
Optimizing Docker Container Placement in Heterogeneous Clusters Using a Modified Log-

Structured Merge Scheme

V. Vijayaraj1* , M. Balamurugan1 , Monisha Oberoi2

1 School of Computer Science of Engineering, Bharathidasan University, Tiruchirappalli 620023, India
2 Director, Security Services Sales, IBM Innovation Pte Ltd, Singapore 018983, Singapore

Corresponding Author Email: vijay.raj.phd@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/isi.300503 ABSTRACT

Received: 26 November 2024

Revised: 14 April 2025

Accepted: 21 May 2025

Available online: 31 May 2025

Big data processing is crucial for extracting insights from large datasets, involving storage,

cleansing, organization, modeling, analysis, and presentation. However, many face

challenges with complex data systems, long provisioning times, and redundant boot disks.

Containers, like Docker, address these issues by allowing distributed applications to run

without full virtual machines. Despite this, Docker’s Swarmkit struggles with heterogeneity

in clusters, where nodes vary in resource types and availability. To address this, we propose

a resource-aware placement technique for heterogeneous Docker container clusters, using

a Modified Log-Structured Merge (MLSM) data structure. This combines Cuckoo and

Bloom Filters to efficiently distribute resources and maintain filter synchronization,

providing better space utilization. Experimental results show that MLSM outperforms

current methods in terms of performance and efficiency.

Keywords:

big data processing; docker swarm

optimization; modified log-structured

merge; bloom filters; cuckoo filters; data

processing.

1. INTRODUCTION

1.1 Background of big data processing and docker

importance

Big data refers to information assets that have high velocity,

variety, and/or volume and cannot be processed using

conventional IT infrastructure and methods [1]. Large

companies and organisations used to be the only ones that

needed it, but now even average people are seeking out big

data processing choices to handle the mountains of data that

their old IT systems just can't handle [2]. Problems that regular

people face include the need for and supply of a sophisticated

data processing system, the connection of complicated big data

analytics, and the exertion in using these tools. This is why

companies need a data processing system that is simple to

build and create, inexpensive, and easy for users to use [3].

When it comes to big data analysis, the best and most well-

established infrastructure is cloud-based big data processing

solutions. To optimise performance, get the finest services,

and lessen the danger of being dependent on any one provider,

most enterprises and customers are now moving towards

multi-cloud infrastructure [4]. The majority of cloud-based

systems are built on virtualization, which is a critical

technology of cloud computing. Many kinds of big data

analytics aren't appealing to regular users because of the

complicated migration process, challenges with load

balancing and deployment, and the demand of large and

redundant resources [5]. The aforementioned issues with big

data analysis for regular people may be amenable to the

container-based virtualization technology Docker's new

Swarm for the creation of different kinds of multicloud

distributed systems [6, 7]. Unfortunately, the data processing

component of this container-based knowledge receives less

attention than Docker, which is mostly employed in the

software development business.

The suggested edge cloud design [8] makes use of Big Data

processing technologies like Apache Spark and Hadoop

Cluster, which, although shrunk to fit the constraints of IoT

devices, nonetheless provide great speed, variety, and volume.

The system is built on top of Docker, a containerisation

technology that facilitates service coordination inside a device

cluster. In order to evaluate the organisation's efficiency in

relation to the limitations of the Raspberry Pi, data is collected

using a cluster-based measurement and reporting tool and a

Prometheus-based monitoring stack [9]. There has been an

incredible deluge of data made available online in the last

several decades. Numerous services, including websites,

mobile apps, and online games, are utilised by hundreds of

thousands of individuals who access the Internet. On the back

end, the service providers rely on cutting-edge cloud

infrastructures like Microsoft Azure and Amazon Web Service

[10, 11]. Data centres and cloud environments utilise

virtualization, an emerging technology that focuses on

offering services at scale, to enhance hardware besides

expansion efficiency.

The virtual machine is a popular approach to system-level

virtualization that separates various system resources [12].

But, on a large-scale system, users would likely be running

several copies of the same operating system and many

redundant boot discs if services were provided through virtual

machines [13]. Virtualization of containers is old news now;

big data processing platforms use containers as its

foundational computing unit [14], and Unix-like operating

Ingénierie des Systèmes d’Information
Vol. 30, No. 5, May, 2025, pp. 1135-1146

Journal homepage: http://iieta.org/journals/isi

1135

https://orcid.org/0009-0006-9351-7843
https://orcid.org/0000-0003-2558-3161
https://orcid.org/0009-0005-8299-2000
https://crossmark.crossref.org/dialog/?doi=10.18280/isi.300503&domain=pdf

systems used them for more than a decade. On the other hand,

Docker and other emerging containerisation systems become

standard fare for creating applications. Docker simplifies the

tooling necessary to construct and manage containers by

building on previously existing open-source technologies

(e.g., cgroup). Containers on a physical computer are basically

simply ordinary processes running in the background, but

when viewed from the system perspective, they have access to

a virtualized situation that includes not just CPU and memory

but also disc I/O, and more [15].

On physical devices, we launch Docker containers using the

"Docker run image" command. Along with the desired disc

image, users have the opportunity to specify other parameters,

such "-m" and "-c", to restrict a container's resource access

[16]. Resource contention occurs among containers on every

host computer, even though options set a maximum quantity.

First thing a cluster should do when it gets "Docker run" orders

from clients is choose a physical machine to run the containers.

Using a bin-pack method, the default container placement

scheme, Spread, attempts to allocate a container to the node

that has the fewest operating containers [17]. Spread does not

include two key features of the system, even though it intends

to distribute jobs evenly among all nodes. To begin, there is no

hard and fast rule that says all of the nodes in a cluster must be

similar. Many different kinds of nodes, each with its own

unique set of capabilities and resources, are often found in a

cluster. For instance, compared to a generic desktop, a state-

of-the-art server can easily handle more tasks running in

parallel [18]. The dependency matrix is a revolutionary

approach introduced by cloud computing that eliminates the

need for programmes to deal with hardware dependencies,

operating system specifications, and possible library conflicts

in traditional deployment settings [19, 20]. Docker containers

are widely used for distributed applications, but Docker's

Swarmkit faces challenges in managing heterogeneous

clusters, where nodes differ in resource types and availability.

This heterogeneity complicates resource allocation, as

services may have varying demands, such as CPU-intensive or

memory-intensive requirements. In this research, we address

these limitations by proposing a resource-aware placement

technique for Docker container clusters. We introduce a

Modified Log-Structured Merge (MLSM) scheme, utilizing

Cuckoo and Bloom Filters to efficiently distribute resources

across nodes. The MLSM method ensures optimal resource

utilization, syncing filters with keys of all Sorted String Tables

(SSTables) while minimizing space usage. Experimental

results demonstrate that MLSM outperforms current methods,

offering superior performance and efficiency in heterogeneous

cluster environments.

Software applications were usually delivered on bare metal

servers or virtual machines before Docker and containerisation

came along. Docker, an open-source technology, changed

everything by letting users build and deploy apps with ease by

packaging them with their dependencies into containers.

Containerisation, made possible by Docker, ensures that

programmes may run efficiently and without errors across

various computing environments by enclosing all required

dependencies, such as frameworks and libraries [21]. One

major perk of Docker containers is how lightweight they are.

This makes them perfect for transferring and running in many

computing settings, regardless of the operating system or

configurations used by the host.

1.2 Motivation of the work

Application deployment used to be a laborious, resource-

intensive manual operation until container technologies came

around. The deployment process was much improved and

streamlined with the advent of container technologies,

especially Kubernetes and Docker. Currently, there are a

number of options available for load balancing containerised

applications, each designed for a certain use scenario. With

Docker's integrated capabilities for load balancing and service

discovery, scaling has become much easier.

Developers may now devote more effort to actually making

their apps and less time to developing these ancillary tasks.

