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Tourism is an essential sector of the world's economies, necessitating to have travel 

planning solutions that are personalised and efficient. This work therefore presents 

ExplainableTrip, an advanced travel recommendation system utilizing Explainable 

Artificial Intelligence (XAI) to provide expedient and interpretable trip suggestions. With 

different user preferences, travel constraints, and comprehensive point-of-interest data, 

generates highly accurate itineraries, achieving an overall accuracy of 98.49% and an F1-

score of 0.97. ExplainableTrip leverages SHAP values (SHapley Additive exPlanations), to 

explain how factors like travel distance, time constraints, user interests, and Point of Interest 

(POI) popularity influence final recommendations. This will enable users to understand why 

a given set of options is being suggested, thus trusting the system. The methodology used 

in the system is an elaborate study of POI and inputs from the users based on Jaipur, India, 

alongside advanced algorithms for distance computation, time slots allotment, and route 

optimization. SHAP analysis forms a core feature, which enables users to receive 

customized itineraries while understanding the rationale behind them. ExplainableTrip is 

an enhancement of travel planning with balance between AI-driven efficiency and 

interpretability, and combines the latest technology with user-centric transparency to meet 

contemporary travellers' need for personalization and clarity in trip planning. 
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1. INTRODUCTION

In the modern world, the desire to travel and discover the 

world has grown and gotten easier as technology develops and 

the globe appears to get smaller. It's been claimed that travel 

can be a means of embracing the unknown and breaking free 

from the routine of daily life to reveal one's true self. At times, 

such travel dreams require proper planning and several other 

informed decisions than just having an interest to explore. 

Excitement about trying something new can easily turn into 

uncertainty. Planning leads to an experience which is more 

enjoyable and stress-free.  

India ranked 10th out of 185 countries in terms of total 

contribution of travel and tourism to GDP in 2019. In 2022, 

the economic contribution of the travel and tourism sector to 

the Indian economy was US$199.6 billion. WTTC projects 

that Travel & Tourism will contribute almost US$251.79 

billion to the Indian economy in 2024, an increase of 21% 

from 2019, and is expected to reach US$512 billion by 2028 

[1]. Figure 1 illustrates this economic growth in India's travel 

and tourism sector across key years. 

This growth indicates the growing need for travel and 

tourism in the economy and to have a proper planning and 

recommendations. The exponential growth of the tourism 

industry worldwide, coupled with the growing dependence on 

technology, led to the emergence of artificial intelligence (AI) 

in travel planning. Faced with many options, a lack of proper 

expertise, and time constraints, hectic human judgments often 

occur. Recommendation systems are provided to mitigate such 

issues. The purpose of travel recommendation systems is to 

align the needs of the consumers with the features of tourism 

and leisure resources or attractions [2]. AI has changed the 

pattern of interacting with big data, enabling personalised 

travel recommendations based on budget, duration, and 

interest. However, traditional AI systems suffer from the 

problem of a "black box," which keeps the decision-making 

process obscure and complex, and hence cannot explain to the 

users how or why a particular decision was made. Thus, this 

lack of transparency has been a great concern and continues to 

propel demand for more explainable and user-centric AI 

solutions in travel planning. XAI has been developed to meet 

the above problems by making AI decisions more transparent 

and understandable. One of the successful methods used under 

XAI for feature interpretation in the contribution of single 

features in predictive models is SHAP (SHapley Additive 

exPlanations) [3]. It has successfully been applied to health 
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care, finance, and even to automated decision-making systems 

to raise the confidence level with the users regarding results as 

interpretable as possible. For example, in the health care area, 

XAI has been applied to explain the predictions of diagnostic 

models so that doctors know why particular features, such as 

patient history or symptoms, resulted in a particular diagnosis 

[4]. Similarly, XAI has been recently applied within credit 

scoring models in finance to explain factors determining 

creditworthiness among loan applicants [5]. 

In this study, a new itinerary generation system is to be 

developed, named "ExplainableTrip," which will utilise the 

principles of XAI with SHAP values for the main purpose of 

transparent and personalised travel advice for users. Utilising 

SHAP addresses the problem of transparency with many 

current tools used in travel planning: how it makes 

recommendations about specific factors like budget, duration, 

and user preferences. The contribution of this study includes 

the introduction of an AI-based system that is able to deliver 

high accuracy in the creation of itineraries and embed 

explainability as the core feature itself. It makes it the first of 

its kind within the domain of travel recommendation systems. 

It specialises in Jaipur, India, and provides the visitors with 

tailored itineraries, but also enables them to understand why 

certain routes and destinations were selected. 

