to conventional training with strong privacy guarantees 

[25]. Finally, FedLPPA (Federated Learning with 

Personalized Prompt and Aggregation) offers a novel 

personalized FL framework to uniformly leverage 

heterogeneous weak supervision for medical image 

segmentation across different sites and annotation formats. 

FedLPPA maintains learnable universal and personalized 

prompts, integrated with sample features, and employs a dual-

decoder strategy for pseudo-label generation, showing 

efficacy closely paralleling fully supervised centralized 

training [26]. 

The collected works demonstrate the Federated Learning 

potential to revolutionize medical imaging and healthcare by 

overcoming data silos and privacy concerns. A central theme 

is the development of robust FL algorithms that can effectively 

handle the inherent data heterogeneity across medical 

institutions, ensuring model stability, high performance, and 

strong generalization. Researchers are actively exploring 

various deep learning architectures and feature engineering 

techniques within FL frameworks to tackle specific diagnostic 

and predictive tasks, while also innovating new FL paradigms 

like personalized prompts and domain adaptation to address 

complex real-world challenges such as weakly-supervised 

learning and multi-modal data integration. Although some 

studies indicate potential trade-offs between strict privacy and 

peak accuracy compared to centralized models, the 

overwhelming consensus is that FL offers a powerful, ethical, 

and scalable solution for advancing AI in medicine by 

enabling collaborative intelligence without compromising 

patient data. 

 

 

3. DATASET OVERVIEW 
 

In the proposed system, The Gallbladder (GB) diseases 

dataset is a database of high-quality ultrasound pictures taken 

at four hospitals in Baghdad, Iraq.  The data was gathered over 

four years from Jenin Hospital, the Al-Numan Teaching 

Hospital Specialized Gastroenterology Center, and the 

Gastroenterology Department of the City of Medicine 

Teaching Hospital. The information is essential for creating 

deep learning and machine learning algorithms that can 

identify and categorize gallbladder illnesses. The information 

supports comparison research and testing of new methods for 

an ultrasound image analysis to investigate the medical field 

and enhance patient care. The dataset was collected 10,692 

high-resolution ultrasound images of the gallbladder from 

1,782 individuals [27]. The images are organized into nine 

classes, each representing a specific gallbladder disease based 

on anatomical landmarks. The dataset includes images from 

female patients (6,246 images, average age 47 years) and male 

patients (4,446 images, average age 53 years) [28]. The images 

were acquired using cutting-edge technologies from four 

different ultrasound machines (Siemens Acuson X700, Philips 

Affiniti 70, Philips CX50 and Canon Viamo c100). The data 

collection took place over four years at four medical facilities 

in Baghdad, Iraq, with medical staff members and expert 

doctors contributing to the collection [29]. 

In this current work we are used only eight classes of 

gallbladder diseases dataset which are used to training and 

evaluation model, these selected classes or diseases (gallstones, 

cholecystitis, gangrenous cholecystitis, gallbladder 

perforation, polyps and cholesterol crystals, gallbladder 

adenomyomatosis, cancer, and intraabdominal and 

retroperitoneum problems) of 9702 images each resized to the 

dimension 224×224 pixels with RGB color mode. We show 
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examples of each class in Figure 1, highlighting the 

differences in appearance on ultrasound at different 

gallbladder diseases. Table 1 indicates the whole distribution 

of Gallbladder disease images in diverse classes within the 

dataset. 

Figure 1. Sample ultrasound images from different classes 

Table 1. Number of Gallbladder disease images per class 

Gallbladder Diseases 

Classes 
Number of 

Images 
Number of Images 

after Balancing 
Gallstones 1326 1020 

Abdomen and 

retroperitoneum 
1170 1020 

Cholecystitis 1146 1020 
Membranous and 

gangrenous cholecystitis 
1224 1020 

Perforation 1062 1020 
Polyps and cholesterol 

crystals 
1020 1020 

Adenomyomatosis 1164 1020 
Carcinoma 1020 1020 

The GB, a hollow organ in the abdomen, stores bile secreted 

by the liver, causing numerous pathologies, with cholelithiasis 

being the most common. The list of frequent GB pathologies 

is summarized below. 