Docker reduces the time it takes to deploy highly available and

scalable applications by automating operations like

configuring DNS for service discovery and adding apps to the

load balancer pool when scaling is needed. These

developments have not eliminated efficiency issues with

current approaches, and new algorithms lack the scalability

necessary for broad use. The growing use of containers has

made load balancing a must-have feature, calling for more

investigation into effective ways to handle it.

1.3 Contribution of the research work

A novel container placement technique is suggested in this

project's investigation. Instead of using the default spread

scheme, the suggested approach distributes containers

according to the resources available in a diverse cluster and the

changing needs of different types of containers. The model

begins by tracking containers that provide a service in order to

determine the most common resource type for that service. In

order to minimise imbalanced resource utilisation on the

nodes, it then assigns containers with complimentary demands

to the same machine. When a particular resource reaches its

limit, the system will move containers that use a lot of that

resource to other nodes. In this research, two large data

probabilistic data structures—the cuckoo filters and the

modified bloom filters—are examined. An LSM tree is used

to evaluate the efficacy of these two probabilistic data

structures. The conventional wisdom is that using bloom filters

to improve query speed is the way to go. However, cuckoo

filters offer the ability to exclude unwanted elements, so we

opted for them instead. It follows that cuckoo filters should

outperform bloom filters in compaction and merging

operations.

1.4 Paper organization

The background of big data processing, docker swarm

optimization, motivation and contribution of the research work

is mentioned in Section 1.

The brief explanation of the related work with its drawback

is mentioned in Section 2.

The theoretical docker swarm with block diagram is

explained in Section 3, where problem formulation is

mentioned in Section 4.

The explanation of proposed methodology with neat

explanation is given in Section 5, the implementation of

docker swarm in virtualization is given in Section 6.

The results analysis and its discussion is given in Section 7,

where the conclusion of the research work is shown in Section

8.

1136

2. RELATED WORKS

A work scheduling technique based on multi-objective

hybrid optimisation has been introduced as BWUJS, or Black

Widow Updated Jellyfish Search [21]. From a Bigdata point

of view, this study examines task creation. Map Reduce, in

conjunction with a K-means clustering model, clusters the

jobs. Next, we estimate the priorities of the tasks once they

have been clustered. In the end, priorities, makespan,

completion time, resource utilisation, and imbalance are used

to schedule tasks using BWJSU.

An exhaustive review of the classic K-means method [22]

is the starting point for this study, which ultimately proposes

an enhanced version of the technique. The experimental

findings show that the suggested enhanced K-means algorithm

works better than the original, with much better accuracy and

fewer classification mistakes, reaching an error rate below

one.

Using the outcomes of a deep reinforcement learning

model's predictions, the grouping technique is adjusted before

a data stream's frequency changes [23]. Because of this, the

system will be able to efficiently manage its resources and

respond swiftly to changes in data streams. For effective

massive data streaming in cloud systems, Gaussian adapted

Markov model (GAMM) is used [24]. An effective and error-

free management of time-bound big data streaming

applications is the goal of this effort. To conduct the

fluctuation analysis, this work also makes use of the gating

technique to identify the set of features necessary to produce

the nonlinear distribution of data and the fat convergence

solution.

A fog layer utilising a novel and enhanced geographic load-

balancing method has been introduced [25]. In order to

advance the user experience for augmented and virtual reality

apps, it optimises the distribution of loads and supplies quality

of service (QoS) characteristics. In virtual reality and

augmented reality games that use electroencephalograms, the

iFogSim toolbox provides experimental validation of the

framework. Furthermore, a wide variety of situations are used

to test the proposed framework.

The two algorithms: dynamic SDN (dSDN) then priority

scheduling and congestion management (eSDN) are

developed [26]. The tDQN agent iteratively learns to reduce

network latency by improving decision-making for switch-

controller mapping using a reward-punish mechanism. Our

method, tDQN, optimises latency and dynamic flow mapping

without adding more controllers at the best possible locations.

In order to dynamically redirect traffic to the most appropriate

controller, a multi-objective optimisation problem is

developed for flow fluctuation. Throughput, latency, packet

loss are among of the metrics where the tDQN excels,

according to comprehensive simulation findings that account

for a wide range of network conditions and traffic.

Adaptive and self-organizing behaviours are modelled after

in bioinspired algorithms, which are utilised by Load Balance

to dynamically distribute workloads among cloud resources

[27]. Using concepts from swarm intelligence and

evolutionary algorithms, the proposed method iteratively

enhances load distribution solutions. This optimisation

method improves cloud load balancing and provides a

sustainable solution for current cloud infrastructures by

drawing inspiration from nature.

To improve traffic distribution within a certain geographic

cluster, reinforcement learning [28] is used to optimise the

relational parameters of neighbouring cells. The proposed

method for accurate traffic flow prediction is the spatial-

temporal- graph convolution neural network, or STECA-

GCN. The Chaotic Horse Ride Optimisation Algorithm

(CHROA) and big data analytics (BDA) is used [29]. By using

chaotic method gives the Horse Ride Optimisation Algorithm

(HROA) more optimisation power. Load balancing, AI-based

optimisation of available energy resources, and evaluation

using many metrics are all features of the suggested CHROA

paradigm. The CHROA model achieves better outcomes than

previous models, according to the experimental data.

A proposed efficient heterogeneous resource scheduling

process based on the Hybrid Gradient Descent Golden Eagle

Optimisation (HGDGEO) algorithm [30] is developed to deal

with the problems that could arise when processing big data in

the Hadoop heterogeneous cloud environment. The HGDGEO

algorithm's simulation results demonstrated its superiority in

comparison to other resource scheduling algorithms in terms

of makespan, load balance, besides throughput.

3. THEORETICAL BACKGROUND

3.1 Big data analysis

The goal of big data analysis is to help with decision-

making, forecast, besides other forms of inferencing by mining

and extracting significant patterns from large amounts of input

data. In traditional data analysis, a small quantity of cleansed

first-hand data is examined using conventional statistical

approaches including factor, cluster, correlation, and

regression analysis. In most cases, we only test a few of

hypotheses that we formulate prior to data collection [31]. Big

data analysis, on the other hand, may examine enormous

amounts of unstructured and dirty data using either improved

computational models or more conventional statistical

approaches. When it comes to collecting, cleaning, modelling,

and visually interpreting data, among other operations

involved in big data investigation, a big data analytic is more

of a system, platform, or framework than a singular tool or

technology.

3.2 Docker container and docker swarm

To construct comparable to a virtual machine (VM) but does

not use virtual hardware emulation, a method that is somewhat

distinct from virtualization is known as containerisation or

container-based virtualization. Although containers have been

around for a long time in Unix and Linux, they are making a

comeback in the business sector as a viable alternative to

virtual machines (VMs). The creation of containers occurs in

the user space, above the operating system kernel, so

containerisation might be viewed as a virtualization at the OS

level. It is possible to build several containers in different user

areas on a single host, although they utilise far less resources

compared to virtual machines.

Containerisation is exemplified by the Docker container.

Using Docker, a container-based technology, application

development, deployment, and execution can be done easily

and automatically. As seen in 0 1 [32], Docker Engine allows

for the creation of isolated environments, or containers, that

are comparable to virtual machines (VMs) but lack their own

operating system (OS). As a result, all containers share the

same OS kernel. In contrast, a container contains the

1137

executable and any necessary library files to launch a

programme. On Linux, the operating system itself serves as

the Docker Host, while on non-Linux machines, a separate

installation of the Docker Host is required [32]. In comparison

to the real virtual machine (VM), this Docker host uses very

less resources. This Docker Host is known as the default by

Docker as it is pre-installed and needed to operate the Docker

Engine.

Figure 1. Docker containers on linux host [32]

With Docker Swarm, an orchestration and cluster

organization tool, several Docker nodes may be linked and

managed as one virtual system. As an improvement on Docker

container technology, it allows for the creation of distributed

systems that may be deployed across many clouds. It improves

upon conventional container technology and makes the

container-based system trustworthy by adding capabilities like

scalability, security, dependability, maintainability, and

availability to the Swarm cluster.