 

 
 

Figure 1. Travel and tourism economic growth in India 

 

 

2. LITERATURE REVIEW  
 

The rapid growth that has occurred during recent years in 

tourism is being supported by technological help, especially 

within travel recommendation systems. It is thus that such 

systems are becoming an invaluable aid for the search of 

travellers who are looking for customised and efficient trip 

planning solutions in a wide world of tourism based on 

globalisation, which makes more sophisticated and user 

centric recommendation systems popular, resulting in 

innovative approaches combining artificial intelligence 

techniques along with machine learning techniques [6-8]. 

However, the classical travel recommendation systems 

hardly prove useful. They face many problems while 

providing truly personalised as well as context-aware 

recommendations. Primarily, they rely on static data and often 

limited algorithms that may not encompass all of the 

complexity surrounding travel decisions [9, 10]. Another long-

term implication is the transparencies of decision-making 

processes that have led to user distrust and low adoption [11, 

12]. The consequence has been emerging demand for systems 

of higher dimensions, which are supposed to give accurate 

recommendations but also provide simple explanations for the 

recommendations they recommend. 

With XAI, new avenues open that attempt to work around 

such problems. XAI techniques now are taking complex AI 

models and making them understandable to the human user; 

they bridge the gap between advanced algorithms and better 

user comprehension [13, 14]. Among them, SHAP (SHapley 

Additive exPlanations) presents itself as very promising for 

receiving insight into what model predictions are coming 

down the pipe [15, 16]. SHAP values, based on ideas from 

game theory, offer a unified approach for understanding model 

outputs and make them particularly suitable for applications in 

travel recommendation systems [17, 18]. 

Many recent studies focus on multiple approaches to 

developing travel recommendation systems. Wang and Wang 

[8] suggest the integration idea of LLM and POI 

recommendations, which present, possible ways that could fall 

under multimodal recommendation, context-aware systems, to 

explainable AI. Oh and Lee [9] have successfully evaluated 

and explained tourist satisfaction concerning local festivals 

based on SHAP importance detection of influencing factors 

for visitor experiences. Such works serve as evidence of the 

strong interest in XAI within tourism applications. 

Some of the innovative approaches were proposed for the 

purposes of POI recommendation and route optimization. For 

example, Ahmad et al. [6] proposed a stochastic approach in 

terms of Markov chains relating to optimised routes of travel 

subject to specific constraints of the user and place popularity. 

Liu et al. [10] proposed an interaction-enhanced and time-

aware graph convolutional network, ITGCN, towards 

successive POI recommendations to nullify the constraints in 

capturing long-term preferences and dynamic timeliness 

issues. Zheng et al. [13] designed an MOEA for 

recommending tourism routes, considering the improvement 

of the distribution and diversity of Pareto-optimal solutions. 

Another promising direction is the integration of knowledge 

graph and sentiment analysis with the aim of enhancing the 

quality of recommendations. Zeng and Zheng [12] proposed a 

knowledge graph feature learning for tourism 

recommendation systems based on semantic information to 

elevate accuracy. Shao et al. [11] presented a Sentiment-aware 

Multi-modal Topic Model, SMTM, for personal travel 

recommendation taking into consideration the user's sentiment 

and multi-modal data in social media sites. 

Table 1 presents the primary XAI methods identified in the 

tourism recommendation literature review, arranged in order 

of decreasing frequency of use. SHAP emerges as the 

dominant method, being referenced extensively across 

multiple studies, particularly in the context of explainable 

travel recommendations and user preference modeling. 

 

Table 1. Recent application of XAI methods 

 

XAI Method 
Works that Make Use of 

the Method 

SHAP [15-22] 

Knowledge Graph & Sentiment Analysis [10, 23, 24] 

Neural Networks & Stochastic Models [6, 10, 24, 25] 

Advanced AI (LLM & Multi-objective 

Evolution) 
[3, 8, 13, 25] 

 

Based on this background, ExplainableTrip is presented as 

a new solution to the main challenges in travel 

recommendation systems, as an effort to harness the state of 

the art in XAI. SHAP values enable users to know what 

aspects lead the ExplainableTrip recommendations regarding 

distances to be travelled, time constraints, user interests, and 
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popularity of POIs. Such transparency is important for user 

trust building and for intelligent decision-making processes. 

ExplanableTrip approaches distance estimation, time slot 

allocation, and route finding with deep inspection of user 

inputs and POI data using complex algorithms. The system, 

through SHAP analysis, supplies its itineraries explaining the 

rationale behind the recommendation. This will be in line with 

the increasing call for more explainable AI systems in all 

fields-from health to finance and, finally, tourism [26-29]. 

This new approach not only enhances the all-around 

experience of travelling but also guides the users towards 

better decision-making by realising the increasingly 

modernised and customised needs of contemporary travellers 

who are in the pursuit of both personalization and transparency 

concerning their trip planning process [30]. 
 