Gallstones, which can be mild or severe, are tiny calcium 

crystals and cholesterol/bile salts that develop inside the 

gallbladder (GB). Cholecystitis occurs when stones in the bile 

duct obstruct the bile duct, trapping bile and causing 

inflammation. Gangrenous cholecystitis is a severe form of 

cholecystitis that necessitates an immediate cholecystectomy 

since it causes necrosis of the GB owing to problems with the 

blood supply. Perforation of the GB wall, a common major 

complication in inflamed GB, is a serious issue in people with 

diabetes and compromised immune systems, requiring urgent 

intervention for treatment. Polyps and cholesterol crystals are 

common causes of GB disease, with polyps occurring in 2.6%-

9.9% of cases. Cholesterol polyps are benign, while 

endothelial polyps may develop into cancer. A major risk 

factor for adenomyomatosis of the GB is a persistent infection. 

The disease is characterized by mucosal epithelial 

hypertrophy, which leads to Luschka's crypts. Carcinoma is a 

GB cancer, a rare, female-dominated tumour, is more common 

in over 70-year-olds, often accompanied by gallstones. Early 

diagnosis and treatment are crucial for survival. 

Intraabdominal and retroperitoneum problems, including GB 

cancer spreading to retroperitoneal structures, can be detected 

using MRI or CT and ultrasound for further evaluation [29]. 

4. DATASET PREPROCESSING

The preprocessing step aimed to ensure the quality and 

balance of the gallbladder dataset for machine learning tasks 

that's includes: 

1. Data balancing: This technique was applied to down

sample each class to be the same size as the smallest class to 

mitigate this bias. The polyps and cholesterol crystals Class 

had the fewest images, with 1020. Random sampling was 

employed to select 1020 images from the remaining seven 

classes to balance the dataset. This resulted in a balanced 

dataset of 1020 images per class, leading to 8160 images (i.e., 

1020 images × 8 classes). Figure 2 shows the balanced classes. 

This balanced dataset allowed the models to train on class-

specific features effectively. 

Figure 2. Traditional FL framework [30] 

2. Image resizing: Resizing all images to a constant size of

(224×224×3 pixels), which is an acceptable dimension that 

keeps the main structure of the images before feeding it into 

the network to reduce the number of parameters and reduce the 

requirement of computation power. 

3. Split the dataset into training, validation, and testing:

70% of the dataset is used for training the model, 10% of the 

dataset is used for validation, and 20% for testing the accuracy 

of the model. 

4. Dataset splitting: The dataset was split into three

subsets, one for each client, to simulate the use of FL in 

medical image classification. To eliminate bias, the images in 

each class shuffled and distributed equally across three clients. 

5. Labeling one-hot encoding: Use one-hot encoding by

identifying the dataset's class labels for converting categorical 

information into numerical form. It is commonly used in 

neural networks to encode categorical data as model input, 

with each category represented as a vector of 0s and 1s, 

resulting in a clear and distinct numerical representation for 

each class in classification tasks. 

5. METHODOLOGY

The methodology is structured to leverage advanced deep 

learning techniques and federated learning (FL) frameworks 

to enhance the classification performance of medical images 

1382



for different gallblader disease detection. Two different 

architectures were applied, which include custom 

Convolutional Neural Network (CNN), VGG16 models, and 

combining each one of these models with an FL framework. 

FL is a potential strategy for training machine learning 

models across several sites while protecting data privacy, 

especially in medical image analysis. FL enables local model 

training, which is essential in medical fields by allowing 

collaboration between institutions without sharing sensitive 

patient data and reducing bandwidth requirements [31]. 

A traditional FL includes several devices working as 

independent clients with a single global server. Usually, a 

fixed number of FL and clients (𝐷)  are selected randomly 

from a pool of edge devices that have shown their interest in 

participating in the learning process. For an iteration of 

training, each client (𝑑) downloads the global learning model 

(𝜃𝑡) from the global server and start training the model with

its own local data at time t. If md represents the local training 

dataset samples for client 𝑑, then ∑ =  𝑚𝑑 =  𝑀𝐷
𝑑=1 , where

𝑀 is the total size of data samples from 𝐷 number of clients. 

𝑓(𝜃) is optimized by the FL. 

𝑓(𝜃) = ∑
𝑚𝑑

𝑀

𝑀

𝑑=1

𝐹𝑑(𝜃) (1) 

𝐹𝑑(𝜃) =
1

𝑚𝑑

∑ 𝑓𝑖(𝜃)

𝑖𝜖𝑚𝑑

 (2) 

where, 𝑓𝑖(𝜃) is the loss function related with sample 𝑖 in the 

dataset of client 𝑑. During the local training, client 𝑑 updates 

the global learning model using an optimization algorithm like 

Adam and stochastic gradient descent (SGD) to minimize their 

loss functions. Once local model training is complete, each 

client sends the global server the updated global model (𝜃𝑡+1
𝑑 ).

