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Accurate instance segmentation of fetal heart structures in ultrasound (USG) images 

remains challenging due to low image quality and the small size of cardiac components. 

This study evaluates the impact of various image enhancement techniques on segmentation 

performance using the Mask R-CNN framework. We investigated Histogram Equalization 

(HE), Adaptive Histogram Equalization (AHE), Contrast Limited Adaptive Histogram 

Equalization (CLAHE), Blind Deblurring (BD), and their combinations as preprocessing 

steps. A total of 176 clinically annotated ultrasound images were used, encompassing ten 

anatomical classes of the fetal heart. Twenty-two models were trained using different 

enhancement strategies and momentum values. Among them, Model 14 using combined 

AHE and CLAHE with a momentum of 0.9 achieved the best performance, with a mean 

Average Precision (mAP) of 0.3049 ± 0.0184, Intersection over Union (IoU) of 0.5887 ± 

0.0366, and Dice Similarity Coefficient (DCS) of 0.7032 ± 0.0382. These findings highlight 

the effectiveness of local contrast enhancement in segmenting small and complex 

anatomical regions. Integrating complementary enhancement techniques can significantly 

improve segmentation quality and support more accurate fetal cardiac assessment in clinical 

settings. 
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1. INTRODUCTION

Medical Image Instance Segmentation (MIIS) represents an 

advanced stage in medical image processing that aims to 

classify every pixel in an image and distinguish between 

individual objects belonging to the same class. This process 

produces precisely segmented outputs, each representing an 

anatomical structure, organ, or pathological region within the 

medical image [1, 2]. The segmentation results provide critical 

spatial information such as boundaries, locations, sizes, and 

counts of objects, serving as valuable references for medical 

diagnosis and clinical decision-making [3, 4]. 

However, MIIS remains technically challenging, with 

several factors negatively affecting segmentation accuracy. 

Key issues include the generally low quality of medical 

images, limited availability of annotated datasets, the diverse 

visual patterns of bodily structures in medical imaging, and 

various difficulties in image preprocessing stages [5-8]. 

Therefore, more innovative and flexible approaches are 

essential to produce more accurate and reliable segmentation 

outcomes. 

In recent decades, various techniques have been 

investigated for MIIS, ranging from classical image 

processing methods such as edge detection, thresholding, 

region growing, and clustering to more recent machine 

learning (ML) and deep learning (DL) approaches [9]. Among 

DL-based methods, Mask R-CNN has emerged as one of the

most effective frameworks for instance segmentation. As an

extension of Faster R-CNN, Mask R-CNN introduces an

additional branch to generate pixel-level masks for each

Region of Interest (RoI), thereby enabling precise detection

and delineation of individual anatomical instances, even in

cases involving overlap or indistinct boundaries [10].

Building upon the success of Convolutional Neural 

Network (CNN)-based methods, various models have been 

proposed to enhance the performance of MIIS [11]. A key 

advantage of CNNs is their capability to extract complex 

features directly from raw medical images. These models can 

be trained under both supervised and unsupervised learning 

paradigms [12]. In this study, a supervised learning approach 

is employed, wherein the Mask R-CNN model is trained on 

annotated datasets to facilitate accurate identification of 

anatomical structures and their spatial characteristics. 

Despite recent advancements, a key limitation of CNN-

based models such as Mask R-CNN is their sensitivity to 

image quality. These models often underperform when applied 

to medical images characterized by low contrast, noise, or 

blurring common artifacts in modalities such as ultrasound and 

X-ray imaging [13-15]. While several studies have sought to

address these challenges, they often lack a comprehensive
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preprocessing pipeline or fail to systematically evaluate the 

impact of multiple image enhancement techniques on instance 

segmentation performance. 

 To address this gap, this study integrates a suite of image 

enhancement techniques as a preprocessing step before 

applying Mask R-CNN. Enhancement methods such as 

Histogram Equalization (HE), Adaptive Histogram 

Equalization (AHE), Contrast Limited Adaptive Histogram 

Equalization (CLAHE), and Blind Deblurring (BD) are 

employed to improve contrast and sharpness [16-22]. By 

integrating various preprocessing strategies with the instance 

segmentation capabilities of Mask R-CNN, this study aims to 

address the limitations identified in previous research. The 

contributions of this work include a comprehensive 

comparative evaluation of multiple image enhancement 

techniques on segmentation performance, the development of 

a customized preprocessing pipeline specifically designed for 

low-quality medical images, and the application of the 

proposed approach to fetal heart anatomical segmentation a 

domain that has received limited attention in the context of 

MIIS using enhanced Mask R-CNN frameworks. This 

integrated methodology is anticipated to improve the 

reliability and accuracy of instance segmentation in 

suboptimal imaging conditions, thereby supporting the 

advancement of MIIS applications in clinical settings.  