 

3. DATASET DESCRIPTION  
 

The dataset utilised in this paper has some necessary 

components that will be required to generate personalised 

travel recommendations. 
 

3.1 Point of Interest (POI) data 
 

The Jaipur, India POI dataset was harvested from publicly 

available sources such as Google Places API, OpenStreetMap, 

and Kaggle tourism datasets. Manual validation was also done 

by Rajasthan Tourism Department resources. The dataset 

contains 73 distinct POIs, each defined by name, geographical 

coordinates (latitude/longitude), category (e.g., historic, 

cultural, adventure), and operational time slots. Every POI is 

defined by name, geographical location (latitude and 

longitude), categories like historic, cultural, adventure, and 

time slots available for visits. This information helps provide 

a real insight into the variety of attractions on offer in the city 

as well as create itineraries more effectively to the choice of 

the users. 
 

3.2 Distance matrix 
 

A 73×73 distance matrix was calculated based on the 

Haversine formula, with geolocation coordinates obtained 

from OpenStreetMap. It records pairwise distances (in km) 

between all the POIs and is stored in the form of a sparse 

matrix for computational speed. As a matrix of size 73 by 73, 

it assists in calculating those geographical relations between 

points but can also be used to effectively route and optimise 

the route. Since it forms the basis for recommendations of 

travel, it can highlight the deduction in travel time but still 

ensures maximally visited sites. 
 

3.3 User preference data 
 

The user preferences are accumulated through input forms 

that capture a variety of travel-related choices. These include: 

vacation types, such as Adventure and Outdoors, Spiritual, 

City Life, Cultural, and Relaxing, trip durations, budgetary 

constraints, and the composition of the travelling group (e.g. 

Family, Friends, Individual). With this profiling detail, 

recommendations could be very highly customised in terms of 

the specific desires and limitations of each user. 
 

3.4 Time slot information 
 

To make the suggested itineraries for travel more effective, 

optimal visiting times for every POI have also been added. In 

this dataset, factors such as opening hours, peak visiting 

periods, and typical visit duration have been used. By 

considering this information, the system will be able to give 

visitors suggestions on times to visit every attraction, thereby 

making the visitation more effective. 

 

3.5 Hotel information 

 

Hotel data consists of 254 hotels from Google Places API 

and Booking.com scrapes (through Kaggle). Features include 

geo-coordinates, price ranges (budget/luxury), desirability 

ratings (1–5 stars), and seasonal availability. The knowledge 

of hotel options enables the user to make decisions based on 

budget and preferred choices. It ensures that they stay at 

comfortable places during their visit to Jaipur. The 

combination of hotel information with a recommendation 

system will further enhance user experience by considering 

both attractions and accommodations. Figure 2 illustrates the 

dataset flow, including hotel and other contextual inputs. 

 

 
 

Figure 2. Dataset flow for travel recommendation 
 

 

4. ARCHITECTURE AND SYSTEM DESIGN  

 

The architecture of the ExplainableTrip system is designed 

to facilitate efficient and interpretable travel recommendations. 

This section outlines the core components and processes that 

enable the system to generate high-quality itineraries based on 

user preferences, point-of-interest (POI) data, and hotel 

information. Figure 3 illustrates the system's architecture. 

 

 
 

Figure 3. System architecture diagram 
 

4.1 System architecture 
 

The ExplainableTrip system is divided into several key 
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layers, each serving a distinct function in the recommendation 

process. 

1. User Interface Layer 

This layer is responsible for interacting with the user. It 

collects user preferences and inputs, providing an intuitive 

interface for users to specify their travel requirements. 

2. Data Storage Layer 

This layer houses essential datasets, including the POI 

database, hotel database, and distance matrix. These datasets 

are critical for generating personalised recommendations 

based on available resources. 

3. Recommendation algorithm 

At the heart of the system lies the recommendation 

algorithm, which consists of various components such as 

preference vectorization, a cosine similarity calculator, and a 

scoring mechanism. The preference vectorization process 

converts user inputs into a format suitable for analysis, while 

the cosine similarity calculator helps identify relevant POIs 

based on user preferences 

 

4.2 Route optimization 
 

To enhance the user experience, the system incorporates a 

route optimization module. This module employs advanced 

algorithms, including genetic algorithms and the Haversine 

formula, to determine the most efficient travel routes. The two-

point local search method further refines the itinerary by 

exploring alternative routes, ensuring that the final 

recommendations are both practical and enjoyable for the user. 

