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Big data processing is crucial for extracting insights from large datasets, involving storage, 

cleansing, organization, modeling, analysis, and presentation. However, many face 

challenges with complex data systems, long provisioning times, and redundant boot disks. 

Containers, like Docker, address these issues by allowing distributed applications to run 

without full virtual machines. Despite this, Docker’s Swarmkit struggles with heterogeneity 

in clusters, where nodes vary in resource types and availability. To address this, we propose 

a resource-aware placement technique for heterogeneous Docker container clusters, using 

a Modified Log-Structured Merge (MLSM) data structure. This combines Cuckoo and 

Bloom Filters to efficiently distribute resources and maintain filter synchronization, 

providing better space utilization. Experimental results show that MLSM outperforms 

current methods in terms of performance and efficiency. 
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1. INTRODUCTION

1.1 Background of big data processing and docker 

importance 

Big data refers to information assets that have high velocity, 

variety, and/or volume and cannot be processed using 

conventional IT infrastructure and methods [1]. Large 

companies and organisations used to be the only ones that 

needed it, but now even average people are seeking out big 

data processing choices to handle the mountains of data that 

their old IT systems just can't handle [2]. Problems that regular 

people face include the need for and supply of a sophisticated 

data processing system, the connection of complicated big data 

analytics, and the exertion in using these tools. This is why 

companies need a data processing system that is simple to 

build and create, inexpensive, and easy for users to use [3]. 

When it comes to big data analysis, the best and most well-

established infrastructure is cloud-based big data processing 

solutions. To optimise performance, get the finest services, 

and lessen the danger of being dependent on any one provider, 

most enterprises and customers are now moving towards 

multi-cloud infrastructure [4]. The majority of cloud-based 

systems are built on virtualization, which is a critical 

technology of cloud computing. Many kinds of big data 

analytics aren't appealing to regular users because of the 

complicated migration process, challenges with load 

balancing and deployment, and the demand of large and 

redundant resources [5]. The aforementioned issues with big 

data analysis for regular people may be amenable to the 

container-based virtualization technology Docker's new 

Swarm for the creation of different kinds of multicloud 

distributed systems [6, 7]. Unfortunately, the data processing 

component of this container-based knowledge receives less 

attention than Docker, which is mostly employed in the 

software development business. 

The suggested edge cloud design [8] makes use of Big Data 

processing technologies like Apache Spark and Hadoop 

Cluster, which, although shrunk to fit the constraints of IoT 

devices, nonetheless provide great speed, variety, and volume. 

The system is built on top of Docker, a containerisation 

technology that facilitates service coordination inside a device 

cluster. In order to evaluate the organisation's efficiency in 

relation to the limitations of the Raspberry Pi, data is collected 

using a cluster-based measurement and reporting tool and a 

Prometheus-based monitoring stack [9]. There has been an 

incredible deluge of data made available online in the last 

several decades. Numerous services, including websites, 

mobile apps, and online games, are utilised by hundreds of 

thousands of individuals who access the Internet. On the back 

end, the service providers rely on cutting-edge cloud 

infrastructures like Microsoft Azure and Amazon Web Service 

[10, 11]. Data centres and cloud environments utilise 

virtualization, an emerging technology that focuses on 

offering services at scale, to enhance hardware besides 

expansion efficiency. 

The virtual machine is a popular approach to system-level 

virtualization that separates various system resources [12]. 

But, on a large-scale system, users would likely be running 

several copies of the same operating system and many 

redundant boot discs if services were provided through virtual 

machines [13]. Virtualization of containers is old news now; 

big data processing platforms use containers as its 

foundational computing unit [14], and Unix-like operating 
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systems used them for more than a decade. On the other hand, 

Docker and other emerging containerisation systems become 

standard fare for creating applications. Docker simplifies the 

tooling necessary to construct and manage containers by 

building on previously existing open-source technologies 

(e.g., cgroup). Containers on a physical computer are basically 

simply ordinary processes running in the background, but 

when viewed from the system perspective, they have access to 

a virtualized situation that includes not just CPU and memory 

but also disc I/O, and more [15]. 

On physical devices, we launch Docker containers using the 

"Docker run image" command. Along with the desired disc 

image, users have the opportunity to specify other parameters, 

such "-m" and "-c", to restrict a container's resource access 

[16]. Resource contention occurs among containers on every 

host computer, even though options set a maximum quantity. 

First thing a cluster should do when it gets "Docker run" orders 

from clients is choose a physical machine to run the containers. 

Using a bin-pack method, the default container placement 

scheme, Spread, attempts to allocate a container to the node 

that has the fewest operating containers [17]. Spread does not 

include two key features of the system, even though it intends 

to distribute jobs evenly among all nodes. To begin, there is no 

hard and fast rule that says all of the nodes in a cluster must be 

similar. Many different kinds of nodes, each with its own 

unique set of capabilities and resources, are often found in a 

cluster. For instance, compared to a generic desktop, a state-

of-the-art server can easily handle more tasks running in 

parallel [18]. The dependency matrix is a revolutionary 

approach introduced by cloud computing that eliminates the 

need for programmes to deal with hardware dependencies, 

operating system specifications, and possible library conflicts 

in traditional deployment settings [19, 20]. Docker containers 

are widely used for distributed applications, but Docker's 

Swarmkit faces challenges in managing heterogeneous 

clusters, where nodes differ in resource types and availability. 

This heterogeneity complicates resource allocation, as 

services may have varying demands, such as CPU-intensive or 

memory-intensive requirements. In this research, we address 

these limitations by proposing a resource-aware placement 

technique for Docker container clusters. We introduce a 

Modified Log-Structured Merge (MLSM) scheme, utilizing 

Cuckoo and Bloom Filters to efficiently distribute resources 

across nodes. The MLSM method ensures optimal resource 

utilization, syncing filters with keys of all Sorted String Tables 

(SSTables) while minimizing space usage. Experimental 

results demonstrate that MLSM outperforms current methods, 

offering superior performance and efficiency in heterogeneous 

cluster environments. 

Software applications were usually delivered on bare metal 

servers or virtual machines before Docker and containerisation 

came along. Docker, an open-source technology, changed 

everything by letting users build and deploy apps with ease by 

packaging them with their dependencies into containers. 

Containerisation, made possible by Docker, ensures that 

programmes may run efficiently and without errors across 

various computing environments by enclosing all required 

dependencies, such as frameworks and libraries [21]. One 

major perk of Docker containers is how lightweight they are. 

This makes them perfect for transferring and running in many 

computing settings, regardless of the operating system or 

configurations used by the host. 

 

 

1.2 Motivation of the work 

 

Application deployment used to be a laborious, resource-

intensive manual operation until container technologies came 

around. The deployment process was much improved and 

streamlined with the advent of container technologies, 

especially Kubernetes and Docker. Currently, there are a 

number of options available for load balancing containerised 

applications, each designed for a certain use scenario. With 

Docker's integrated capabilities for load balancing and service 

discovery, scaling has become much easier. 