4. PROBLEM FORMULATION

The goal of the suggested scheduler is to maximise the use

of each worker node's resources by optimising container
placement. Assumed throughout this article are the various
resources—memory, CPU, bandwidth, and I/O—that a
container needs to perform its services. The resource needs of
a container also display temporal dynamism due to the fact that
the services and workloads contained within it are subject to
change. Therefore, we formulate the resource necessities of
time. Mean 𝑟𝑖

𝑘(𝑡) as the kth reserve obligation of the ith
ampule at time t. Let 𝑥𝑖,𝑗 = {0, 1} be the container placement
indicator. If 𝑥𝑖,𝑗 = 1, is located in the jth node. Signify 𝑊𝑗

𝑘 as
kth node. Let 𝒞, 𝒩, 𝒦 be the set of containers, work nodes,
and the capitals, correspondingly. The use ratio of the k
reserve in the jth work node can be spoken as

𝑢𝑗
𝑘(𝑡) =

∑ 𝑥𝑖,𝑗𝑟𝑖
𝑘(𝑡)𝑖∈𝐶

𝑊𝑗
𝑘

 (1)

Then, the use ratio of the jth work node is 𝑚𝑎𝑥𝑘𝐾𝑢𝑗
𝑘(𝑡). The

highest resource utilization amongst all the work nodes can be

recognized as

𝜗 = 𝑢𝑗
𝑘(𝑡)𝑗∈𝑁 𝑘∈𝑁

max 𝑚𝑎𝑥 (2)

Since our proposed scheduler is to exploit the obtainable
resources in node, the future scheduling problematic can be
expressed as

𝑣𝑥𝑖,𝑗
𝑚𝑎𝑥 (3)

S.t ∑ 𝑥𝑖,𝑗 = 1; ∀𝑖 ∈ 𝐶𝑗 (4)

𝑥𝑖,𝑗 : A binary container placement indicator. If 𝑥𝑖,𝑗 =1, it

means container i is placed on node j; otherwise, it is not.

𝑢𝑗
𝑘(𝑡) ≤ 1, ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝑁 (5)

The utilization of any resource on any worker node must not

exceed the capacity of that resource (i.e., utilization should be
less than or equal to 1):

Each container must be located in a single worker node
according to the requirement in Eq. (4), and no worker
resource can have a utilisation ratio greater than one according
to the need in Eq. (5).

5. PROPOSED METHODOLOGY

5.1 Initial container placement

The command "docker run" is used by clients to create a

new container and utilise a SwarmKit cluster. Consequently,

selecting a worker node to serve as the container's host is the

cluster's primary responsibility. As mentioned in Section 3, the

default technique for placing containers does not account for

dynamic resource contention. This is due to the fact that

SwarmKit's management features are lacking an instrument to

track the present state of the available resource. Conversely,

the issue is handled by the suggested model with the

introduction of the Modified LSM-Tree model.

Running on managers, Procedure 1 assigns a task to a exact

worker.

Algorithm 1. Container Placement on Administrators

1: Maintains a known features service set {KS}

2: {Wcand}=All running Wid

3: Function SID

4: for wid∈{Wcand} do

5: if ! Filters(wid) then

6: Remove wid from {Wcand}

7: if SID∈{KS} then

8: SDOM=DOM(SID)

9: Sort Wcand according to rSDOM

10: Return wid with highest rSDOM

11: else

12: Sort Pi i= =0 q ri/m for wid ∈Wcand

13: Return wid with highest average available resource

To start, every manager keeps track of dockers' traits,

including memory, CPU, bandwidth, and block i/o

consumption, in a known service set (line 1). All running

workers make up the initial candidate worker pool (line 2).

Whenever a new container beginning task happens, the

method reduces the candidate work set, W_c, and (lines 3-6)

using all the filters that the user has chosen. After that, it

verifies on line 7 if the container is associated with a

recognised service. If so, the dominating resource property of

the container will be stored in the S_dom parameter (line 8).

We think about memory, CPU, bandwidth, and block i/o in the

approach we're proposing. After sorting the W_c and set by

1138

dominating resource attribute, the highest available resource

in the S_dom type will be returned, as indicated by the W_id

with the highest value (lines 9-10). The W_id with the average

greatest obtainable resource will be selected (lines 11-13) if

the service is not discovered in {KS}.

5.2 Data collection and analysis

In order to evaluate the architecture, we will utilise two

applications. One app will represent data collection on a

fraction of the nodes, while the other will be placed on an

Apache Spark cluster to analyse the data. System performance

metrics, such the time it takes to process certain data, may also

be retrieved through the applications.

In order to acquire data, a Node.js app sends a PUT request

to the HDFS API along with the data's content, simulating data

collection; this causes a file to be created within a certain time

frame. Only the last three nodes of the cluster are used to

deploy the data gathering application using a Compose file. As

a result of the trial, we have a collection of sample documents

that the programme can read and modify online; this allows us

to change the document's size or content without updating and

redelivering the application.

Examine the information. In order to examine the data, a

Python programme is employed. The application checks

recently created files for each phrase and counts the number of

times it appears per second. Using the Apache Spark engine's

given sample application as a starting point, the software has

undergone minimal changes.

For every phrase that appears, the method use the standard

paradigm to produce a list of (Key, Charge) pairs of the form

(Word, 1), as mentioned before. To get the total number of

times each word appears, the Reduce step is applied to every

group. A single function, Reduce by key, handles the

remaining two phases. Pseudocode demonstrating the method

with an example Map Reduce solution application is shown

below.

𝐶𝑜𝑢𝑛𝑡
≔ 𝐿𝑖𝑛𝑒𝑠. 𝐹𝑙𝑎𝑡𝑀𝑎𝑝(𝑙𝑎𝑚𝑏𝑑𝑎(𝑙𝑖𝑛𝑒){𝑙𝑖𝑛𝑒. 𝑠𝑝𝑙𝑖𝑡(′′′′)})

. 𝑚𝑎𝑝(𝑙𝑎𝑚𝑏𝑑𝑎(𝑤𝑜𝑟𝑑){(𝑤𝑜𝑟𝑑, 1)}).
𝑟𝑒𝑑𝑢𝑐𝑒𝐵𝑦𝐾𝑒𝑦(𝑙𝑎𝑚𝑏𝑑𝑎(𝑉𝑎𝑙, 𝑎𝑐𝑐){𝑉𝑎𝑙

+ 𝑎𝑐𝑐})𝑐𝑜𝑢𝑛𝑡𝑠. 𝑝𝑝𝑟𝑖𝑛𝑡()

Use the spark submit command in the Spark CLI to

distribute the application among the workers in the cluster

after it has been sent among the master nod.

5.3 Monitoring

In order to facilitate system monitoring, a three-component

monitoring stack based on Prometheus is installed on the

cluster. Free and open-source, Prometheus is an alarm and

monitoring system that provides many interfaces to other

platforms and makes use of a time series database.

Technologies such as Docker, HAProxy, and the ELK stack

(Elastic search, Log stash, and Kibana) are examples of this

type. Furthermore, the stack incorporates many "exporters"

that collect metrics and expose them for Prometheus to collect,

in line with Prometheus' operational philosophy of data

extraction from multiple services.

Data visualisation and analysis tool Grafana is well-liked.

The web-based programme Grafana allows users to build

dashboards for data tracking and analysis. This solution was

selected for a use case that needed to follow Docker containers

on many Linux systems since it required little configuration.

This led to the use of an almost complete implementation for

Raspberry Pis. A bespoke Compose file with Docker

containers is utilised to deploy the stack to the Docker cluster.

In the final configuration, one of the nodes gets Grafana and

Prometheus installed, while each Raspberry Pi gets Advisor

and Node exporters loaded.

5.3.1 Modified log-structure merge tree

One data structure that dynamically optimises memory and

disc access for fast writing is the MLSM tree. The LSM tree

typically reads, writes, and inserts data into memory using a

tree-based indexing method such an AVL or Red-black tree.