 

4.3 Explainability through SHAP 

 

A distinguishing feature of ExplainableTrip is its use of 

SHAP (SHapley Additive exPlanations) values to provide 

transparency in the recommendation process. The SHAP 

explainer analyses the contributions of various factors—such 

as travel distance, time constraints, and POI popularity—to the 

final output. This interpretation capability is achieved through 

global and local explanations, allowing users to understand not 

only what recommendations are made but also the reasoning 

behind them. 

 

4.4 Workflow Overview 
 

The workflow of the ExplainableTrip system can be 

summarised as follows: user inputs are collected through the 

user interface, which then accesses the relevant datasets stored 

in the data storage layer. The recommendation algorithm 

processes these inputs to generate personalised itineraries. 

Finally, SHAP values are computed to explain the 

recommendations, providing users with insights into the 

decision-making process. 

In summary, the architecture of the ExplainableTrip system 

effectively integrates various components to deliver 

personalised travel recommendations while ensuring 

transparency and user trust. 

 

4.5 Travel Planner Algorithm 
 

The TRAVEL_PLANNER algorithm is designed to create 

personalized travel itineraries based on user inputs such as 

travel type, duration, budget, and traveler type. By leveraging 

a combination of point-of-interest (POI) data, distance 

calculations, and user preferences, this algorithm ensures 

efficient and enjoyable travel planning. 

The algorithm utilizes the Haversine formula to compute the 

shortest distance between points, accommodating the Earth's 

curvature. This formula is essential for accurately determining 

travel distances between selected POIs and hotels, ensuring 

optimal route planning. 

 
Algorithm 1. TRAVEL_PLANNER 

Input: (Type[], Duration, Budget, TravellerType, MaximizePlaces) 

Output: Generate_Itinerary(routes), Generate_UserInfo(), map 

Data: POI, Distance Matrix, Hotel data 

1. user_matrix ← Initialize_User_Preferences(Type[]) 

2. similarity_scores ← Cosine_Similarity(user_matrix, POI_data) 

3. selected_POIs ← Filter(similarity_scores) 

4. if MaximizePlaces = "yes" then 

max_places_per_day ← 6 else 

max_places_per_day ← 3 

end if 

5. while selected_POIs.length/Duration > max_places_per_day do 

5.1 Remove lowest priority POIs from selected_POIs 

end while 

6. center_point ← Calculate_Center(selected_POIs) 

7. nearest_hotel ← Find_Nearest_Hotel(center_point, Budget, 

TravellerType) 

8. time_slots ← Assign_Time_Slots(selected_POIs) 

9. for day = 1 to Duration: 

9.1 day_route ← 

Generate_Optimal_Route(selected_POIs, time_slots, day) 

9.2 Append day_route to routes 

end for 

10. map ← Create_Interactive_Map(routes, nearest_hotel) 

11. return Generate_Itinerary(routes), Generate_UserInfo(), map 

 

4.6 Haversine formula 

 

The Haversine formula is a widely used method to calculate 

the shortest distance between two points on the surface of a 

sphere, assuming a spherical Earth. The formula accounts for 

the curvature of the Earth, and the resulting distance is referred 

to as the great-circle distance. 

Haversian Formula: 

 

𝑑 = 2𝑟 × 

arcsin( √𝑠𝑖𝑛2 (
∆𝜙

2
) + cos(𝜙1)  × cos(𝜙2)  × 𝑠𝑖𝑛2 (

∆𝜆

2
) 

 

where, 

d is the distance between two points 

r is the Earth's radius  

𝜙1, 𝜙2 are the latitudes of points A and B in radians 

∆𝜙 is the difference in latitudes 

Δλ is the difference in longitudes 

 

 

5. METHODOLOGY  

 

5.1 Data preprocessing  

 

5.1.1 POI categorization 

POIs can be classified into different types based on their 

main attribute, such as aesthetics, culture, or religion. This is a 

multi-label classification problem because a POI may fall into 

more than one category. For each category, the importance is 

checked by prominence in the POI's description or visitor 

feedback. The nuanced categorization enables a more accurate 
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match between user preferences and the characteristics of 

available POIs.  

 

5.1.2 Distance calculation 

The Haversine formula is used to generate accurate distance 

calculations between POIs and hotels. It considers the 

curvature of the Earth and provides an exact distance 

measurement. To prevent consuming excessive memory, 

sparse matrix techniques are used to store this large distance 

matrix that would otherwise fill all available memory. The 

precalculation of the matrix at the itinerary planning phase 

saves a lot of computation time, which enhances system 

performance. This process is illustrated in Figure 4, which 

shows how various components like the Haversine formula, 

sparse matrix techniques, and pre-calculation optimize 

distance computation. 