Developers may now devote more effort to actually making 

their apps and less time to developing these ancillary tasks. 

Docker reduces the time it takes to deploy highly available and 

scalable applications by automating operations like 

configuring DNS for service discovery and adding apps to the 

load balancer pool when scaling is needed. These 

developments have not eliminated efficiency issues with 

current approaches, and new algorithms lack the scalability 

necessary for broad use. The growing use of containers has 

made load balancing a must-have feature, calling for more 

investigation into effective ways to handle it. 

 

1.3 Contribution of the research work 

 

A novel container placement technique is suggested in this 

project's investigation. Instead of using the default spread 

scheme, the suggested approach distributes containers 

according to the resources available in a diverse cluster and the 

changing needs of different types of containers. The model 

begins by tracking containers that provide a service in order to 

determine the most common resource type for that service. In 

order to minimise imbalanced resource utilisation on the 

nodes, it then assigns containers with complimentary demands 

to the same machine. When a particular resource reaches its 

limit, the system will move containers that use a lot of that 

resource to other nodes. In this research, two large data 

probabilistic data structures—the cuckoo filters and the 

modified bloom filters—are examined. An LSM tree is used 

to evaluate the efficacy of these two probabilistic data 

structures. The conventional wisdom is that using bloom filters 

to improve query speed is the way to go. However, cuckoo 

filters offer the ability to exclude unwanted elements, so we 

opted for them instead. It follows that cuckoo filters should 

outperform bloom filters in compaction and merging 

operations. 

 

1.4 Paper organization 

 

The background of big data processing, docker swarm 

optimization, motivation and contribution of the research work 

is mentioned in Section 1. 

The brief explanation of the related work with its drawback 

is mentioned in Section 2. 

The theoretical docker swarm with block diagram is 

explained in Section 3, where problem formulation is 

mentioned in Section 4. 

The explanation of proposed methodology with neat 

explanation is given in Section 5, the implementation of 

docker swarm in virtualization is given in Section 6. 

The results analysis and its discussion is given in Section 7, 

where the conclusion of the research work is shown in Section 

8. 
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2. RELATED WORKS 

 

A work scheduling technique based on multi-objective 

hybrid optimisation has been introduced as BWUJS, or Black 

Widow Updated Jellyfish Search [21]. From a Bigdata point 

of view, this study examines task creation. Map Reduce, in 

conjunction with a K-means clustering model, clusters the 

jobs. Next, we estimate the priorities of the tasks once they 

have been clustered. In the end, priorities, makespan, 

completion time, resource utilisation, and imbalance are used 

to schedule tasks using BWJSU. 

An exhaustive review of the classic K-means method [22] 

is the starting point for this study, which ultimately proposes 

an enhanced version of the technique. The experimental 

findings show that the suggested enhanced K-means algorithm 

works better than the original, with much better accuracy and 

fewer classification mistakes, reaching an error rate below 

one.  

Using the outcomes of a deep reinforcement learning 

model's predictions, the grouping technique is adjusted before 

a data stream's frequency changes [23]. Because of this, the 

system will be able to efficiently manage its resources and 

respond swiftly to changes in data streams. For effective 

massive data streaming in cloud systems, Gaussian adapted 

Markov model (GAMM) is used [24]. An effective and error-

free management of time-bound big data streaming 

applications is the goal of this effort. To conduct the 

fluctuation analysis, this work also makes use of the gating 

technique to identify the set of features necessary to produce 

the nonlinear distribution of data and the fat convergence 

solution.  

A fog layer utilising a novel and enhanced geographic load-

balancing method has been introduced [25]. In order to 

advance the user experience for augmented and virtual reality 

apps, it optimises the distribution of loads and supplies quality 

of service (QoS) characteristics. In virtual reality and 

augmented reality games that use electroencephalograms, the 

iFogSim toolbox provides experimental validation of the 

framework. Furthermore, a wide variety of situations are used 

to test the proposed framework.  

The two algorithms: dynamic SDN (dSDN) then priority 

scheduling and congestion management (eSDN) are 

developed [26]. The tDQN agent iteratively learns to reduce 

network latency by improving decision-making for switch-

controller mapping using a reward-punish mechanism. Our 

method, tDQN, optimises latency and dynamic flow mapping 

without adding more controllers at the best possible locations. 

In order to dynamically redirect traffic to the most appropriate 

controller, a multi-objective optimisation problem is 

developed for flow fluctuation. Throughput, latency, packet 

loss are among of the metrics where the tDQN excels, 

according to comprehensive simulation findings that account 

for a wide range of network conditions and traffic. 

Adaptive and self-organizing behaviours are modelled after 

in bioinspired algorithms, which are utilised by Load Balance 

to dynamically distribute workloads among cloud resources 

[27]. Using concepts from swarm intelligence and 

evolutionary algorithms, the proposed method iteratively 

enhances load distribution solutions. This optimisation 

method improves cloud load balancing and provides a 

sustainable solution for current cloud infrastructures by 

drawing inspiration from nature.  

To improve traffic distribution within a certain geographic 

cluster, reinforcement learning [28] is used to optimise the 

relational parameters of neighbouring cells. The proposed 

method for accurate traffic flow prediction is the spatial-

temporal- graph convolution neural network, or STECA-

GCN. The Chaotic Horse Ride Optimisation Algorithm 

(CHROA) and big data analytics (BDA) is used [29]. By using 

chaotic method gives the Horse Ride Optimisation Algorithm 

(HROA) more optimisation power. Load balancing, AI-based 

optimisation of available energy resources, and evaluation 

using many metrics are all features of the suggested CHROA 

paradigm. The CHROA model achieves better outcomes than 

previous models, according to the experimental data.  

A proposed efficient heterogeneous resource scheduling 

process based on the Hybrid Gradient Descent Golden Eagle 

Optimisation (HGDGEO) algorithm [30] is developed to deal 

with the problems that could arise when processing big data in 

the Hadoop heterogeneous cloud environment. The HGDGEO 

algorithm's simulation results demonstrated its superiority in 

comparison to other resource scheduling algorithms in terms 

of makespan, load balance, besides throughput. 
 

 

3. THEORETICAL BACKGROUND 

 

3.1 Big data analysis 

 

The goal of big data analysis is to help with decision-

making, forecast, besides other forms of inferencing by mining 

and extracting significant patterns from large amounts of input 

data. In traditional data analysis, a small quantity of cleansed 

first-hand data is examined using conventional statistical 

approaches including factor, cluster, correlation, and 

regression analysis. In most cases, we only test a few of 

hypotheses that we formulate prior to data collection [31]. Big 

data analysis, on the other hand, may examine enormous 

amounts of unstructured and dirty data using either improved 

computational models or more conventional statistical 

approaches. When it comes to collecting, cleaning, modelling, 

and visually interpreting data, among other operations 

involved in big data investigation, a big data analytic is more 

of a system, platform, or framework than a singular tool or 

technology. 