(𝜃𝑡+1
𝑑 ) = 𝜃𝑡 + 𝛼𝑑𝜆𝑑 (3) 

where, 𝛼𝑑 is the learning rate and 𝜆𝑑 is the gradient computed

at client 𝑑  on its local data-set with 𝜃𝑡 . The global server

computes the improved global model (𝜃𝑡+1) by combining the

received local models as follows. 

𝜃𝑡+1 = ∑ 𝜃𝑡+1
𝑑

𝑀

𝑑=1

(4) 

For the next training cycle, FL clients receive the updated 

global model. The global model keeps going through this 

procedure until it converges [31]. 

Convolutional Neural Networks (CNNs), demonstrated 

excellent performance in the field of medical imaging by 

employing CNNs to construct an image classification model. 

Convolutional Neural Network (CNN) consists of 3D image 

input layers, convolutional layers for feature extraction, 

pooling layers for dimensionality reduction and compression 

of data, and fully connected layers to obtain distinguishable 

features that facilitate subsequent classification. It extracts 

features from images, compresses data, and learns both high-

level and low-level features that are automatically extracted, 

eliminating the number of parameters and accelerating the 

system's processing [32]. 

Transfer learning is a process used to apply knowledge from 

one task to another. Feature transfer, parameter sharing 

transfer, and relational knowledge transfer are some of the 

several techniques of transfer learning. The model, like 

VGG16, is initialized on a pre-trained dataset and fine-tuned 

on the target domain. This method shortens training time, 

mitigates underfitting and overfitting, and enhances 

generalization performance. The source domain's model 

parameters for network initialization are taken from the 

ImageNet dataset. Furthermore, a new fully connected layer is 

built, and our dataset is used to retrain and modify every 

parameter in the network layers [32]. The parameter transfer 

approach is used in this work. This method implies pre-

training a model on a different dataset (the source domain) to 

initialize the network and then fine-tuning the model on the 

GB dataset utilized for this work. This approach has the 

potential to reduce training time, successfully reduce 

underfitting and overfitting, and improve the model's 

generalization performance by utilizing transfer learning 

approaches. Accuracy (Acc), sensitivity (Sens), specificity 

(Spes), F1, and precision were evaluation measures. After a 

thorough analysis of the central server network's performance, 

the mean value of the best metrics. The multiclass confusion 

matrix evolves into an MxM matrix, where M denotes the total 

number of unique class labels (C0, C1, ..., CM). Their 

computational relationships are as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝑃(𝐶𝑖)

𝑁
𝑖=1

∑ ∑ 𝐶𝑖 , 𝑗𝑁
𝑗=1 ()𝑁

𝑖=1

(5) 

P𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃(𝐶𝑖)

𝑇𝑃(𝐶𝑖) + 𝐹𝑃(𝐶𝑖)
(6) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃(𝐶𝑖)

𝐹𝑁(𝐶𝑖) + 𝑇𝑃(𝐶𝑖)
(7) 

𝐹1(𝐶𝑖) =
2 ∗ 𝑃𝑟𝑒(𝐶𝑖) ∗ 𝑆𝑒𝑛𝑠𝑒(𝐶𝑖)

𝑃𝑟𝑒(𝐶𝑖) + 𝑆𝑒𝑛𝑠𝑒(𝐶𝑖)
(8) 

where, 

TP(Ci) is true positive for classi, FN(Ci) is false negative for 

classi. 

Among them, sensitivity and specificity measures are 

crucial for medical picture classification tasks. However, 

because they contradict each other, we decided to utilize 

sensitivity metrics to evaluate the model's performance in our 

tests. 

6. PROPOSED SYSTEM

The proposed FL for multi healthcare centers has been 

designed for 3 clients each with a separate dataset. This dataset 

was sliced and simulated into three clients where each has 

some part of the data and distributed across multiple healthcare 

institutions or clients to assess the effect of federated learning 

(FL) on model efficiency. Each client trains their local neural 

networks independently using their own data, without sharing 

any sensitive patient information. 