 

 
 

Figure 4. Optimized distance calculation 

 

5.1.3 Time slot normalisation 

Visiting time slots for POIs will be normalised and 

formatted in a standardised form so that processing can be 

consistent. They will be stored in a 24-hour format, discretized 

into intervals of 30 minutes, which could help in scheduling 

correctly. In addition to solving the seasonal variation problem 

of opening hours, multiple sets of time slots have to be 

maintained. Normalising the visiting time slots helps avoid 

conflicts within the itinerary; otherwise, the planned visits 

might not be possible or timely. 

 

5.1.4 User input vectorization 

To present types and priorities of vacation numerically, user 

preferences are now vectorized. One-hot encoding has been 

applied in the scheme to assist with categorical preferences-

like vacation-type, whereas continuous variables, such as 

budget and duration, are scaled using min-max normalisation 

techniques. And then that vector can be input into the Gradient 

Boosting model, enabling a quantitative analysis of user 

preferences and thus improving the personalization of 

recommendations. 

 

5.1.5 Budget normalisation 

Normalised user budgets, binned into predetermined 

categories, allow for effective matching with hotels. A log 

scale is used for handling large variations within budget inputs. 

Budget categories can also be constructed using k-means 

clustering on historical booking data and thus makes the 

system more adaptive and precise with hotel recommendations 

over different price ranges. 

 

5.1.6 Handling missing data 

The missing data in the POI or hotel dataset is also filled 

appropriately via imputation methods or exclusion of partially 

completed entries. Numerical variables, such as prices and 

ratings, that contain missing values are imputed using the 

median of comparable objects to maintain the integrity of the 

dataset. Missing categorical data would therefore be 

compensated for by imputation using mode within the same 

category. In case there is missing critical information, the entry 

will be flagged for further manual review or, if not possible, 

excluded from the dataset.  

 

5.2 Models 

 

5.2.1 Recommendation system 

The core of the travel planning model is therefore the 

recommendation system, which is set out to predict POI 

suitability based on user preferences and constraints. It relies 

on Gradient Boosting from Scikit-learn, where it makes 

recommendations while processing vectorized user 

preferences and POI attributes to generate highly personalised 

trip suggestions. Some parameters considered in the model 

include the features of the travel preferences, features, time 

constraints, and distance metrics. It then compares the user's 

preferences with a large dataset of POIs to determine the most 

suitable places to be included in an itinerary. The optimization 

is performed by vectorization of user preferences and POI 

attributes to cater efficiently to big data. Geographical 

alignment in POIs along the intended route for the user is 

ensured by distance-based filtering, thereby avoiding the 

formation of unnecessary detours. SHAP values are used in the 

system to provide users with reasons why certain POIs were 

recommended to them based on distance and popularity values. 

In this manner, users' trust in recommendations is built. 

 

5.2.2 Route optimization algorithm 

The core of the travel planning model is therefore the route 

optimization algorithm comes up with efficient routes for 

travelling between selected points of interest, optimising travel 

time, and maximising the user experience. The algorithm uses 

a genetic algorithm for optimization based on the input 

parameters of geographical clustering, time slots, and user 

preferences. Ensuring POIs are visited during their operating 

hours is supported by time windows for these locations. 

Then the algorithm uses the 2-opt local search procedure to 

determine a better route for travelling by swapping two 

locations at a time in order to optimise the initial routes. The 

model also needs to support interactive accommodation of 

exogenous factors such as changing weather or point-of-

interest closures so that the plan adapts well. More formally, 

SHAP values are used to explain the sequence of visits to 

understand why a particular route was chosen over another or 

why it was included in a cluster and why it was not included 

in another. 

 

5.2.3 Route optimization algorithm 

POI matching and ranking use cosine similarity to align user 

preferences with available POIs. The model can, by 

vectorizing user preferences and POI attributes, compute 

similarity scores which define the ranking of the POIs. High 

scores show a greater match towards the user's interests. 

Therefore, the user will receive the most interesting 

recommendations. 

Vectorization is greatly important in processing big data so 

that it can handle ranking of POIs strongly based on the 

relevance to the user. The SHAP values make the explanations 

whereby users understand why and how some POIs ranked 

above others, say, for being close to the user or having some 

specific features that align with his/her preference. That makes 

the recommendation system more honest and user-friendly. 
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5.3 Explainability with SHAP 

 

The ExplainableTrip system integrates SHAP values for 

explainability, particularly within the Gradient Boosting 

model. SHAP offers a breakdown of feature contributions to 

the recommendation process, providing insights into why 

certain POIs, routes, or hotels were recommended. Using the 

TreeExplainer method, SHAP values offer both local 

explanations (for individual user recommendations) and 

global explanations (aggregated feature importance across all 

users). This interpretability feature enhances user trust, 

showing them how factors like POI popularity, distance, or 

user preferences impacted their travel itinerary. Figure 5 

visualizes the different layers of explainability provided by 

SHAP, from raw recommendation processes to user trust 

outcomes. SHAP ensures that the recommendation process 

remains transparent, allowing users to understand and 

appreciate the logic behind the AI-driven suggestions. 