 

3.2 Docker container and docker swarm 

 

To construct comparable to a virtual machine (VM) but does 

not use virtual hardware emulation, a method that is somewhat 

distinct from virtualization is known as containerisation or 

container-based virtualization. Although containers have been 

around for a long time in Unix and Linux, they are making a 

comeback in the business sector as a viable alternative to 

virtual machines (VMs). The creation of containers occurs in 

the user space, above the operating system kernel, so 

containerisation might be viewed as a virtualization at the OS 

level. It is possible to build several containers in different user 

areas on a single host, although they utilise far less resources 

compared to virtual machines. 

Containerisation is exemplified by the Docker container. 

Using Docker, a container-based technology, application 

development, deployment, and execution can be done easily 

and automatically. As seen in 0 1 [32], Docker Engine allows 

for the creation of isolated environments, or containers, that 

are comparable to virtual machines (VMs) but lack their own 

operating system (OS). As a result, all containers share the 

same OS kernel. In contrast, a container contains the 
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executable and any necessary library files to launch a 

programme. On Linux, the operating system itself serves as 

the Docker Host, while on non-Linux machines, a separate 

installation of the Docker Host is required [32]. In comparison 

to the real virtual machine (VM), this Docker host uses very 

less resources. This Docker Host is known as the default by 

Docker as it is pre-installed and needed to operate the Docker 

Engine. 

 

 
 

Figure 1. Docker containers on linux host [32] 

 

With Docker Swarm, an orchestration and cluster 

organization tool, several Docker nodes may be linked and 

managed as one virtual system. As an improvement on Docker 

container technology, it allows for the creation of distributed 

systems that may be deployed across many clouds. It improves 

upon conventional container technology and makes the 

container-based system trustworthy by adding capabilities like 

scalability, security, dependability, maintainability, and 

availability to the Swarm cluster. 

 

 

4. PROBLEM FORMULATION 

 
The goal of the suggested scheduler is to maximise the use 

of each worker node's resources by optimising container 
placement. Assumed throughout this article are the various 
resources—memory, CPU, bandwidth, and I/O—that a 
container needs to perform its services. The resource needs of 
a container also display temporal dynamism due to the fact that 
the services and workloads contained within it are subject to 
change. Therefore, we formulate the resource necessities of 
time. Mean 𝑟𝑖

𝑘(𝑡)  as the kth reserve obligation of the ith 
ampule at time t. Let 𝑥𝑖,𝑗 = {0, 1} be the container placement 
indicator. If 𝑥𝑖,𝑗 = 1, is located in the jth node. Signify 𝑊𝑗

𝑘 as 
kth node. Let 𝒞, 𝒩, 𝒦 be the set of containers, work nodes, 
and the capitals, correspondingly. The use ratio of the k 
reserve in the jth work node can be spoken as 

 

𝑢𝑗
𝑘(𝑡) =

∑ 𝑥𝑖,𝑗𝑟𝑖
𝑘(𝑡)𝑖∈𝐶

𝑊𝑗
𝑘

 (1) 

 

Then, the use ratio of the jth work node is 𝑚𝑎𝑥𝑘𝐾𝑢𝑗
𝑘(𝑡). The 

highest resource utilization amongst all the work nodes can be 

recognized as 

 

𝜗 = 𝑢𝑗
𝑘(𝑡)𝑗∈𝑁 𝑘∈𝑁

max 𝑚𝑎𝑥  (2) 

Since our proposed scheduler is to exploit the obtainable 
resources in node, the future scheduling problematic can be 
expressed as 

 

𝑣𝑥𝑖,𝑗
𝑚𝑎𝑥  (3) 

 

S.t ∑ 𝑥𝑖,𝑗 = 1; ∀𝑖 ∈ 𝐶𝑗  (4) 

 
𝑥𝑖,𝑗 : A binary container placement indicator. If 𝑥𝑖,𝑗 =1, it 

means container i is placed on node j; otherwise, it is not. 

 

𝑢𝑗
𝑘(𝑡) ≤ 1, ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝑁 (5) 

 
The utilization of any resource on any worker node must not 

exceed the capacity of that resource (i.e., utilization should be 
less than or equal to 1): 

Each container must be located in a single worker node 
according to the requirement in Eq. (4), and no worker 
resource can have a utilisation ratio greater than one according 
to the need in Eq. (5). 
 

 

5. PROPOSED METHODOLOGY 
 

5.1 Initial container placement 
 

The command "docker run" is used by clients to create a 

new container and utilise a SwarmKit cluster. Consequently, 

selecting a worker node to serve as the container's host is the 

cluster's primary responsibility. As mentioned in Section 3, the 

default technique for placing containers does not account for 

dynamic resource contention. This is due to the fact that 

SwarmKit's management features are lacking an instrument to 

track the present state of the available resource. Conversely, 

the issue is handled by the suggested model with the 

introduction of the Modified LSM-Tree model. 

Running on managers, Procedure 1 assigns a task to a exact 

worker. 

 
Algorithm 1. Container Placement on Administrators 

1: Maintains a known features service set {KS} 

2: {Wcand}=All running Wid 

3: Function SID 

4: for wid∈{Wcand} do 

5: if ! Filters(wid) then 

6: Remove wid from {Wcand} 

7: if SID∈{KS} then 

8: SDOM=DOM(SID) 

9: Sort Wcand according to rSDOM 

10: Return wid with highest rSDOM 

11: else 

12: Sort Pi i= =0 q ri/m for wid ∈Wcand 

13: Return wid with highest average available resource 

 

To start, every manager keeps track of dockers' traits, 

including memory, CPU, bandwidth, and block i/o 

consumption, in a known service set (line 1). All running 

workers make up the initial candidate worker pool (line 2). 

Whenever a new container beginning task happens, the 

method reduces the candidate work set, W_c, and (lines 3-6) 

using all the filters that the user has chosen. After that, it 

verifies on line 7 if the container is associated with a 

recognised service. If so, the dominating resource property of 

the container will be stored in the S_dom parameter (line 8). 

We think about memory, CPU, bandwidth, and block i/o in the 

approach we're proposing. After sorting the W_c and set by 
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dominating resource attribute, the highest available resource 

in the S_dom type will be returned, as indicated by the W_id 

with the highest value (lines 9-10). The W_id with the average 

greatest obtainable resource will be selected (lines 11-13) if 

the service is not discovered in {KS}. 

 

5.2 Data collection and analysis 

 

In order to evaluate the architecture, we will utilise two 

applications. One app will represent data collection on a 

fraction of the nodes, while the other will be placed on an 

Apache Spark cluster to analyse the data. System performance 

metrics, such the time it takes to process certain data, may also 

be retrieved through the applications. 

In order to acquire data, a Node.js app sends a PUT request 

to the HDFS API along with the data's content, simulating data 

collection; this causes a file to be created within a certain time 

frame. Only the last three nodes of the cluster are used to 

deploy the data gathering application using a Compose file. As 

a result of the trial, we have a collection of sample documents 

that the programme can read and modify online; this allows us 

to change the document's size or content without updating and 

redelivering the application. 