The technique uses two of the most widely used 

architectures (a custom CNN, VGG16). Every model is trained 

in isolation and also within an FL framework. The cloud server 

is distributing the initial global model to the clients, then the 

local model (custom CNN, VGG16) trains on data for 20 
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epochs and updates the local model, the clients send updates 

to the cloud server, then the cloud server aggregates updates 

from all clients and updates the global model, this process is 

repeated for 10 rounds. Finally, the cloud server evaluates the 

performance of the model's generality while preserving 

privacy and security. 

The hyperparameters of proposed system architecture are 

illustrated in Table 2. 

 

Table 2. Hyperparameter of proposed system architecture 

 

Parameter 
Value with CNN 

Model 

Value with VGG16 

Model 

Convolution 

layer 

2 with 16,32 filter 

size and 2*2 kernel 

size 

Base model: Pre-

trained vgg16 with 

image net weight 

Pooling layer Maxpooling Global average pooling 

Dropout rate 0.4 
0.1 for 512 and 256 

neurons, 0.3 for 128 

Dense layer 1 with 128 neurons 512,256,128 neuron 

Loss function 
Categorical Cross 

entropy 

Categorical Cross 

entropy 

Activation 

function 

Relue, SoftMax (in 

output layer) 

Relue, SoftMax (in 

output layer) 

Optimizer Adam Adam 

Number of 

output classes 
8 8 

Batch size 32 32 

Number of 

epoch 
20 20 

Number of 

round 
10 10 

 

The choice of 10 rounds in a global model convergence 

process ensures robust performance by integrating knowledge 

from all clients. It manages communication efficiency by 

limiting the number of rounds, which involves uploading local 

updates and downloading the global model. The number of 

rounds during the experiment satisfies the model's generality 

and convergence. That helps manage communication 

overhead, which is crucial in federated learning environments 

[33], especially across multiple healthcare centers.  

The choice of 20 epochs for local training on each client per 

communication round in Federated Learning (FL) prevents 

overfitting and improves communication efficiency. A high 

number can lead to client drift and insufficient local learning, 

leading to intensive overfitting and massive domain shifts in 

the local models and, ultimately, decreasing the aggregated 

model's performance. Interestingly, while this scenario is a 

specific manifestation of the well-known non-IID, this refers 

to the generic situation where local data distributions are not 

identical and independently distributed [34]. While a low 

number can result in insufficient local learning and slower 

global convergence, the number of epochs in this work, 

selected by experimentation, helps to improve the model's 

performance on the IID GB dataset.  

The Adam optimizer is chosen for both model architectures 

due to its robust performance and efficiency in deep learning 

applications. The loss function, categorical cross-entropy, is 

used for multi-class classification problems, minimizing the 

difference between the predicted probability distribution and 

the true one-hot encoded label. 

Adam is adaptive optimizers that dynamically adjust 

learning rates based on gradient information. They stabilize 

training in noisy or non-stationary data settings. Adam adds 

momentum, offering precise parameter changes and quick 

convergence in centralized environments, especially for non-

stationary objectives [35]. 

Global CNN Model: The model architecture consisted of 

two convolutional layers with filter sizes of 16 and 32, 

followed by max-pooling layers. A dropout layer with a rate 

of 0.4 was included to prevent overfitting. The model was then 

flattened and connected to a dense layer with 128 neurons and 

an output layer with 8 neurons for classification. Each client 

trained this model on its local dataset for 20 epochs per round. 

After 10 communication rounds, the global model achieved 

robust performance while maintaining privacy. The use of a 

lightweight CNN ensured that the computational was able to 

learn from all of its clients while never sharing any private data. 

The mathematical formulation of the FedAvg algorithm: 

 

𝑤𝑡+1 =
1

𝑁
∑ 𝑛𝑖𝑤𝑖

𝑡

𝑁

𝑖=1

 (10) 