 

 
 

Figure 5. Layers of explainability of explainableTrip 

 

 

6. RESULTS AND EVALUATION  

 

6.1 Dataset split and training  

 

The dataset was divided into two distinct subsets: 80% for 

training and 20% for testing. This would ensure all models that 

were intended to give recommendations, optimise routes, or 

recommend hotels would have enough data to train on and yet 

serve a portion to test performance of these respective models.  

Training the recommendation system consumed 80% of the 

data, which consists of user preferences, POI data, and 

distance metrics, hence enabling learning of patterns and 

relationships between user preferences and potential 

destinations. The route optimization algorithm was also 

trained using the distance matrix with distances among POIs 

and hotels. User constraints like time slots, POI priorities, 

travel times, etc., were also incorporated in the dataset, and the 

model produced feasible itineraries according to user 

expectations. The hotel recommendation system also used 

characteristics like hotel location, price, and desirability 

ratings while training. Each of these models was tuned to give 

the person personalised and relevant results based on the user's 

preferences. Figure 6 illustrates this entire model pipeline from 

data preprocessing to evaluation, demonstrating how raw data 

is refined into accurate recommendations. 

Techniques such as GridSearchCV made the training 

process robust by using cross-validation during training. This 

ensured systematic hyperparameter tuning, which in turn had 

discovered the best configurations for every model, and thus 

resulted in more accurate and precise recommendations. Using 

this technique, optimal values for the cosine similarity 

threshold in POI recommendations were tuned, as well as the 

constraints imposed within the route-optimization problem. 

The 20% test set was held out from the training process to 

ensure unbiased performance evaluation. The models were 

fully trained and fine-tuned and then tested on the dataset. That 

testing phase checked whether there would be any kind of 

generalisation with new, unseen data; accuracy, precision, 

recall, and F1 scores from the models indicated predictive 

capabilities of the models. 

The model reached a total accuracy of 98.49% in providing 

the optimal itinerary, hotel recommendation, or a route plan. 

In addition, it can provide personal travel recommendations in 

the most efficient manner. For instance, cross-validation 

played a vital role in not overfitting; the models generalised 

exceptionally well to the new data and did not memorise 

training data. Furthermore, this approach illustrates how the 

performance metric of the system is consistent across different 

folds of data, further solidifying the validity and robustness of 

the final models. 

 

 
 

Figure 6. Model pipeline 

 

6.2 Performance evaluation 

 

By comparing from Table 2, the paper identifies the best 

model as Gradient Boosting. 

 

Table 2. Various model evaluations and comparisons 

 
Model Accuracy 

Gradient Boosting 98.49% 

XGBoost 92.05% 

Random Forest 85.05% 

KNN 74.89% 

Linear Regression 33.47% 

 

The Gradient Boosting model had the highest accuracy 

(98.49%) because it was able to iteratively refine mistakes by 

developing sequential decision trees, thereby being able to 

capture sophisticated non-linear interactions between user 

preferences, POI characteristics, and travel restrictions. In 

contrast to XGBoost (92.05%), which also employs gradient 

boosting but is optimized for scalability and speed, the default 
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Gradient Boosting implementation in Scikit-learn provided 

greater flexibility in the control of hyperparameters, including 

learning rate and tree depth, to suit the relatively modest 

dataset (500 user profiles, 73 POIs). Random Forest (85.05%) 

lagged due to its averaging approach, which diluted sequential 

user preferences, while KNN (74.89%) was hindered by 

sensitivity to noise and high-dimensionality. The better 

performance of Gradient Boosting, coupled with its support 

for SHAP for explainability, warrants its choice as the central 

model for ExplainableTrip. 

 

 
 

Figure 7. Interpretable travel recommendation framework 

 

The performance of the system was evaluated with the help 

of models that have a combination of both accuracy and 

personalization required for travel recommendations. 

However, the core of the system was a Gradient Boosting 

model, which had a very excellent accuracy of 98.49%. The 

SHAP (SHapley Additive exPlanations) framework was 

integrated to give interpretability to the recommendations. 

Figure 7 presents the interpretable travel recommendation 

framework that combines the Gradient Boosting model and 

cosine similarity algorithm to ensure both accuracy 

and explainability Through the high performance achieved by 

the Gradient Boosting model, the analysis of SHAP can gain 

insights concerning the influence exerted by some features in 

terms of different user preferences, POI attributes, and travel 

constraints toward the final recommended choice. With this 

approach, the level of transparency increased, that is, more 

usability and user trust in the system, but also made users 

understand why certain POIs or travel routes were suggested, 

making the system highly user-centric and interpretative. The 

SHAP framework was very useful in explaining the complex 

decision-making process and depicting the contribution of 

each feature in the model's predictions. 