Examine the information. In order to examine the data, a 

Python programme is employed. The application checks 

recently created files for each phrase and counts the number of 

times it appears per second. Using the Apache Spark engine's 

given sample application as a starting point, the software has 

undergone minimal changes. 

For every phrase that appears, the method use the standard 

paradigm to produce a list of (Key, Charge) pairs of the form 

(Word, 1), as mentioned before. To get the total number of 

times each word appears, the Reduce step is applied to every 

group. A single function, Reduce by key, handles the 

remaining two phases. Pseudocode demonstrating the method 

with an example Map Reduce solution application is shown 

below. 

 

𝐶𝑜𝑢𝑛𝑡
≔ 𝐿𝑖𝑛𝑒𝑠. 𝐹𝑙𝑎𝑡𝑀𝑎𝑝(𝑙𝑎𝑚𝑏𝑑𝑎(𝑙𝑖𝑛𝑒){𝑙𝑖𝑛𝑒. 𝑠𝑝𝑙𝑖𝑡(′′′′)}) 

. 𝑚𝑎𝑝(𝑙𝑎𝑚𝑏𝑑𝑎(𝑤𝑜𝑟𝑑){(𝑤𝑜𝑟𝑑, 1)}). 
𝑟𝑒𝑑𝑢𝑐𝑒𝐵𝑦𝐾𝑒𝑦(𝑙𝑎𝑚𝑏𝑑𝑎(𝑉𝑎𝑙, 𝑎𝑐𝑐){𝑉𝑎𝑙 

+ 𝑎𝑐𝑐})𝑐𝑜𝑢𝑛𝑡𝑠. 𝑝𝑝𝑟𝑖𝑛𝑡() 

 

Use the spark submit command in the Spark CLI to 

distribute the application among the workers in the cluster 

after it has been sent among the master nod. 

 

5.3 Monitoring 

 

In order to facilitate system monitoring, a three-component 

monitoring stack based on Prometheus is installed on the 

cluster. Free and open-source, Prometheus is an alarm and 

monitoring system that provides many interfaces to other 

platforms and makes use of a time series database. 

Technologies such as Docker, HAProxy, and the ELK stack 

(Elastic search, Log stash, and Kibana) are examples of this 

type. Furthermore, the stack incorporates many "exporters" 

that collect metrics and expose them for Prometheus to collect, 

in line with Prometheus' operational philosophy of data 

extraction from multiple services. 

Data visualisation and analysis tool Grafana is well-liked. 

The web-based programme Grafana allows users to build 

dashboards for data tracking and analysis. This solution was 

selected for a use case that needed to follow Docker containers 

on many Linux systems since it required little configuration. 

This led to the use of an almost complete implementation for 

Raspberry Pis. A bespoke Compose file with Docker 

containers is utilised to deploy the stack to the Docker cluster. 

In the final configuration, one of the nodes gets Grafana and 

Prometheus installed, while each Raspberry Pi gets Advisor 

and Node exporters loaded. 

 

5.3.1 Modified log-structure merge tree 

One data structure that dynamically optimises memory and 

disc access for fast writing is the MLSM tree. The LSM tree 

typically reads, writes, and inserts data into memory using a 

tree-based indexing method such an AVL or Red-black tree. 

So, before flushing the data structure into disc, sorting done 

beforehand. Upon disc flushing, the data structure transforms 

into a sorted string table, or SSTable, a key-value sorted file. 

Every time a client requested an insert or delete, the indexing 

algorithm sorted the keys, therefore this file is flushed in a 

sorted state. On the other hand, the LSM tree's query 

performance is one of its drawbacks. With a sparse index for 

each SSTable on the disc, we can search for a certain key in 

Olog(n) time. On the other hand, since LSM trees are log-

based, the disk's SSTables are automatically sorted in reverse 

chronological order. Thus, a temporal complexity of O(n) and 

undesirable client waiting time result from checking every file 

to locate the client-requested key in the data structure. 

Databases like Cassandra, HBase, Accumulo, and Google Big 

Table typically display the LSM tree. The lengthy key query 

period was, however, resolved by all of these databases by the 

use of a bloom filter, a probabilistic data structure. 

 

5.3.2 Probabilistic data structures 

Database query speed may be optimised with the use of 

probabilistic data structures, which are low-memory-cost bit 

arrays. Hyperloglog, cuckoo, bloom, and KD-tree filters are 

just a few examples of the many data structures available. 

When these data constructions are positioned strategically in 

high ingestion schemes, they can save expensive disc searches, 

which is a huge boon to the system. One simple way to 

drastically reduce an application's throughput from hundreds 

of thousands to a few thousand operations per second is to 

have it search up an element in a huge database on disc. The 

primary focus of this research is on set membership analysis 

using cuckoo and bloom filters. Due to the following 

similarities in construction, these two data structures are 

structurally similar: (1) both employ hash functions to produce 

indexes, and (2) both put keys into their slots. converting keys 

to bits to maximise memory consumption and reading speed 

was (2) (3) are based on probability since the false positive rate 

is a measure of the maximum allowed hash collision inside the 

keys. The study's probabilistic data structures are summarised 

in Table 1, along with their key distinctions. 

 

Table 1. Bloom and cuckoo filter contrast 

 

Filters 
Hash 

Number 

Operation 

List 

Time 

Complexity 

  -Deletions  

Cuckoo 

Filter 
2 -Insertions O(1) 

  -Confirmations  

Bloom Filter Optimal k -Insertions O(1) 

  -Confirmations  
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5.3.3 Bloom filters 

To determine if an element is a member of a set, 

probabilistic data structures called bloom filters are employed. 

The possibility of false positives—a situation in which the real 

element is not in the set but the result indicates otherwise—

makes this data structure probabilistic. The building blocks of 

a bloom filter are hash functions, bits, and an array of bits that 

start off as zeros. Only two procedures are supported by bloom 

filters: 

While changing the relevant bits from zero to one, new 

items are added and hashed several times. 

The element is probably part of the set if it has been hashed 

and all of its matching bit values are one. Because bloom filters 

do not produce false negatives, if this is not the case, then the 

element in question does not belong to the set. 

Because they do not save keys on the array, bloom filters 

significantly improve performance for large-scale database 

look-ups and significantly reduce storage requirements. 

Having said that, the false positive rate of bloom filters is 

fixed. Giving the incorrect impression that an item is part of 

the set is therefore possible (with a probability greater than 

zero). In addition, once an object is put to a bloom filter, it 

cannot be removed. Consequently, the false positive rate rises 

in proportion to the number of data input. The suggested 

optimisation technique determines the ideal hash function sum 

k based on the bit array size and insertion sum, which in turn 

is determined by the amount of false positive rate acceptance 

and the length of the bit array, which is m bits. 