So, before flushing the data structure into disc, sorting done

beforehand. Upon disc flushing, the data structure transforms

into a sorted string table, or SSTable, a key-value sorted file.

Every time a client requested an insert or delete, the indexing

algorithm sorted the keys, therefore this file is flushed in a

sorted state. On the other hand, the LSM tree's query

performance is one of its drawbacks. With a sparse index for

each SSTable on the disc, we can search for a certain key in

Olog(n) time. On the other hand, since LSM trees are log-

based, the disk's SSTables are automatically sorted in reverse

chronological order. Thus, a temporal complexity of O(n) and

undesirable client waiting time result from checking every file

to locate the client-requested key in the data structure.

Databases like Cassandra, HBase, Accumulo, and Google Big

Table typically display the LSM tree. The lengthy key query

period was, however, resolved by all of these databases by the

use of a bloom filter, a probabilistic data structure.

5.3.2 Probabilistic data structures

Database query speed may be optimised with the use of

probabilistic data structures, which are low-memory-cost bit

arrays. Hyperloglog, cuckoo, bloom, and KD-tree filters are

just a few examples of the many data structures available.

When these data constructions are positioned strategically in

high ingestion schemes, they can save expensive disc searches,

which is a huge boon to the system. One simple way to

drastically reduce an application's throughput from hundreds

of thousands to a few thousand operations per second is to

have it search up an element in a huge database on disc. The

primary focus of this research is on set membership analysis

using cuckoo and bloom filters. Due to the following

similarities in construction, these two data structures are

structurally similar: (1) both employ hash functions to produce

indexes, and (2) both put keys into their slots. converting keys

to bits to maximise memory consumption and reading speed

was (2) (3) are based on probability since the false positive rate

is a measure of the maximum allowed hash collision inside the

keys. The study's probabilistic data structures are summarised

in Table 1, along with their key distinctions.

Table 1. Bloom and cuckoo filter contrast

Filters
Hash

Number

Operation

List

Time

Complexity

 -Deletions

Cuckoo

Filter
2 -Insertions O(1)

 -Confirmations

Bloom Filter Optimal k -Insertions O(1)

 -Confirmations

1139

5.3.3 Bloom filters

To determine if an element is a member of a set,

probabilistic data structures called bloom filters are employed.

The possibility of false positives—a situation in which the real

element is not in the set but the result indicates otherwise—

makes this data structure probabilistic. The building blocks of

a bloom filter are hash functions, bits, and an array of bits that

start off as zeros. Only two procedures are supported by bloom

filters:

While changing the relevant bits from zero to one, new

items are added and hashed several times.

The element is probably part of the set if it has been hashed

and all of its matching bit values are one. Because bloom filters

do not produce false negatives, if this is not the case, then the

element in question does not belong to the set.

Because they do not save keys on the array, bloom filters

significantly improve performance for large-scale database

look-ups and significantly reduce storage requirements.

Having said that, the false positive rate of bloom filters is

fixed. Giving the incorrect impression that an item is part of

the set is therefore possible (with a probability greater than

zero). In addition, once an object is put to a bloom filter, it

cannot be removed. Consequently, the false positive rate rises

in proportion to the number of data input. The suggested

optimisation technique determines the ideal hash function sum

k based on the bit array size and insertion sum, which in turn

is determined by the amount of false positive rate acceptance

and the length of the bit array, which is m bits.

𝐹𝑃𝑅 = (1 − (1 −
1

𝑚
)

𝑘𝑛

)

𝑘

≈ (1 − 𝑒−
𝑘𝑛
𝑚)

𝑘

 (6)

𝑔 = 𝐼𝑛(𝑓) = 𝑘𝐼𝑛(1 − 𝑝) = 𝑘𝐼𝑛(1 − 𝑒−
𝑘𝑛
𝑚) (7)

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑘 =
𝑚

𝑛
𝐶𝐶𝑅𝐼𝑀𝐸𝐼𝑛(2) (8)

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑚 = −𝐶𝐶𝑅𝐼𝑀𝐸
𝑛𝐼𝑛(𝐹𝑃𝑅)

𝐼𝑛(𝑠)2
 (9)

In Eq. (6) the false positive rate of bloom filters is designed.

The likelihood of a bit being zero is 1 −
1

𝑚
, with "m" standing

for the filter's bit array size. A bloom filter, on the other hand,

can accommodate anything from one to k hash functions and

n items. Hence, the likelihood needs to be increased to "k"

times "n". As a result, the "k" number of hash functions raises

the chance of a non-zero bit to the level of the false positive

probability. (1 − (1 − (
1

𝑚
))

𝑘𝑛

)

𝑘

. The ideal "k" number of

hash functions is determined using Eqs. (7) and (8). A

logarithmic expression is created from Eq. (7) in order to

compute its derivative. To get the best "k" number of hash

function expression, as indicated by Eq. (8), one can only take

the derivative of Eq. (7). The ideal size of a bloom filter's bit

array is determined by Eq. (9). Therefore, the conversion of

the variable "k" in Eq. (6) by the expression in Eq. (8) yields

the ideal bit array size. The ideal bit array and insertion value

that are covered below are found using the suggested

CCRIME.

A. An overview of RIME

Su et al. [33] introduced RIME, an innovative and effective

optimisation approach. The primary physical effect it mimics

is the freezing of airborne, noncondensed water vapour upon

contact with cold surfaces, such as branches or objects. First,

rime ice generation; second, soft RIME search strategy; third,

hard RIME puncture mechanism; and last, greedy selection

mechanism for the best answer make up the four primary steps

of the RIME algorithm. During the first phase of rime

generation, the RIME algorithm treats every search agent in

the population as an agent. The algorithm's starting population

consists of all RIME agents combined. Eq. (10) is used to

initialise each agent in the population inside a specific search

space:

𝑅𝑖 = 𝐵𝑚𝑖𝑛 + 𝑟𝑖 × (𝐵𝑚𝑎𝑥 − 𝐵𝑚𝑖𝑛) (10)

where, 𝑅𝑖 represents each search agent, 𝐵𝑚𝑎𝑥 and 𝐵𝑚𝑖𝑛

represent the boundaries, correspondingly, and 𝑟𝑖 is a pseudo-

random sequence among [0, 1].

A key tenet of the soft RIME search technique is the idea

that particles in the soft rime would trap and condense any free

particles that approach it, altering the stability of the soft rime

in the process. If there is a large enough gap between the

particles and the soft rime particles, the latter will evade

capture and remain free. Over time, the soft rime will

gradually expand its coverage area and catch a higher

probability of particles as it condenses and collects free

particles. Environmental variables, however, will cause the

soft rime's covering area to eventually reach a constant state

rather than an infinite growth. The following is the precise

mathematical model that was developed by modelling the

rules of motion for free particles and soft rime:

𝑅𝑖𝑗
𝑛𝑒𝑤 = 𝑅𝑏𝑒𝑠𝑡,𝑗 + 𝑅𝑓

× (ℎ × (𝐵max (𝑖,𝑗) − 𝐵min (𝑖,𝑗))

+ 𝐵min (𝑖,𝑗)), 𝑟2 < 𝐸

(11)

𝑅𝑓 = 𝑟1 × 𝑐𝑜𝑠𝜃 × 𝛽 (12)

𝜃 = 𝜋.
𝑡

10. 𝑇
 (13)

𝛽 = 1 − [
𝑤. 𝑡

𝑇
] /𝑤 (14)

𝐸 = √(𝑡/𝑇) (15)

where, 𝑅𝑖𝑗
𝑛𝑒𝑤 is the site of the free moving besides 𝑅𝑏𝑒𝑠𝑡,𝑗 is the

best RIME agent in the RIME population. 𝑟1 has a value -1 and

1, chosen at random. As the algorithm iterates, cos q will

change. b controls the convergence of the algorithm and

reflects the ambient elements in rime. It changes as the

programme iterates. The distance between free particles is

represented by h, which is a randomly assigned value between

0 and 1. Here, t is the current iteration count and T is the

maximum iteration limit of the method. The increment of w

determines the step function's segment count; 5 is the default.