Both the models ensured explanation capabilities in the 

ExplainableTrip framework, were based on Gradient Boosting 

for SHAP-based interpretability, and cosine similarity for 

recommendation generation, so that the system rendered 

highly accurate predictions but was also transparent, 

explainable, and personalised. These models combine together 

to provide a travel plan with precision and understandability. 

Thus, the system could rely on a pure recommendation aligned 

with its user's preferences. By this functionality, it 

simultaneously allowed the user to understand the explanation 

behind the provided recommendations. 

 

6.3 SHAP explainability evaluation 

 

The SHAP (SHapley Additive exPlanations) values play an 

important role in understanding the impact of individual 

features on the output of machine learning models which 

makes them highly explainable. SHAP values are most useful 

when using complex models, such as gradient boosted 

decision trees, neural network models, or methods of ensemble, 

which are hard to understand. SHAP breaks down every 

prediction into additive feature contributions so that it 

becomes easy to visually understand how much influence each 

feature is contributing towards the decision by the model. 

 

 
 

Figure 8. SHAP force for each input 
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The SHAP force plot (Figure 8) for Input 1 shows the 

prediction process for a specific input case where the user has 

selected "Spiritual" as the vacation type, with a duration of 3 

days, a budget of ₹9700, travelling with family, and 

prioritising on visiting the maximum number of places. The 

final predicted output in this case is 8.56. The force plot shows 

how individual features either push the predicted value higher 

(red segments) or lower (blue segments). Here, the main 

contribution happened through Vacation Type, Duration, and 

Budget, which are pushing this prediction upwards. 

Similarly, for Input 2 in Figure 8, it reveals a different 

outcome. Here, the input features include the two kinds of 

vacations: "Spiritual" and "City Life", with a duration of 4 

days, a budget of ₹20200, and travelling with friends and 

prioritising on visiting the maximum number of places. The 

final predicted output in this case is 7.52. From the plot 

"Vacation Type" and "Duration" remain as a positive 

influencer to the prediction but the value is increased. 

However, the presence of a friend as the travel companion, 

represented by the Travel Group feature, leads to a relatively 

smaller contribution. 

Besides the force plots, an SHAP based feature importance 

analysis (Figure 9) provides a quantitative overview of how 

various features are contributing to the model on average 

across all data points. According to the above analysis, it has 

been revealed that the most dominant feature in this case is 

Vacation Type since the average value of SHAP is 0.1700, 

further emphasising that it is a key feature in determining the 

decisions of the model. Both Budget and Duration are having 

the same SHAP values of 0.1300, hence indicating how crucial 

using both have been in coming up with the prediction. Travel 

Group has a much smaller SHAP value of 0.0900, which 

means its influence is not significant. SHAP value being 

0.0000 shows Max Places Priority needs refinement. 

 

 
 

Figure 9. SHAP-based feature importance analysis 

 

This all-inclusive SHAP analysis at the instance level-by 

means of force plots-and at the global level-by means of 

feature importance-reveals comprehensive insight into the 

behaviour of the model in relation to diverse input features. It 

is quite evident that these analyses present the fact that the 

model highly depends on practical considerations of decision 

making-like Vacation Type, Budget, and Duration in its 

predictions that are much attuned to actual decision-making 

priorities during vacation planning. While other features like 

Travel Group and Max Places Priority do not shine themselves 

too well.  

 

6.4 System output and visualization  

 

The ExplainableTrip interface allows users to enter primary 

travel preferences like vacation type, duration, budget, and 

group composition. The system then constructs an 

individualized itinerary along with the best routes and hotel 

recommendations based on the user's budget. Figure 10 

illustrates an example of the overall user experience from input 

collection to recommended multi-day itinerary, route 

visualization on the map, and hotel listings. For the sake of 

transparency, the system includes SHAP explanations.  

 

 

 

 
 

Figure 10. User input and personalized itinerary output from 

ExplainableTrip 

 

 
 

Figure 11. SHAP-based feature importance and force plot 

explanations 
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Figure 11 shows global and local interpretability, where the 

bar chart points out the overall impact of features such as 

Vacation Type, Budget, and Duration in all the predictions, 

and the SHAP force plots break down individual user choices. 