 

 

2. RELATED WORKS 

 

Research on Medical Image Instance Segmentation (MIIS) 

has advanced rapidly alongside developments in deep learning 

(DL) technologies, particularly Convolutional Neural 

Networks (CNNs). One of the most widely adopted DL-based 

approaches for medical image segmentation is Mask R-CNN, 

known for its ability to detect and delineate individual objects 

at the instance level with high precision. He et al. [23] 

introduced Mask R-CNN as an extension of Faster R-CNN, 

incorporating a parallel mask prediction branch that enables 

pixel-level object segmentation and classification. Wang et al. 

[23] applied Mask R-CNN to the segmentation of skin lesions 

in dermoscopic images, demonstrating significantly improved 

accuracy compared to conventional methods.  

Various image enhancement techniques have been explored 

to enhance segmentation accuracy in medical imaging further. 

Saifullah and Dreżewski [24] proposed a CNN-based 

segmentation approach integrated with several preprocessing 

scenarios, including HE, CLAHE, and two hybrid methods: 

HE-CLAHE and CLAHE-HE. The evaluation was conducted 

on two publicly available radiological datasets: Lung CT-Scan 

and Chest X-ray. Experimental results indicated that the 

CLAHE-HE preprocessing scenario consistently improved 

segmentation performance, achieving a Dice Similarity 

Coefficient (DSC) of up to 0.92 and a Structural Similarity 

Index Measure (SSIM) of up to 0.97.  

Several other studies have also combined Mask R-CNN 

with image enhancement techniques. Balasubramanian et al. 

[25] proposed a DL-based approach for liver tumor 

segmentation and classification from CT images. Their model 

consists of three stages: preprocessing using HE and a median 

filter, liver segmentation using an enhanced Mask R-CNN, 

and classification using APESTNet—an Enhanced Swin 

Transformer Network with Adversarial Propagation. The 

results demonstrated superior performance across various CT 

image types, with high efficiency and robustness to noise. 

Khan et al. [26] developed a deep learning-based liver 

disease segmentation and classification system using a 

Customized Mask R-CNN (cm-RCNN). Preprocessing was 

performed using AHE to enhance image quality. Segmentation 

was conducted with cm-RCNN employing modified ReLU 

and sigmoid activation functions. Feature extraction involved 

texture, morphological, and deep features derived from 

ResNet and median binary pattern. The final classification 

stage utilized an ensemble approach combining SqueezeNet 

and DeepMaxout.  

 

Table 1. Review of studies on the use of Mask R-CNN in medical imaging 

 
Researcher 

(Year) 
Research Object Methodology 

Preprocessing 

Techniques 
Key Findings 

He et al. (2018) 

[10] 

COCO & Pascal 

VOC 
Mask R-CNN - Introducing Mask R-CNN, accurate segmentation. 

Wang et al. (2024) 

[23] 

Dermatoscopic 

images of skin 

lesions 

adjustments to Mask 

R-CNN parameters 
- 

Significant improvement in segmentation accuracy 

over conventional methods. 

Saifullah and 

Dreżewski (2023) 

[24] 

Lung CT-Scan and 

Chest X-ray images 

CNN with 

preprocessing 

scenarios 

HE, CLAHE, HE-

CLAHE, CLAHE-

HE 

CLAHE-HE consistently improved performance 

with DSC up to 0.92 and SSIM up to 0.97. 

Balasubramanian 

et al. (2023) [25] 

CT images of liver 

tumors 

Mask R-CNN + 

APESTNet 

(Enhanced Swin 

Transformer) 

HE, Median filter 
High accuracy and robustness to noise in liver 

tumor segmentation and classification. 

Khan et al. (2024) 

[26] 

Liver disease CT 

images 

Customized Mask R-

CNN + SqueezeNet + 

DeepMaxout 

AHE 
Accurate segmentation and classification using 

ensemble with handcrafted and deep features. 

Han et al. (2023) 

[27] 

SEM images of 

blurry nanoparticles 

BL-Mask R-CNN + 

DeblurGAN-v2 
Blind Deblurring 

Accuracy improved from 0.8339 to 0.9613, 

demonstrating the effectiveness of deblurring 

preprocessing. 

Nurmaini et al. 

(2021) [28] 

Fetal ultrasound 

heart images 
Mask R-CNN - 

Improved detection of septal defects such as ASD 

and VSD. 