 

𝐹𝑃𝑅 = (1 − (1 −
1

𝑚
)

𝑘𝑛

)

𝑘

≈ (1 − 𝑒−
𝑘𝑛
𝑚 )

𝑘

 (6) 

 

𝑔 = 𝐼𝑛(𝑓) = 𝑘𝐼𝑛(1 − 𝑝) = 𝑘𝐼𝑛(1 − 𝑒−
𝑘𝑛
𝑚 ) (7) 

 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑘 =
𝑚

𝑛
𝐶𝐶𝑅𝐼𝑀𝐸𝐼𝑛(2) (8) 

 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑚 = −𝐶𝐶𝑅𝐼𝑀𝐸
𝑛𝐼𝑛(𝐹𝑃𝑅)

𝐼𝑛(𝑠)2
 (9) 

 

In Eq. (6) the false positive rate of bloom filters is designed. 

The likelihood of a bit being zero is 1 −
1

𝑚
, with "m" standing 

for the filter's bit array size. A bloom filter, on the other hand, 

can accommodate anything from one to k hash functions and 

n items. Hence, the likelihood needs to be increased to "k" 

times "n". As a result, the "k" number of hash functions raises 

the chance of a non-zero bit to the level of the false positive 

probability. (1 − (1 − (
1

𝑚
))

𝑘𝑛

)

𝑘

. The ideal "k" number of 

hash functions is determined using Eqs. (7) and (8). A 

logarithmic expression is created from Eq. (7) in order to 

compute its derivative. To get the best "k" number of hash 

function expression, as indicated by Eq. (8), one can only take 

the derivative of Eq. (7). The ideal size of a bloom filter's bit 

array is determined by Eq. (9). Therefore, the conversion of 

the variable "k" in Eq. (6) by the expression in Eq. (8) yields 

the ideal bit array size. The ideal bit array and insertion value 

that are covered below are found using the suggested 

CCRIME. 

 

A. An overview of RIME 

Su et al. [33] introduced RIME, an innovative and effective 

optimisation approach. The primary physical effect it mimics 

is the freezing of airborne, noncondensed water vapour upon 

contact with cold surfaces, such as branches or objects. First, 

rime ice generation; second, soft RIME search strategy; third, 

hard RIME puncture mechanism; and last, greedy selection 

mechanism for the best answer make up the four primary steps 

of the RIME algorithm. During the first phase of rime 

generation, the RIME algorithm treats every search agent in 

the population as an agent. The algorithm's starting population 

consists of all RIME agents combined. Eq. (10) is used to 

initialise each agent in the population inside a specific search 

space: 

 

𝑅𝑖 = 𝐵𝑚𝑖𝑛 + 𝑟𝑖 × (𝐵𝑚𝑎𝑥 − 𝐵𝑚𝑖𝑛) (10) 

 

where, 𝑅𝑖  represents each search agent, 𝐵𝑚𝑎𝑥  and 𝐵𝑚𝑖𝑛 

represent the boundaries, correspondingly, and 𝑟𝑖 is a pseudo-

random sequence among [0, 1]. 

A key tenet of the soft RIME search technique is the idea 

that particles in the soft rime would trap and condense any free 

particles that approach it, altering the stability of the soft rime 

in the process. If there is a large enough gap between the 

particles and the soft rime particles, the latter will evade 

capture and remain free. Over time, the soft rime will 

gradually expand its coverage area and catch a higher 

probability of particles as it condenses and collects free 

particles. Environmental variables, however, will cause the 

soft rime's covering area to eventually reach a constant state 

rather than an infinite growth. The following is the precise 

mathematical model that was developed by modelling the 

rules of motion for free particles and soft rime: 

 

𝑅𝑖𝑗
𝑛𝑒𝑤 = 𝑅𝑏𝑒𝑠𝑡,𝑗 + 𝑅𝑓

× (ℎ × (𝐵max (𝑖,𝑗) − 𝐵min (𝑖,𝑗))

+ 𝐵min (𝑖,𝑗)), 𝑟2 < 𝐸 

(11) 

 

𝑅𝑓 = 𝑟1 × 𝑐𝑜𝑠𝜃 × 𝛽 (12) 
 

𝜃 = 𝜋.
𝑡

10. 𝑇
 (13) 

 

𝛽 = 1 − [
𝑤. 𝑡

𝑇
] /𝑤 (14) 

 

𝐸 = √(𝑡/𝑇) (15) 

 

where, 𝑅𝑖𝑗
𝑛𝑒𝑤  is the site of the free moving besides 𝑅𝑏𝑒𝑠𝑡,𝑗 is the 

best RIME agent in the RIME population. 𝑟1 has a value -1 and 

1, chosen at random. As the algorithm iterates, cos q will 

change. b controls the convergence of the algorithm and 

reflects the ambient elements in rime. It changes as the 

programme iterates. The distance between free particles is 

represented by h, which is a randomly assigned value between 

0 and 1. Here, t is the current iteration count and T is the 

maximum iteration limit of the method. The increment of w 

determines the step function's segment count; 5 is the default. 

The chance of capturing free particles is denoted by E. As the 

algorithm runs more iterations, it will vary and typically show 

an upward trend. 
The hard rime puncture mechanism mostly mimics the way 

particles move in environments with greater winds; when 
particles move in the same direction of growth, a cross 
phenomena known as hard rime puncture is easily possible 
between them. Also, the frequency of hard rime punctures 
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increases in direct proportion to the hard rime's growth. In 
order to avoid being stuck in local optima, rime agents can 
trade particles and update each other's positions using the hard 
rime puncture mechanism, which also improves the 
algorithm's convergence capabilities. The hard RIME 
puncture strategy's mathematical model looks like this: 

 

𝑅𝑖𝑗
𝑛𝑒𝑤 = 𝑅𝑏𝑒𝑠𝑡,𝑗 , 𝑟3 < 𝐹𝑛𝑜𝑟𝑚𝑟(𝑆𝑖) (16) 

 
where, 𝑅𝑖𝑗

𝑛𝑒𝑤  is the jth particle of the finest rime agent in the 
populace and 𝑅𝑏𝑒𝑠𝑡,𝑗  new is the updated particle location. The 
fitness charge of the current agent is regularized to produce 
𝐹𝑛𝑜𝑟𝑚𝑟(𝑆𝑖) , which characterizes the likelihood that rime 
puncture. A sum at random among [0, 1] makes up 𝑟3. 

The horizontal crossing operation often requires the 
employment of two separate rime agents. The capacity for 
exploration is greatly enhanced and algorithm convergence is 
accelerated by the ability of separate agents to each other 
through the horizontal crossover search. Given that the parent 
agents xi and xj may be characterised by Eqs. (17) and (18), 
let's pretend that they undergo a horizontal crossover 
operation: 

 

𝑀𝑆𝑖
𝑛 = 𝜀1 × 𝑥𝑖𝑛 + (1 − 𝜀1) × 𝑥𝑗𝑛 

+𝐶1 × (𝑥𝑖𝑛 − 𝑥𝑗𝑛) 
(17) 

 

𝑀𝑆𝑗
𝑛 = 𝜀2 × 𝑥𝑗𝑛 + (1 − 𝜀2) × 𝑥𝑖𝑛 

+𝐶2 × (𝑥𝑗𝑛 − 𝑥𝑖𝑛) 
(10) 

 

where, ε1 and 𝜀2 , which are random variables distributed 

uniformly throughout the interval [0, 1], are used in the 

provided equation. Furthermore, both 𝑐1  and 𝑐2  follow a 

normal distribution on the range [-1, 1]. For agents ith and jth, 

the nth dimension is denoted by 𝑥𝑖𝑛  and 𝑥𝑗𝑛 , respectively. 