These results improve both personalization and explainability, 

bringing more confidence from the users towards the system's 

recommendations 

 

 

7. DISCUSSION 

 

7.1 Key findings 

 

Here, the ExplainableTrip system was developed, where 

XAI was integrated into a travel recommendation system to 

improve the transparency and trustworthiness of the system 

toward the end-users. Our primary focus was to address the 

common limitations of black-box AI models by using SHAP 

to explain the factors contributing to personalised 

recommendations. With the help of such a system, an 

unusually high precision rate of 97% was found to be greatly 

improved compared to the accuracy of personalised itineraries. 

This was found to be contributing to the efficiency of the 

model because RandomForestClassifier and SHAP values 

provided understandable insights into features such as budget, 

time constraints, user interests, and the distance between POIs. 

Findings also showed how SHAP values can explain feature 

contributions on both individual (local) and aggregate (global) 

levels, hence enabling users to have clear and understandable 

reasons behind the recommendations. The above helps to 

increase user engagement and trust by bridging the gap 

between AI-driven efficiency and human interpretability. This 

came to light with the significant contribution that features like 

type of vacation, duration, and budget provided in constructing 

the perfect itinerary and thus validating the usefulness of 

SHAP integration into user-centric systems. At the same time, 

this study further established how the system manages 

between accuracy and the need for transparency along the 

requirement demand in travel recommendation systems. 

Directions may also be mentioned. Please do not make another 

abstract.  

 

7.2 Limitations 

 

ExplainableTrip's data, covering only Jaipur, India, limits 

generalizability to areas with varied attraction profiles. Google 

Places API, OpenStreetMap, and Kaggle POI data are 

popularity-biased, preferring mainstream attractions (e.g., 

Amber Fort) to niche sites (e.g., Stepwell of Panna Meena Ka 

Kund), making such places less appealing to adventure-

seekers. Kaggle simulated user preferences underrepresent 

diverse groups of people (e.g., senior citizens traveling), 

making itinerary serendipity less likely. Static user preferences 

do not adjust to shifting inputs, and the system lacks dynamic 

adjustments for weather, POI closures, or delays. SHAP's 

computational complexity prevents scalability for bigger data 

or real-time use cases. Lastly, the system only accommodates 

single-user recommendations, keeping group travel planning 

out of the picture. 

To counter these drawbacks, crowd-sourcing POI data from 

a wide variety of sources and incorporating live user feedback 

can alleviate popularity bias and improve demographic 

coverage. Scaling the dataset to span several cities and 

continuously updating preferences will increase 

generalizability. Adding weather and traffic updates via APIs 

can facilitate real-time adaptability, and optimizing SHAP 

calculations or seeking lighter XAI alternatives will further 

boost scalability. Multi-user algorithms like weighted 

aggregation of preferences can facilitate group planning. 

Preference modeling can be directed towards 

underrepresented groups by machine learning. User testing 

will optimize dynamic updates and group algorithms, 

enhancing robustness. 

 

 

8. CONCLUSION AND FUTURE WORK 

 

8.1 Contributions summary 

 

This project offered a comprehensive approach by 

combining Explainable AI and personalized travel 

recommendation systems to enhance transparency, trust, and 

user satisfaction. The content filtering of the system 

coordinated recommendations with individual likes, while 

route optimization with distance matrices supported effective 

and adaptive travel plans. A major highlight was the 

integration of SHAP, presenting tangible explanations of why 

a particular destination was proposed, thereby increasing 

transparency and ease of decision-making. Itinerary 

generation was adaptive based on personal tastes, time 

constraints, and geographic distance, thus presenting 

relevance and ease. Feedback loops enabled the system to 

learn from visitor behavior and progressively improve future 

recommendations. These blended approaches not only 

provided highly customized travel itineraries but also enabled 

users, particularly first-time travelers, to make knowledgeable, 

confident decisions, thus improving their overall experience 

and cutting planning effort. 

 

8.2 Future discussion 

 

Looking ahead, ExplainableTrip will incorporate real-time 

weather data using LSTM models to dynamically modify 

itineraries according to live conditions. Multi-user planning 

features will be built to resolve group preferences using Borda 

Count and Pareto optimization algorithms. Reinforcement 

learning algorithms such as Q-learning and Deep Q Networks 

will facilitate adaptive suggestions that learn from user 

interactions. Real-time constraint-responsive dynamic route 

optimization modules will counteract real-time constraints 

such as traffic patterns, POI closures, and unforeseen delays. 

Geographic coverage will be extended from Jaipur to key 

Indian cities via Kubernetes-managed data pipelines. Profile-

Driven Explanations will be used to substitute SHAP in order 

to limit computational overhead while keeping explainability 

intact, thereby decreasing processing costs by 60%. All these 

improvements together will reorient ExplainableTrip into an 

adaptive, national platform that compromises neither 

personalization nor transparency. 
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