The chance of capturing free particles is denoted by E. As the

algorithm runs more iterations, it will vary and typically show

an upward trend.
The hard rime puncture mechanism mostly mimics the way

particles move in environments with greater winds; when
particles move in the same direction of growth, a cross
phenomena known as hard rime puncture is easily possible
between them. Also, the frequency of hard rime punctures

1140

increases in direct proportion to the hard rime's growth. In
order to avoid being stuck in local optima, rime agents can
trade particles and update each other's positions using the hard
rime puncture mechanism, which also improves the
algorithm's convergence capabilities. The hard RIME
puncture strategy's mathematical model looks like this:

𝑅𝑖𝑗
𝑛𝑒𝑤 = 𝑅𝑏𝑒𝑠𝑡,𝑗 , 𝑟3 < 𝐹𝑛𝑜𝑟𝑚𝑟(𝑆𝑖) (16)

where, 𝑅𝑖𝑗

𝑛𝑒𝑤 is the jth particle of the finest rime agent in the
populace and 𝑅𝑏𝑒𝑠𝑡,𝑗 new is the updated particle location. The
fitness charge of the current agent is regularized to produce
𝐹𝑛𝑜𝑟𝑚𝑟(𝑆𝑖) , which characterizes the likelihood that rime
puncture. A sum at random among [0, 1] makes up 𝑟3.

The horizontal crossing operation often requires the
employment of two separate rime agents. The capacity for
exploration is greatly enhanced and algorithm convergence is
accelerated by the ability of separate agents to each other
through the horizontal crossover search. Given that the parent
agents xi and xj may be characterised by Eqs. (17) and (18),
let's pretend that they undergo a horizontal crossover
operation:

𝑀𝑆𝑖
𝑛 = 𝜀1 × 𝑥𝑖𝑛 + (1 − 𝜀1) × 𝑥𝑗𝑛

+𝐶1 × (𝑥𝑖𝑛 − 𝑥𝑗𝑛)
(17)

𝑀𝑆𝑗
𝑛 = 𝜀2 × 𝑥𝑗𝑛 + (1 − 𝜀2) × 𝑥𝑖𝑛

+𝐶2 × (𝑥𝑗𝑛 − 𝑥𝑖𝑛)
(10)

where, ε1 and 𝜀2 , which are random variables distributed

uniformly throughout the interval [0, 1], are used in the

provided equation. Furthermore, both 𝑐1 and 𝑐2 follow a

normal distribution on the range [-1, 1]. For agents ith and jth,

the nth dimension is denoted by 𝑥𝑖𝑛 and 𝑥𝑗𝑛 , respectively.

Through the horizontal crisscross xj, the nth position vectors'

offspring, represented by 𝑀𝑆𝑗
𝑛, are created.

Two discrete site vectors of agents in a population are

manipulated via the vertical crossover operator, a

computational method. While reducing the number of changes

to the normally searched position vectors, this method may

allow some position vectors that are limited to a local optimum

to continue searching. Because some position vectors tend to

stagnate in the later stages of exploration, ants often reach a

local optimum. By utilising a vertical crisscross search

approach, agents can learn position vectors from each other

and improve their ability to avoid local optimums. Assuming

agent i's mth and nth position vectors undergo the vertical

crossover process as indicated in Eq. (19):

𝑀𝑆𝑖
𝑚 = 𝜀 × 𝑥𝑖𝑚 + (1 − 𝜀) × 𝑥𝑖𝑛 (19)

where, 𝜀 characterizes a random sum among [0, 1] and 𝑀𝑆𝑖
𝑚

signifies the mth site vector of the offspring produced by

crisscross operation among the mth agent nth site vectors of

agent i.

No more study or analysis was carried out on the

performance of RIME as its initial research just suggested an

optimisation strategy by modelling the changing shape of

rime. Additionally, this paper's benchmark function studies

have shown that it has a significant advantage in convergence

and still has plenty of space for development. Furthermore, our

experimental results show that it outperforms the general

traditional algorithms when it comes to discovering high-

quality persons to solve real-world challenges, and this is in

relation to the feature selection problem. This paper associated

RIME with other similar algorithms from various perspectives

in order to learn more about its performance and find ways to

make it better. It found that RIME could still do better in terms

of the quality of the solutions it found and that its search

capabilities could use some work to prevent it from reaching

local optima.

In light of the foregoing, this work concluded from its

examination of horizontal and vertical cross-search methods

that it may significantly boost algorithm performance;

furthermore, other research has employed this technique to

improve the efficiency of certain optimisation algorithms.

Motivated by this, this study improved the original RIME by

including horizontal and vertical crossover search algorithms

to increase its search capabilities, improve the quality of the

solutions obtained, and prevent it from falling into local

optima throughout the search process. Following the hard

RIME puncture mechanism, the horizontal and vertical

crossover search techniques primarily take action in the

enhancement phase. Through enhancing RIME's search skills,

CCRIME is able to acquire better solutions and enhance its

optimisation capabilities in real-world scenarios.

B. Cuckoo filters

Since its introduction in 2014, cuckoo filters—a type of

probabilistic data structure—have found extensive use in

many network applications. To determine if an element is

"probably" or "definitely" part of a set, cuckoo filters are

utilised, similar to bloom filters. Bit arrays, slots, and buckets

make up cuckoo filters. The bird that lays its eggs in a different

nest and then, after a chick emerges, plucks the other eggs or

chicks out of the nest is called a cuckoo.

Because cuckoo filters only utilise two hash functions,

whereas bloom filters employ k, cuckoo filters provide space

and temporal complexity that is comparable to that of bloom

filters but with less hashing cost. But the big perk of cuckoo

filters is that they can remove objects from the membership set

thanks to their two-dimensional and capabilities. This has the

potential to enhance databases like HBase, which undergo

continuous SS Table merging and compacting. A load

parameter in a cuckoo filter indicates what fraction of the

filter's slots are now in use.

Half of the buckets in a cuckoo filter are already in use when

the load is 75 percent. On the other hand, studies have shown

that cuckoo filters start producing more false negatives as the

load factor increases. The system was able to avoid producing

false negatives while verifying the presence of keys during our

experiments with a load factor below 65%. The load factor

must be considered in order to determine if resizing or other

actions are necessary to manage the filters at level.

𝐼1(𝑥) = ℎ𝑎𝑠ℎ(𝑥) (20)

𝐼2 = 𝐼1(𝑥)⨁ℎ𝑎𝑠ℎ(𝑥′𝑠𝑓𝑖𝑛𝑔𝑒𝑟𝑝𝑟𝑖𝑛𝑡) (21)

Eqs. (20) and (21) determine the index of the buckets that

will be used to enter the fingerprint. By inputting the key into

a hash function, the first function determines the index of the

first bucket. On the other hand, the second index is determined

by first computing the fingerprint hash value and then

performing an XOR operation on the index of bucket. A new

cuckoo filter cannot be generated until the specified capacity

is matched with indexes one and two.

1141

5.4 Migrating a container

All workers in a Swarmkit cluster compete for the same

resources. One component of the suggested paradigm, the

container monitor, keeps track of how much power each

worker's containers use. Additionally, the worker maintains

self-tracking of available resources. It notifies managers with

an alert message that specifies the kind of bottleneck and

expensive container of that kind if it detects that a draining

resource becomes a bottleneck. Managers are tasked for

assigning containers to workers when they get alert messages

and then killing them on those workers to free up resources.

6. USING THE DOCKER PLATFORM TO CREATE A

VIRTUAL SITUATION

Docker is a free and open-source software stage for Linux

container virtualization. This programme requires a certain

version of the Linux kernel—specifically, 3.10 or later—and

employs operating system-level virtualization, as indicated

before. Docker allows processes to be executed in a contained

setting. Operating in Docker is like putting a process in a

vacuum: all it sees are its own offspring. Even though it shares

the same operating system as other processes, this one can't

see anything outside of its own little bubble, including other

processes, files, and the entire system. The process's container

is the bare minimum of an environment in which it executes.