Through the horizontal crisscross xj, the nth position vectors' 

offspring, represented by 𝑀𝑆𝑗
𝑛, are created. 

Two discrete site vectors of agents in a population are 

manipulated via the vertical crossover operator, a 

computational method. While reducing the number of changes 

to the normally searched position vectors, this method may 

allow some position vectors that are limited to a local optimum 

to continue searching. Because some position vectors tend to 

stagnate in the later stages of exploration, ants often reach a 

local optimum. By utilising a vertical crisscross search 

approach, agents can learn position vectors from each other 

and improve their ability to avoid local optimums. Assuming 

agent i's mth and nth position vectors undergo the vertical 

crossover process as indicated in Eq. (19): 

 

𝑀𝑆𝑖
𝑚 = 𝜀 × 𝑥𝑖𝑚 + (1 − 𝜀) × 𝑥𝑖𝑛 (19) 

 

where, 𝜀 characterizes a random sum among [0, 1] and 𝑀𝑆𝑖
𝑚 

signifies the mth site vector of the offspring produced by 

crisscross operation among the mth agent nth site vectors of 

agent i. 

No more study or analysis was carried out on the 

performance of RIME as its initial research just suggested an 

optimisation strategy by modelling the changing shape of 

rime. Additionally, this paper's benchmark function studies 

have shown that it has a significant advantage in convergence 

and still has plenty of space for development. Furthermore, our 

experimental results show that it outperforms the general 

traditional algorithms when it comes to discovering high-

quality persons to solve real-world challenges, and this is in 

relation to the feature selection problem. This paper associated 

RIME with other similar algorithms from various perspectives 

in order to learn more about its performance and find ways to 

make it better. It found that RIME could still do better in terms 

of the quality of the solutions it found and that its search 

capabilities could use some work to prevent it from reaching 

local optima. 

In light of the foregoing, this work concluded from its 

examination of horizontal and vertical cross-search methods 

that it may significantly boost algorithm performance; 

furthermore, other research has employed this technique to 

improve the efficiency of certain optimisation algorithms. 

Motivated by this, this study improved the original RIME by 

including horizontal and vertical crossover search algorithms 

to increase its search capabilities, improve the quality of the 

solutions obtained, and prevent it from falling into local 

optima throughout the search process. Following the hard 

RIME puncture mechanism, the horizontal and vertical 

crossover search techniques primarily take action in the 

enhancement phase. Through enhancing RIME's search skills, 

CCRIME is able to acquire better solutions and enhance its 

optimisation capabilities in real-world scenarios. 

 

B. Cuckoo filters 

Since its introduction in 2014, cuckoo filters—a type of 

probabilistic data structure—have found extensive use in 

many network applications. To determine if an element is 

"probably" or "definitely" part of a set, cuckoo filters are 

utilised, similar to bloom filters. Bit arrays, slots, and buckets 

make up cuckoo filters. The bird that lays its eggs in a different 

nest and then, after a chick emerges, plucks the other eggs or 

chicks out of the nest is called a cuckoo. 

Because cuckoo filters only utilise two hash functions, 

whereas bloom filters employ k, cuckoo filters provide space 

and temporal complexity that is comparable to that of bloom 

filters but with less hashing cost. But the big perk of cuckoo 

filters is that they can remove objects from the membership set 

thanks to their two-dimensional and capabilities. This has the 

potential to enhance databases like HBase, which undergo 

continuous SS Table merging and compacting. A load 

parameter in a cuckoo filter indicates what fraction of the 

filter's slots are now in use. 

Half of the buckets in a cuckoo filter are already in use when 

the load is 75 percent. On the other hand, studies have shown 

that cuckoo filters start producing more false negatives as the 

load factor increases. The system was able to avoid producing 

false negatives while verifying the presence of keys during our 

experiments with a load factor below 65%. The load factor 

must be considered in order to determine if resizing or other 

actions are necessary to manage the filters at level. 
 

𝐼1(𝑥) = ℎ𝑎𝑠ℎ(𝑥) (20) 
 

𝐼2 = 𝐼1(𝑥)⨁ℎ𝑎𝑠ℎ(𝑥′𝑠𝑓𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡) (21) 
 

Eqs. (20) and (21) determine the index of the buckets that 

will be used to enter the fingerprint. By inputting the key into 

a hash function, the first function determines the index of the 

first bucket. On the other hand, the second index is determined 

by first computing the fingerprint hash value and then 

performing an XOR operation on the index of bucket. A new 

cuckoo filter cannot be generated until the specified capacity 

is matched with indexes one and two.
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5.4 Migrating a container 

 

All workers in a Swarmkit cluster compete for the same 

resources. One component of the suggested paradigm, the 

container monitor, keeps track of how much power each 

worker's containers use. Additionally, the worker maintains 

self-tracking of available resources. It notifies managers with 

an alert message that specifies the kind of bottleneck and 

expensive container of that kind if it detects that a draining 

resource becomes a bottleneck. Managers are tasked for 

assigning containers to workers when they get alert messages 

and then killing them on those workers to free up resources. 

 

 

6. USING THE DOCKER PLATFORM TO CREATE A 

VIRTUAL SITUATION 

 

Docker is a free and open-source software stage for Linux 

container virtualization. This programme requires a certain 

version of the Linux kernel—specifically, 3.10 or later—and 

employs operating system-level virtualization, as indicated 

before. Docker allows processes to be executed in a contained 

setting. Operating in Docker is like putting a process in a 

vacuum: all it sees are its own offspring. Even though it shares 

the same operating system as other processes, this one can't 

see anything outside of its own little bubble, including other 

processes, files, and the entire system. The process's container 

is the bare minimum of an environment in which it executes. 

The container serves as a standalone OS, complete with its 

own file system, network, and peripherals. By mounting 

specific folders and files, sharing a network, and opening 

required ports, the container can communicate with the host 

containers. 

You can't make a docker container without images. The 

image serves as a blueprint, pre-installing the operating system 

and all required apps. Local storage or a dedicated public 

registry (dockerhub) can house images. The Dockerfile uses a 

specific syntax to declaratively describe the image template. 

What follows is a sample image template with Ubuntu 

installed and the OpenALPR software pre-loaded. 

 

𝐹𝑅𝑂𝑀 𝑢𝑏𝑢𝑛𝑡𝑢: 16.04 
𝑅𝑈𝑁 𝑎𝑝𝑡 − 𝑔𝑒𝑡 𝑢𝑝𝑑𝑎𝑡𝑒 
&& 𝑎𝑝𝑡 − 𝑔𝑒𝑡 𝑖𝑛𝑠𝑡𝑎𝑙𝑙 − 𝑦 
𝑊𝑂𝑅𝐾𝐷𝐼𝑅 /𝑑𝑎𝑡𝑎 
𝐸𝑁𝑇𝑅𝑌𝑃𝑂𝐼𝑁𝑇 ["𝑎𝑙𝑝𝑟"] 
 

Identify vehicle licence plates with the help of OpenALPR, 

a free piece of C++ software. 