 

where, 𝑤𝑡+1 is the updated global weights after round 𝑡, 𝑁 is 

total number of clients, 𝑛𝑖 is as number of samples at client i 

and 𝑤𝑖
𝑡are local weights at client i after round t. It also uses the 

standard measures such as Acc, sens, prse, pre, recall, and loss 

as evaluation metrics for models to show how each model 

performs in centralized and FL setups. A comparative analysis 

outlines the workflow of the methodology describes the 

process of FL that uses the Federated Averaging (FedAvg) 

algorithm to train CNN and VGG16 global models across 

multiple clients. This method ensures that only model changes 

are sent to the central server. The algorithm starts by 

initializing global model weights, which are shared across all 

participants. Each client trains a local model on its own private 

dataset, customizing the global model to fit the unique data of 

that client. The server broadcasts these weights to all clients 

during each communication round, ensuring the same initial 

condition for local training. After training, clients upload their 

learned model weights to the central server, and operators 

aggregate to the global model using knowledge for each client 

while protecting privacy. The server performs a federated 

averaging step, updating global aggregation model weights via 

a weighted average of local model weights. This process is 

repeated for several communication rounds, resulting in a 

trained global model that holds knowledge from all clients 

without accessing their private data. Figure 3 shows the 

proposed federated learning system. 

 
Algorithm 1: FL for gallbladder 

Input: Gallbladder diseases dataset D 

Output: Client and global model 

Step 1: Preprocessed dataset 

Step 2: Divide Dataset D for each client N {D1,D2,..DN} 

Step 3: Initialize global model weights w 

Step 4: Download global weight w to all clients 

Step 5: For each round R: 

                           For each client: 

                                  For each epoch: 

                                         Train local deep learning models 

                                  End  

                           End 

                  Upload client model weight to the global model 

                  Aggregates weights using FedAvg  

                 Train global deeplearning models  

             End 

Step6: Download global model final weight to all clients. 

Step7: End 
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Figure 3. The proposed federated learning model 

7. RESULTS AND DISCUSSION

The outcome of training and assessing model performance 

was covered in this section. To assess a classification model's 

performance, the local and global models' confusion matrix 

and classification report compare actual target values with 

predicted ones. Models without FL (local model) were 

categorized using sensitivity, specificity, accuracy, precision, 

recall, and Compared to the global model, the F1 score 

indicates a better prediction of more real data. Other metrics 

that are used to evaluate a classifier's effectiveness in machine 

learning include specificity and sensitivity. The proportion of 

positive items that our classifier correctly identified is known 

as sensitivity, while the percentage of negative objects that 

received the same classification is known as specificity. The 

results of training and testing are displayed in Table 3. 

The local VGG16 model had a higher accuracy of 0.94% 

than the local CNN, with a weighted average of 0.94% over 

metrics. The F1 score for all classes was 0.984%, indicating a 

few of both false positives or false negatives. The VGG16 

model was found to be a strong local model for all classes with 

even sensitivity and specificity, but limited weakness in 

identifying the 5Perforation class. The VGG16 had better 

performance than CNN models for most class predictions and 

was a good candidate for balanced classification. 

Table 3. The results of training and testing of the proposed local and global model 

Dataset Models 
Acc Loss Pre Recall F1-score 

Train Test Train Test Train Test Train Test Train Test 

GB diseases Dataset 

Local CNN 0.811 0.596 0.656 1.564 0.836 0.631 0.811 0.596 0.812 0.598 

Global 

FedAvg(CNN) 
1.0 0.887 1.119 1.497 1.0 0.887 1.0 0.887 1.0 0.886 

Local VGG16 0.984 0.94 0.057 0.184 0.984 0.943 0.984 0.938 0.984 0.938 

Global Fedavg(VGG16) 1.0 0.99 0.0004 0.048 0.977 0.987 0.977 0.987 0.977 0.987 
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Figure 4. Accuracy and loss for the global FedAvg (VGG16) model and per each client 

 

Table 4. Classification report 

 
Class Precision Recall F1 Score Support 

Cholecystitis 0.99  0.98 0.98 211 

Carcinoma 1.00 0.97 0.98 211 

Abdomen and retroperitoneum 0.99 0.99 0.99 181 

Membranous and gangrenous 

cholecystitis 
1.00 1.00 1.00 206 

Perforation 0.99 1.00 0.99 190 

Adenomyomatosis 1.00 1.00 1.00 202 

Polyps and cholesterol crystals 0.95 1.00 0.98 217 

Gallstones 0.99 0.97 0.98 214 

Accuracy 0.99 0.99 0.99 1632 

Macro avg 0.99 0.99 0.99 1632 

Weighted avg 0.99 0.99 0.99 1632 

 

 
 

Figure 5. Multiclass confusion matrix (8 classes) 

 

Federated Learning for the global model showed that the 

evaluation of the gallbladder diseases dataset revealed that 

most global models performed better than local models. The 

global FedAvg (VGG16) model achieved an accuracy of 

0.997%, with a recall of 99.00%, F1-score and recall weighted 

average of around 98.00%, and precision weighted average of 

99.00%. This model achieved a balance between avoiding 

false positives and identifying true positives. The global CNN 

model had an accuracy of 0.887%, and the global CNN 

model's weighted average reached 0.89%. Overall, the 

FedAvg aggregation method showed good performance in all 

global models compared to their non-federated counterparts. 