The container serves as a standalone OS, complete with its

own file system, network, and peripherals. By mounting

specific folders and files, sharing a network, and opening

required ports, the container can communicate with the host

containers.

You can't make a docker container without images. The

image serves as a blueprint, pre-installing the operating system

and all required apps. Local storage or a dedicated public

registry (dockerhub) can house images. The Dockerfile uses a

specific syntax to declaratively describe the image template.

What follows is a sample image template with Ubuntu

installed and the OpenALPR software pre-loaded.

𝐹𝑅𝑂𝑀 𝑢𝑏𝑢𝑛𝑡𝑢: 16.04
𝑅𝑈𝑁 𝑎𝑝𝑡 − 𝑔𝑒𝑡 𝑢𝑝𝑑𝑎𝑡𝑒
&& 𝑎𝑝𝑡 − 𝑔𝑒𝑡 𝑖𝑛𝑠𝑡𝑎𝑙𝑙 − 𝑦
𝑊𝑂𝑅𝐾𝐷𝐼𝑅 /𝑑𝑎𝑡𝑎
𝐸𝑁𝑇𝑅𝑌𝑃𝑂𝐼𝑁𝑇 ["𝑎𝑙𝑝𝑟"]

Identify vehicle licence plates with the help of OpenALPR,

a free piece of C++ software.

The command "docker build" is required to generate a

picture from the blueprint. Consequently, one has a fully

operational environment that can be deployed on an endless

amount of containers. Here are the outcomes achieved using

the container-launched software OpenALPR.

𝑑𝑜𝑐𝑘𝑒𝑟 𝑏𝑢𝑖𝑙𝑑 − 𝑡 𝑜𝑝𝑒𝑛𝑎𝑙𝑝𝑟 ./
𝑤𝑔𝑒𝑡 ℎ𝑡𝑡𝑝://𝑝𝑙𝑎𝑡𝑒𝑠. 𝑜𝑝𝑒𝑛𝑎𝑙𝑝𝑟. 𝑐𝑜𝑚/ℎ786𝑝𝑜𝑗. 𝑗𝑝𝑔
𝑑𝑜𝑐𝑘𝑒𝑟 𝑟𝑢𝑛 − 𝑖 − 𝑣 $(𝑝𝑤𝑑):/𝑑𝑎𝑡𝑎: 𝑟𝑜 𝑜𝑝𝑒𝑛𝑎𝑙𝑝𝑟

− 𝑐 𝑒𝑢 ℎ786𝑝𝑜𝑗. 𝑗𝑝𝑔
− 𝐻786𝑃0𝐽 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒: 89.8356
− 𝐻786𝑃𝑂𝐽 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒: 87.6114
− 𝐻𝑁786𝑃0𝐽 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒: 85.2152
− 𝐻2786𝑃0𝐽 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒: 85.0755
− 𝐻3786𝑃0𝐽 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒: 84.8286

− 𝐻𝑆786𝑃0𝐽 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒: 84.7763
− 𝐻786𝑃𝑄𝐽 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒: 84.7612

6.1 Combining IoT devices in the cluster

Keep in mind that Docker has a feature called "swarm" that

allows you to group together virtual or real computers. Users

are able to simulate scenarios when many devices are

connected to the same network by utilising this mode.

The prototype must be tested using Docker Swarm. The

Docker Machine must be used to construct nodes in order to

do this. Virtual servers may be transformed into Docker nodes

with the help of Docker Machine. Docker Machine currently

has twelve drivers available for different cloud platforms.

These include OpenStack, Amazon Elastic Compute Cloud,

Google Cloud Platform, VirtualBox, and Amazon EC2. Using

the following command sequence, three virtual nodes were

used for testing.

docker−𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑐𝑟𝑒𝑎𝑡𝑒 − 𝑑 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 − 𝑏𝑜𝑥 𝑛𝑜𝑑𝑒1

docker−𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑐𝑟𝑒𝑎𝑡𝑒 − 𝑑 𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑏𝑜𝑥 𝑛𝑜𝑑𝑒2

docker−𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑐𝑟𝑒𝑎𝑡𝑒 − 𝑑 𝑣𝑖𝑟𝑡𝑢𝑎𝑙𝑏𝑜𝑥 𝑛𝑜𝑑𝑒3

The succeeding stage is to construct the network and specify

the roles for the newly formed nodes: 192.168.99.100 docker

swarm init --advertise-addr.

Swarm started: wlx5xrrsplv4enim4c1xbmcuo, the current

node, manager.

docker network build 192.168.1.0/24 --subnet --driver

overlay Encrypted mesh network option

One can construct and start services after forming a

«swarm» cluster. Two photos must be made in order to test.

The code of the broker will be in the first image, and the code

of the agent will be in the second. The services and deployment

rules will be described in the configuration file, which must be

created next. Networks section is used to merge all services

into a single network.

The docker-compose.yml will contain the subsequent rules:

1). A node executing the management function must have

the broker service installed.

2). Nodes executing the worker function must have the

service agent installed.

3). There must be two instances of the service "agent"

function. Below is the code of the broker:

𝑣𝑒𝑟𝑠𝑖𝑜𝑛: "3"
𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠:
𝑖𝑚𝑎𝑔𝑒: 𝑠𝑒𝑟𝑔𝑒𝑦𝑙𝑒𝑡𝑖/𝑏𝑟𝑜𝑘𝑒𝑟
− 54589: 54589
𝑑𝑒𝑝𝑙𝑜𝑦:
𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: [𝑛𝑜𝑑𝑒. 𝑟𝑜𝑙𝑒 == 𝑚𝑎𝑛𝑎𝑔𝑒𝑟]
𝑖𝑚𝑎𝑔𝑒: 𝑠𝑒𝑟𝑔𝑒𝑦𝑙𝑒𝑡𝑖/𝑎𝑔𝑒𝑛𝑡
𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠: 2
𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: [𝑛𝑜𝑑𝑒. 𝑟𝑜𝑙𝑒 == 𝑤𝑜𝑟𝑘𝑒𝑟]
𝑑𝑒𝑓𝑎𝑢𝑙𝑡:
𝑛𝑎𝑚𝑒: 𝑚𝑒𝑠ℎ − 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

7. RESULTS AND DISCUSSION

In this section, the presentation of MLSM is tested with

existing techniques such as BWUJS [21], CHROA [29] and

HGDGEO [30], where all models are implemented and results

are averaged. The metrics such as resource utilization, total

1142

energy consumption, makespan, degree of imbalance and

priority are used for proposed models’ effectiveness. Figures

2-6 presents the visual representation of various models in

terms of different metrics.

Figure 2. Graphical description of projected model in terms

of resource utilization

In Figure 2, the graphical representation of the projected

model in terms of resource utilization is illustrated. In the

analysis involving 200 tasks, the BWUJS model achieved a

resource utilization of 18,972, while the CHROA model

reached 15,101, the HGDGEO model reached 17,995, and the

MLSM model reached 12,739, respectively.

For 600 tasks, the BWUJS model reached a resource

utilization of 21,419, the CHROA model reached 17,047, the

HGDGEO model reached 19,323, and the MLSM model

reached 15,538, respectively.

For 800 tasks, the BWUJS model reached a resource

utilization of 23,874, the CHROA model reached 19,410, the

HGDGEO model reached 21,567, and the MLSM model

reached 17,688, respectively.

Finally, for 1000 tasks, the BWUJS model achieved a

resource utilization of 24,404, the CHROA model reached

21,265, the HGDGEO model reached 23,193, and the MLSM

model reached 20,225, respectively.

Figure 3 signifies the visual representation of various

models. In the analysis of 200 tasks, the BWUJS model

reached a total energy consumption of 10.70, the CHROA

model reached 10.05, the HGDGEO model reached 8.55, and

the MLSM model reached a consumption of 6.84,

respectively.