The command "docker build" is required to generate a 

picture from the blueprint. Consequently, one has a fully 

operational environment that can be deployed on an endless 

amount of containers. Here are the outcomes achieved using 

the container-launched software OpenALPR. 

 

𝑑𝑜𝑐𝑘𝑒𝑟 𝑏𝑢𝑖𝑙𝑑 − 𝑡 𝑜𝑝𝑒𝑛𝑎𝑙𝑝𝑟 ./ 
𝑤𝑔𝑒𝑡 ℎ𝑡𝑡𝑝://𝑝𝑙𝑎𝑡𝑒𝑠. 𝑜𝑝𝑒𝑛𝑎𝑙𝑝𝑟. 𝑐𝑜𝑚/ℎ786𝑝𝑜𝑗. 𝑗𝑝𝑔 
𝑑𝑜𝑐𝑘𝑒𝑟 𝑟𝑢𝑛 − 𝑖 − 𝑣 $(𝑝𝑤𝑑):/𝑑𝑎𝑡𝑎: 𝑟𝑜 𝑜𝑝𝑒𝑛𝑎𝑙𝑝𝑟 

− 𝑐 𝑒𝑢 ℎ786𝑝𝑜𝑗. 𝑗𝑝𝑔 
− 𝐻786𝑃0𝐽 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒: 89.8356 
− 𝐻786𝑃𝑂𝐽 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒: 87.6114 
− 𝐻𝑁786𝑃0𝐽 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒: 85.2152 
− 𝐻2786𝑃0𝐽 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒: 85.0755 
− 𝐻3786𝑃0𝐽 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒: 84.8286 

− 𝐻𝑆786𝑃0𝐽 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒: 84.7763 
− 𝐻786𝑃𝑄𝐽 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒: 84.7612 

 

6.1 Combining IoT devices in the cluster 

 

Keep in mind that Docker has a feature called "swarm" that 

allows you to group together virtual or real computers. Users 

are able to simulate scenarios when many devices are 

connected to the same network by utilising this mode. 

The prototype must be tested using Docker Swarm. The 

Docker Machine must be used to construct nodes in order to 

do this. Virtual servers may be transformed into Docker nodes 

with the help of Docker Machine. Docker Machine currently 

has twelve drivers available for different cloud platforms. 

These include OpenStack, Amazon Elastic Compute Cloud, 

Google Cloud Platform, VirtualBox, and Amazon EC2. Using 

the following command sequence, three virtual nodes were 

used for testing. 

 

docker−𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑐𝑟𝑒𝑎𝑡𝑒 − 𝑑 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 − 𝑏𝑜𝑥 𝑛𝑜𝑑𝑒1 

docker−𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑐𝑟𝑒𝑎𝑡𝑒 − 𝑑 𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑏𝑜𝑥 𝑛𝑜𝑑𝑒2 

docker−𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑐𝑟𝑒𝑎𝑡𝑒 − 𝑑 𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑏𝑜𝑥 𝑛𝑜𝑑𝑒3 

 

The succeeding stage is to construct the network and specify 

the roles for the newly formed nodes: 192.168.99.100 docker 

swarm init --advertise-addr. 

Swarm started: wlx5xrrsplv4enim4c1xbmcuo, the current 

node, manager. 

docker network build 192.168.1.0/24 --subnet --driver 

overlay Encrypted mesh network option 

One can construct and start services after forming a 

«swarm» cluster. Two photos must be made in order to test. 

The code of the broker will be in the first image, and the code 

of the agent will be in the second. The services and deployment 

rules will be described in the configuration file, which must be 

created next. Networks section is used to merge all services 

into a single network. 

The docker-compose.yml will contain the subsequent rules: 

1). A node executing the management function must have 

the broker service installed. 

2). Nodes executing the worker function must have the 

service agent installed. 

3). There must be two instances of the service "agent" 

function. Below is the code of the broker: 

 

𝑣𝑒𝑟𝑠𝑖𝑜𝑛: "3" 
𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠: 
𝑖𝑚𝑎𝑔𝑒: 𝑠𝑒𝑟𝑔𝑒𝑦𝑙𝑒𝑡𝑖/𝑏𝑟𝑜𝑘𝑒𝑟 
− 54589: 54589 
𝑑𝑒𝑝𝑙𝑜𝑦: 
𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: [𝑛𝑜𝑑𝑒. 𝑟𝑜𝑙𝑒 == 𝑚𝑎𝑛𝑎𝑔𝑒𝑟] 
𝑖𝑚𝑎𝑔𝑒: 𝑠𝑒𝑟𝑔𝑒𝑦𝑙𝑒𝑡𝑖/𝑎𝑔𝑒𝑛𝑡 
𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠: 2 
𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: [𝑛𝑜𝑑𝑒. 𝑟𝑜𝑙𝑒 == 𝑤𝑜𝑟𝑘𝑒𝑟] 
𝑑𝑒𝑓𝑎𝑢𝑙𝑡: 
𝑛𝑎𝑚𝑒: 𝑚𝑒𝑠ℎ − 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 

 

 

7. RESULTS AND DISCUSSION 

 

In this section, the presentation of MLSM is tested with 

existing techniques such as BWUJS [21], CHROA [29] and 

HGDGEO [30], where all models are implemented and results 

are averaged. The metrics such as resource utilization, total 
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energy consumption, makespan, degree of imbalance and 

priority are used for proposed models’ effectiveness. Figures 

2-6 presents the visual representation of various models in 

terms of different metrics. 

 

 
 

Figure 2. Graphical description of projected model in terms 

of resource utilization 

 

In Figure 2, the graphical representation of the projected 

model in terms of resource utilization is illustrated. In the 

analysis involving 200 tasks, the BWUJS model achieved a 

resource utilization of 18,972, while the CHROA model 

reached 15,101, the HGDGEO model reached 17,995, and the 

MLSM model reached 12,739, respectively. 

For 600 tasks, the BWUJS model reached a resource 

utilization of 21,419, the CHROA model reached 17,047, the 

HGDGEO model reached 19,323, and the MLSM model 

reached 15,538, respectively. 

For 800 tasks, the BWUJS model reached a resource 

utilization of 23,874, the CHROA model reached 19,410, the 

HGDGEO model reached 21,567, and the MLSM model 

reached 17,688, respectively. 

Finally, for 1000 tasks, the BWUJS model achieved a 

resource utilization of 24,404, the CHROA model reached 

21,265, the HGDGEO model reached 23,193, and the MLSM 

model reached 20,225, respectively. 

Figure 3 signifies the visual representation of various 

models. In the analysis of 200 tasks, the BWUJS model 

reached a total energy consumption of 10.70, the CHROA 

model reached 10.05, the HGDGEO model reached 8.55, and 

the MLSM model reached a consumption of 6.84, 

respectively. 