The Global FedAvg (VGG16) model was the most robust 

architecture, demonstrating perfect accuracy while 

maintaining privacy. Figure 4 shows the Accuracy and loss for 

the global FedAvg (VGG16) model and per each client after 

20 rounds. 

A confusion matrix is one method used to evaluate the 

system model's performance. When N is the number of classes, 

the resulting matrix is called a multiclass confusion matrix. 

When evaluating models that classify instances into more than 

two classes, this kind of confusion matrix is an extension of 

the confusion matrix. When dealing with problems that 

include more than two classes, this is quite beneficial. All of 

the matrix's components a class i instance's ci,j indicates how 

many times it was allocated to class j. The confusion matrix as 

a whole may have a comprehensive collection of metrics 

(accuracy (Acc), sensitivity (Sens), specificity (Spes), 

precision, and F1). The system model's performance is 

evaluated using a multiclass confusion matrix shown in Figure 

5, with each column representing the anticipated label and 

each row representing the real label. Off-diagonal components 

indicate misclassifications, while diagonal elements indicate 

the number of correctly identified examples for each class, 

while Table 4 shows the classification report for each class. 

The clinical significance of misclassifications is discussed, 

focusing on the impact of false positives and negatives. False 

positives for 'Perforation' can lead to unnecessary procedures, 

increased patient anxiety, and higher healthcare costs. For 

instance, False negatives for 'Perforation' can result in severe 

complications, sepsis, and even death. The model's recall for 

Perforation is 1.00 %, indicating no false negatives. 
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Figure 6 presents a comparison of model performance 

between the basic local learning models and global approaches 

of FL. Accuracy, precision, recall, and F1-score are the four 

assessment measures used in the comparison. Each of the 

models, CNN and VGG16, was tested both with and without 

the FL global model, allowing for a direct comparison of the 

effect of FL with FedAvg and pre-trained VGG16 model on 

system performance. 

 

 
 

Figure 6. Comparison of model performance between the 

basic transfer learning and FL approaches 

 

In the accuracy comparison (top-left), the VGG16 model 

with FL achieved the highest accuracy, reaching 

approximately 0.99%, outperforming all other models. The 

CNN accuracy is 0596%, and within the global FL model, it is 

improved to 0.887%. The precision comparison (top-right) 

also highlights the superiority of the VGG16 model with FL, 

achieving precision close to 0.987%. The recall comparison 

(bottom-left) illustrates the sensitivity of the models in 

identifying positive instances.  

The VGG16 model with FL showed the highest recall, near 

0.987%. Finally, the F1-score comparison (bottom-right) 

shows the balance between precision and recall. The VGG16 

model with FL excelled with an F1 score of about 0.987%, 

followed by the CNN model. Figure 6 demonstrates that FL 

has a significant positive impact on the performance of the 

CNN VGG16 model, enhancing its accuracy, precision, recall, 

and F1 score. 

 

 

8. CONCLUSION 

 

This current study reveals that the use of a feature called FL 

significantly enhances the performance of deep learning 

models, particularly in medical image analysis. The VGG16 

model, when paired with the FL global approach, achieved an 

impressive accuracy of 0.99%. This demonstrates FL's ability 

to provide collaborative model training across decentralized 

datasets, addressing privacy concerns and generating powerful 

diagnostic tools. The FL-enhanced VGG16 model is expected 

to be clinically adopted, enabling more reliable and widely 

applicable powered medical diagnosis solutions. The FL-

enhanced VGG16 model's performance suggests a good 

probability of clinical adoption, enabling more reliable and 

widely applicable and powerful medical diagnosis solutions. 

To make the models more practical, future research will 

look at how this FL approach may be used to a diversity of 

non-IID medical datasets from different diseases. Additionally, 

evaluating the efficacy of different optimizers within the FL 

framework may yield further performance improvements, and 

fusing blockchain technology with Federated Learning offers 

an attractive means of enhancing data provenance and 

ensuring even more robust privacy guarantees in future 

developments in medical image classification. 
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