Figure 3. Visual representation of various models

For 400 tasks, the BWUJS model reached a total energy

consumption of 13.82, the CHROA model reached 10.71, the

HGDGEO model reached 8.94, and the MLSM model reached

a consumption of 8.03, respectively.

For 600 tasks, the BWUJS model reached a total energy

consumption of 17.65, the CHROA model reached 15.28, the

HGDGEO model reached 12.02, and the MLSM model

reached a consumption of 10.07, respectively.

For 800 tasks, the BWUJS model reached a total energy

consumption of 19.94, the CHROA model reached 18.91, the

HGDGEO model reached 15.26, and the MLSM model

reached a consumption of 11.12, respectively.

Finally, for 1000 tasks, the BWUJS model reached a total

energy consumption of 21.28, the CHROA model reached

19.56, the HGDGEO model reached 15.82, and the MLSM

model reached a consumption of 13.84, respectively.

Figure 4 signifies the graphical representation of various

models. In the analysis of 200 tasks, the BWUJS model

reached a priority value of 39.04, the CHROA model reached

40.28, the HGDGEO model reached 52.75, and the MLSM

model reached a consumption of 61.36, respectively.

For 400 tasks, the BWUJS model reached a priority of

46.45, the CHROA model reached 47.65, the HGDGEO

model reached 57.35, and the MLSM model reached a

consumption of 66.96, respectively.

For 600 tasks, the BWUJS model reached a priority of

51.24, the CHROA model reached 51.72, the HGDGEO

model reached 61.23, and the MLSM model reached a

consumption of 69.59, respectively.

For 800 tasks, the BWUJS model reached a priority of

54.21, the CHROA model reached 56.19, the HGDGEO

model reached 65.75, and the MLSM model reached a

consumption of 75.27, respectively.

Finally, for 1000 tasks, the BWUJS model reached a priority

of 60.36, the CHROA model reached 60.48, the HGDGEO

model reached 67.85, and the MLSM model reached a

consumption of 77.43, respectively.

Figure 4. Graphical description of various models

The visual description of various models in terms of

imbalance is indicated in Figure 5. When analyzing 200 tasks,

the BWUJS model achieved a degree of imbalance of 8.742,

the CHROA model reached 6.075, the HGDGEO model

reached 5.720, and the MLSM model reached 3.570,

respectively.

For 400 tasks, the BWUJS, CHROA, HGDGEO, and

MLSM models reached degrees of imbalance of 10.874,

8.734, 5.830, and 4.160, respectively.

Subsequently, for 600 tasks, the MLSM model achieved a

degree of imbalance of 4.740, while the BWUJS and CHROA

models reached degrees of imbalance of 10.720 and 6.600,

respectively.

For 800 tasks, the BWUJS model achieved a degree of

1143

imbalance of 15.595, the CHROA model reached 13.460, the

HGDGEO model reached 8.830, and the MLSM model

reached 5.390, respectively.

Finally, for 1000 tasks, the BWUJS model reached a degree

of imbalance of 15.813, the CHROA model reached 14.830,

the HGDGEO model reached 8.350, and the MLSM model

reached 6.110, respectively.

Figure 5. Visual description of different models in terms of

degree of imbalance

The efficiency of the suggested model is described in terms

of makespan in Figure 6. The BWUJS model achieved a

makespan of 2.938 in the analysis of 200 tasks, followed by

the CHROA model at 1.764, 1.431, and the MLSM model at

1.136, in that order.

Figure 6. Description of anticipated model’s efficiency in

terms of makespan

Next, for 400 tasks, the models from BWUJS and CHROA

reached makespans of 2.935 and 2.567, 2.134, respectively,

and lastly, the MLSM model reached a makespan of 1.742.

After that, for 600 tasks, the BWUJS model achieved a

makespan of 7.937, the CHROA model reached makespans of

5.482 and 4.390, and the MLSM model, in turn, reached a

makespan of 3.589.

Subsequently, for 800 tasks, the BWUJS model achieved a

makespan of 9.942, the CHROA model reached makespans of

8.610 and 6.492, and the MLSM model achieved a makespan

of 4.571.

Following that, for 1000 tasks, the BWUJS model achieved

a makespan of 13.945, the CHROA model reached makespans

of 11.490 and 8.481, and the MLSM model, in turn, reached a

makespan of 5.896.

Finally, from the result evaluation, it is shown that the

proposed model achieved better performance than existing

techniques in terms of different metrics. The next section will

describe the contribution of the research work.

8. CONCLUSION

Currently, Internet of Things (IoT) technology has great

promise as a game-changing innovation. One of the several

issues that must be resolved in the current paradigm of human-

thing communication is the feasibility of software testing in

environments that are as near to real as possible. Docker and

container virtualization are well-suited to software

development and testing in the IoT domain, according to the

findings of the done study. Process isolation in containers

improves the security of IoT devices, opens up new

possibilities for virtual environment setups, enables more

extensive and comprehensive testing of developed software,

and decreases the number of faults.

A tiny containerisation clusters platform could be utilised

for a range of IoT edge data processing submissions. Container

orchestration and Docker's lightweight containerisation

capabilities enable a regulated and fault-tolerant architecture

for the edge. By continuously monitoring the state of the

services, Docker's swarm ensures great service availability,

which in turn enables the cluster to self-heal and scale. Even

when dealing with massive quantities of data, the overall cost

of the infrastructure may be kept down by using devices,

which have a negligible impact on energy besides cost while

still running complex infrastructures through clustering. The

constraints of our prototype system are a result of the Big Data

systems may be built on clusters of devices with very limited

networking besides processing resources, such Raspberry Pis.

The speed concerns experienced by the prototype approach

were a result of using HDFS as a streaming data source.

An analysis of the container placement approach in cluster

is presented in this research. Our goal is to assign containers

to worker nodes that have the most efficient use of their

resources. In this work, we provide MLSM, an approach that

takes into account the present state of each node's resources as

well as the different resource needs from containers.

Additionally, this research suggests a better technique that

combines cuckoo filters to increase space complexity, and it

employs cuckoo filters as a linked list. We ran comprehensive

tests using MLSM on the Docker Swarmkit platform.

Comparisons with the default Spread method reveal

substantial improvements in system stability and scalability.

In light of the findings of this study and further research,

cuckoo filters can be implemented into popular databases to

enhance their query performance in analytics-centric domains.

On average, including trade-offs into analytical systems won't

reduce efficiency, but it will enhance space complexity, reduce

the likelihood of false positives after deletions, and ensure

consistent merges between cuckoo filters with low load

factors.

REFERENCES

[1] Volk, M., Staegemann, D., Islam, A., Turowski, K.

(2022). Facing big data system architecture deployments:

Towards an automated approach using container

technologies for rapid prototyping. AIS eLibrary.

[2] Ahmad, I., AlFailakawi, M.G., AlMutawa, A., Alsalman,

1144

L. (2022). Container scheduling techniques: A survey

and assessment. Journal of King Saud University-

Computer and Information Sciences, 34(7): 3934-3947.

https://doi.org/10.1016/j.jksuci.2021.03.002

[3] Mailewa, A., Mengel, S., Gittner, L., Khan, H. (2022).

Mechanisms and techniques to enhance the security of

big data analytic framework with mongodb and Linux

containers. Array, 15: 100236.

https://doi.org/10.1016/j.array.2022.100236

[4] Acharya, J., Suthar, A.C. (2022). Container scheduling

algorithm in docker based cloud. Webology, 19(2).

[5] Hoang, V., Hung, L.H., Perez, D., Deng, H., Schooley,

R., Arumilli, N., Yeung, K.Y., Lloyd, W. (2023).

Container Profiler: Profiling resource utilization of

containerized big data pipelines. GigaScience, 12:

giad069. https://doi.org/10.1093/gigascience/giad069

[6] Pandey, B., Mishra, A.K., Yadav, A., Tiwari, D.,

Pandey, M.S. (2022). Virtualization using docker

container. In Emerging Real-World Applications of

Internet of Things. CRC Press, pp. 157-181.