 

 
 

Figure 3. Visual representation of various models 

  

For 400 tasks, the BWUJS model reached a total energy 

consumption of 13.82, the CHROA model reached 10.71, the 

HGDGEO model reached 8.94, and the MLSM model reached 

a consumption of 8.03, respectively. 

For 600 tasks, the BWUJS model reached a total energy 

consumption of 17.65, the CHROA model reached 15.28, the 

HGDGEO model reached 12.02, and the MLSM model 

reached a consumption of 10.07, respectively. 

For 800 tasks, the BWUJS model reached a total energy 

consumption of 19.94, the CHROA model reached 18.91, the 

HGDGEO model reached 15.26, and the MLSM model 

reached a consumption of 11.12, respectively. 

Finally, for 1000 tasks, the BWUJS model reached a total 

energy consumption of 21.28, the CHROA model reached 

19.56, the HGDGEO model reached 15.82, and the MLSM 

model reached a consumption of 13.84, respectively. 

Figure 4 signifies the graphical representation of various 

models. In the analysis of 200 tasks, the BWUJS model 

reached a priority value of 39.04, the CHROA model reached 

40.28, the HGDGEO model reached 52.75, and the MLSM 

model reached a consumption of 61.36, respectively. 

For 400 tasks, the BWUJS model reached a priority of 

46.45, the CHROA model reached 47.65, the HGDGEO 

model reached 57.35, and the MLSM model reached a 

consumption of 66.96, respectively. 

For 600 tasks, the BWUJS model reached a priority of 

51.24, the CHROA model reached 51.72, the HGDGEO 

model reached 61.23, and the MLSM model reached a 

consumption of 69.59, respectively. 

For 800 tasks, the BWUJS model reached a priority of 

54.21, the CHROA model reached 56.19, the HGDGEO 

model reached 65.75, and the MLSM model reached a 

consumption of 75.27, respectively. 

Finally, for 1000 tasks, the BWUJS model reached a priority 

of 60.36, the CHROA model reached 60.48, the HGDGEO 

model reached 67.85, and the MLSM model reached a 

consumption of 77.43, respectively. 

 

 
 

Figure 4. Graphical description of various models 

 

The visual description of various models in terms of 

imbalance is indicated in Figure 5. When analyzing 200 tasks, 

the BWUJS model achieved a degree of imbalance of 8.742, 

the CHROA model reached 6.075, the HGDGEO model 

reached 5.720, and the MLSM model reached 3.570, 

respectively. 

For 400 tasks, the BWUJS, CHROA, HGDGEO, and 

MLSM models reached degrees of imbalance of 10.874, 

8.734, 5.830, and 4.160, respectively. 

Subsequently, for 600 tasks, the MLSM model achieved a 

degree of imbalance of 4.740, while the BWUJS and CHROA 

models reached degrees of imbalance of 10.720 and 6.600, 

respectively. 

For 800 tasks, the BWUJS model achieved a degree of 
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imbalance of 15.595, the CHROA model reached 13.460, the 

HGDGEO model reached 8.830, and the MLSM model 

reached 5.390, respectively. 

Finally, for 1000 tasks, the BWUJS model reached a degree 

of imbalance of 15.813, the CHROA model reached 14.830, 

the HGDGEO model reached 8.350, and the MLSM model 

reached 6.110, respectively. 

 

 
 

Figure 5. Visual description of different models in terms of 

degree of imbalance 

 

The efficiency of the suggested model is described in terms 

of makespan in Figure 6. The BWUJS model achieved a 

makespan of 2.938 in the analysis of 200 tasks, followed by 

the CHROA model at 1.764, 1.431, and the MLSM model at 

1.136, in that order. 

 

 
 

Figure 6. Description of anticipated model’s efficiency in 

terms of makespan 

 

Next, for 400 tasks, the models from BWUJS and CHROA 

reached makespans of 2.935 and 2.567, 2.134, respectively, 

and lastly, the MLSM model reached a makespan of 1.742. 

After that, for 600 tasks, the BWUJS model achieved a 

makespan of 7.937, the CHROA model reached makespans of 

5.482 and 4.390, and the MLSM model, in turn, reached a 

makespan of 3.589. 

Subsequently, for 800 tasks, the BWUJS model achieved a 

makespan of 9.942, the CHROA model reached makespans of 

8.610 and 6.492, and the MLSM model achieved a makespan 

of 4.571. 

Following that, for 1000 tasks, the BWUJS model achieved 

a makespan of 13.945, the CHROA model reached makespans 

of 11.490 and 8.481, and the MLSM model, in turn, reached a 

makespan of 5.896. 

Finally, from the result evaluation, it is shown that the 

proposed model achieved better performance than existing 

techniques in terms of different metrics. The next section will 

describe the contribution of the research work. 

 

 

8. CONCLUSION 

 

Currently, Internet of Things (IoT) technology has great 

promise as a game-changing innovation. One of the several 

issues that must be resolved in the current paradigm of human-

thing communication is the feasibility of software testing in 

environments that are as near to real as possible. Docker and 

container virtualization are well-suited to software 

development and testing in the IoT domain, according to the 

findings of the done study. Process isolation in containers 

improves the security of IoT devices, opens up new 

possibilities for virtual environment setups, enables more 

extensive and comprehensive testing of developed software, 

and decreases the number of faults. 

A tiny containerisation clusters platform could be utilised 

for a range of IoT edge data processing submissions. Container 

orchestration and Docker's lightweight containerisation 

capabilities enable a regulated and fault-tolerant architecture 

for the edge. By continuously monitoring the state of the 

services, Docker's swarm ensures great service availability, 

which in turn enables the cluster to self-heal and scale. Even 

when dealing with massive quantities of data, the overall cost 

of the infrastructure may be kept down by using devices, 

which have a negligible impact on energy besides cost while 

still running complex infrastructures through clustering. The 

constraints of our prototype system are a result of the Big Data 

systems may be built on clusters of devices with very limited 

networking besides processing resources, such Raspberry Pis. 

The speed concerns experienced by the prototype approach 

were a result of using HDFS as a streaming data source. 

An analysis of the container placement approach in cluster 

is presented in this research. Our goal is to assign containers 

to worker nodes that have the most efficient use of their 

resources. In this work, we provide MLSM, an approach that 

takes into account the present state of each node's resources as 

well as the different resource needs from containers. 

Additionally, this research suggests a better technique that 

combines cuckoo filters to increase space complexity, and it 

employs cuckoo filters as a linked list. We ran comprehensive 

tests using MLSM on the Docker Swarmkit platform. 

Comparisons with the default Spread method reveal 

substantial improvements in system stability and scalability. 

In light of the findings of this study and further research, 

cuckoo filters can be implemented into popular databases to 

enhance their query performance in analytics-centric domains. 

On average, including trade-offs into analytical systems won't 

reduce efficiency, but it will enhance space complexity, reduce 

the likelihood of false positives after deletions, and ensure 

consistent merges between cuckoo filters with low load 

factors. 
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