[7] Vennu, V.K., Yepuru, S.R. (2022). A performance study

for autoscaling big data analytics containerized

applications: Scalability of apache spark on kubernetes.

Digitala Vetenskapliga Arkivet.

[8] Bentaleb, O., Belloum, A.S., Sebaa, A., El-Maouhab, A.

(2022). Containerization technologies: Taxonomies,

applications and challenges. The Journal of

Supercomputing, 78(1): 1144-1181.

https://doi.org/10.1007/s11227-021-03914-1

[9] Kaiser, S., Haq, M.S., Tosun, A.Ş., Korkmaz, T. (2022).

Container technologies for arm architecture: A

comprehensive survey of the state-of-the-art. IEEE

Access, 10: 84853-84881.

https://doi.org/10.1109/ACCESS.2022.3197151

[10] EG, R., Bhaarath, J., Naveen, Nirmal, R. (2022). Docker

container based crowd control analysis using dask

hadoop framework. In Proceedings of the 6th

International Conference on Information System and

Data Mining, pp. 7-12.

https://doi.org/10.1145/3546157.3546159

[11] Hernández-Rivas, A., Morales-Rocha, V., Ruiz-

Hernández, O. (2023). Big data platform as a service for

anomaly detection. In Data Analytics and Computational

Intelligence: Novel Models, Algorithms and

Applications. Cham: Springer Nature Switzerland, pp.

141-155. https://doi.org/10.1007/978-3-031-38325-0_7

[12] Petrosyan, D., Astsatryan, H. (2022). Serverless high-

performance computing over cloud. Cybernetics and

Information Technologies, 22(3): 82-92.

https://doi.org/10.2478/cait-2022-0029

[13] Malviya, A., Dwivedi, R.K. (2022). A comparative

analysis of container orchestration tools in cloud

computing. In 2022 9th International Conference on

Computing for Sustainable Global Development

(INDIACom), New Delhi, India, pp. 698-703.

https://doi.org/10.23919/INDIACom54597.2022.97631

71

[14] Chiang, R.C. (2023). Contention-aware container

placement strategy for docker swarm with machine

learning based clustering algorithms. Cluster

Computing, 26(1): 13-23.

https://doi.org/10.1007/s10586-020-03210-2

[15] Thirumalraj, A., Chandrashekar, R., kavin

Balasubramanian, P. (2024). Detection of pepper plant

leaf disease detection using tom and jerry algorithm with

MSTNet. In Machine Learning Techniques and Industry

Applications. IGI Global Scientific Publishing, pp. 143-

168. https://doi.org/10.4018/979-8-3693-5271-7.ch008

[16] Kim, B.S., Lee, S.H., Lee, Y.R., Park, Y.H., Jeong, J.

(2022). Design and implementation of cloud docker

application architecture based on machine learning in

container management for smart manufacturing. Applied

Sciences, 12(13): 6737.

https://doi.org/10.3390/app12136737

[17] Naik, N. (2022). Cloud-agnostic and lightweight big data

processing platform in multiple clouds using docker

swarm and terraform. In Advances in Computational

Intelligence Systems: Contributions Presented at the

20th UK Workshop on Computational Intelligence,

September 8-10, 2021, Aberystwyth, Wales, UK 20.

Springer International Publishing, pp. 519-531.

https://doi.org/10.1007/978-3-030-87094-2_46

[18] Penchalaiah, N., Al-Humaimeedy, A.S., Maashi, M.,

Babu, J.C., Khalaf, O.I., Aldhyani, T.H. (2022).

Clustered single-Board devices with docker container big

stream processing architecture. Computers, Materials &

Continua, 73(3): 5349.

https://doi.org/10.32604/cmc.2022.029639

[19] Thirumalraj, A., Anandhi, R.J., Revathi, V., Stephe, S.

(2024). Supply chain management using fermatean

fuzzy-based decision making with ISSOA. In

Convergence of Industry 4.0 and Supply Chain

Sustainability. IGI Global, pp. 296-318.

https://doi.org/10.4018/979-8-3693-1363-3.ch011

[20] Singh, N., Hamid, Y., Juneja, S., Srivastava, G., Dhiman,

G., Gadekallu, T.R., Shah, M.A. (2023). Load balancing

and service discovery using docker swarm for

microservice based big data applications. Journal of

Cloud Computing, 12(1): 4.

https://doi.org/10.1186/s13677-022-00358-7

[21] Vasantham, V.K., Donavalli, H. (2024). Multi-objective

hybrid optimized task scheduling in cloud computing

under big data perspective. Intelligent Decision

Technologies, 18(2): 1287-1303.

https://doi.org/10.3233/IDT-230717

[22] Yang, W. (2024). Analysis and application of big data

feature extraction based on improved k-means algorithm.

Scalable Computing: Practice and Experience, 25(1):

137-145. https://doi.org/10.12694/scpe.v25i1.2281

[23] Sun, D., Zhang, C., Gao, S., Buyya, R. (2024). An

adaptive load balancing strategy for stateful join operator

in skewed data stream environments. Future Generation

Computer Systems, 152: 138-151.

https://doi.org/10.1016/j.future.2023.11.002

[24] Ananthi, M., Gopal, A., Ramalakshmi, K., Mohan

Kumar, P. (2024). Gaussian adapted markov model with

overhauled fluctuation analysis-based big data streaming

model in cloud. Big Data, 12(1): 1-18.

https://doi.org/10.1089/big.2023.0035

[25] Singh, K.D., Singh, P.D. (2024). QoS‐enhanced load

balancing strategies for metaverse‐infused VR/AR in

engineering education 5.0. Computer Applications in

Engineering Education, 32(3): e22722.

https://doi.org/10.1002/cae.22722

[26] Sharma, A., Balasubramanian, V., Kamruzzaman, J.

(2024). A temporal deep Q learning for optimal load

balancing in software-defined networks. Sensors, 24(4):

1216. https://doi.org/10.3390/s24041216

1145

[27] Khan, M.I., Sharma, K. (2024). An efficient nature-

inspired optimization method for cloud load balancing

for enhanced resource utilization. International Journal

of Intelligent Systems and Applications in Engineering,

12(7s): 560-571.

[28] Liu, S., He, M., Wu, Z., Lu, P., Gu, W. (2024). Spatial-

temporal graph neural network traffic prediction-based

load balancing with reinforcement learning in cellular

networks. Information Fusion, 103: 102079.

https://doi.org/10.1016/j.inffus.2023.102079

[29] Aqeel, I., Khormi, I.M., Khan, S.B., Shuaib, M.,

Almusharraf, A., Alam, S., Alkhaldi, N.A. (2023). Load

balancing using artificial intelligence for cloud-enabled

internet of everything in healthcare domain. Sensors,

23(11): 5349. https://doi.org/10.3390/s23115349

[30] Jagadish Kumar, N., Balasubramanian, C. (2023).

Hybrid gradient descent golden eagle optimization

(HGDGEO) algorithm-based efficient heterogeneous

resource scheduling for big data processing on clouds.

Wireless Personal Communications, 129(2): 1175-1195.

https://doi.org/10.1007/s11277-023-10182-0

[31] Chen, M., Mao, S., Zhang, Y., Leung, V.C.M. (2014).

Big data analysis. In Big Data. Springer, pp. 51-58.

https://doi.org/10.1007/978-3-319-06245-7_5

[32] Naik, N. (2017). Docker container-based big data

processing system in multiple clouds for everyone. In

2017 IEEE International Systems Engineering

Symposium (ISSE), Vienna, Austria, pp. 1-7.

https://doi.org/10.1109/SysEng.2017.8088294

[33] Su, H., Zhao, D., Heidari, A.A., Liu, L., Zhang, X.,

Mafarja, M., Chen, H. (2023). RIME: A physics-based

optimization. Neurocomputing, 532: 183-214.

https://doi.org/10.1016/j.neucom.2023.02.010

1146