Sapitri et al. 

(2023) [29] 

Real-time fetal sub-

heart structure in 

ultrasound video 

YOLO framework - 
Achieved 82.10% average precision and 17 FPS 

for real-time detection. 

 

 

1364



Han et al. [27] proposed BL-Mask R-CNN, an instance 

segmentation approach for blurred scanning electron 

microscope (SEM) images of nanoparticles. This method 

integrates DeblurGAN-v2 as a preprocessing stage to restore 

texture details and enhance image clarity prior to segmentation 

by Mask R-CNN. Evaluation on the NFFAEUROPE dataset 

revealed an increase in detection accuracy from 0.8339 to 

0.9613, highlighting the effectiveness of deblurring 

preprocessing in improving segmentation performance on 

low-quality images. 

In the context of fetal heart segmentation, Nurmaini et al. 

[28] developed a Mask R-CNN model to segment fetal heart

structures in ultrasound images. The model showed improved

accuracy in detecting septal anomalies such as atrial septal

defect (ASD) and ventricular septal defect (VSD). Meanwhile,

Iriani Sapitri et al. [29] proposed a real-time detection

framework for substructures of the fetal heart in ultrasound

video using the YOLO architecture, achieving an average

precision of 82.10% and a processing speed of 17 frames per

second. These studies collectively demonstrate that integrating

instance segmentation techniques based on Mask R-CNN with

appropriate preprocessing strategies is crucial for improving

accuracy on challenging medical image datasets, including

fetal heart anatomy. A comparative summary of these

approaches is presented in Table 1.

3. PROPOSED METHOD

The methodology in this study comprises several 

interrelated stages, beginning with data acquisition and 

culminating in the evaluation of segmentation results. The 

overall workflow is illustrated in Figure 1. 

Figure 1. Workflow of fetal heart image segmentation using 

Mask R-CNN 

3.1 Data acquisition 

The initial stage in the SIIM process is data acquisition, as 

illustrated in Figure 1. The data used in this study were 

obtained from fetal echocardiography videos capturing the 

heart in the four-chamber view. These videos were sourced 

from an online platform with proper usage permission [30]. 

The video file was in .mp4 format, with a size of 13.7 MB, a 

duration of 178 seconds, and a frame rate of 30.00 fps. The 

entire video was then framed into two-dimensional ultrasound 

images, resulting in 357 images. These images include frames 

containing fetal heart objects some with one, two, or three fetal 

heart instances. 

Additionally, some images did not contain fetal heart 

objects, or the heart objects were out of focus or blurred. 

Cropping was performed to ensure that the data used for the 

MIIS model met specific requirements for images containing 

multiple fetal heart objects or extraneous elements such as 

text. The output of the video extraction process and the 

resulting images are summarised in Table 2. 

Table 2. Video extraction 

Image Type Dimensions 
Number of 

Extracted Images 

Images showing fetal 

heart objects 
1280 × 720 114 

Image showing multiple 

fetal heart objects 
1280 × 720 50 

Images showing fetal 

heart objects but out of 

focus 

1280 × 720 105 

Images not showing any 

fetal heart objects 
1280 × 720 88 

Total 357 

3.2 Data preprocessing 

The data preprocessing stage includes selection, cropping, 

and resizing of images, aimed at producing a dataset that 

represents explicitly the fetal heart structure in normal 

conditions. As a result of this process, a dataset consisting of 

176 ultrasound images of normal fetal hearts was compiled. 

This dataset was divided into two main subsets: 140 images 

were allocated for training, while 36 images were designated 

for validation. Each image in this dataset represents ten 

primary anatomical classes of the fetal heart: Left Atrium 

(LA), Right Atrium (RA), Left Ventricle (LV), Right Ventricle 

(RV), Tricuspid Valve (TV), Pulmonary Valve (PV), Mitral 

Valve (MV), Aortic Valve (AV), Aorta (Ao), and Spine. 

Consequently, the training data contains 1,400 anatomical 

class labels, while the validation data includes 360 class labels. 

Detailed information regarding the data distribution is 

presented in Table 3. 

The subsequent stage involves applying image 

enhancement techniques to improve the visibility of cardiac 

structures and minimise the effects of blur or noise. Several 

methods are utilised in this process, including HE, which 

enhances the global contrast of the image; AHE, which adjusts 

the local contrast in different regions; and CLAHE, which 

limits excessive contrast enhancement in overly bright or dark 

areas. Additionally, BD reduces blur without requiring explicit 

knowledge of the blur kernel. The results of these 

enhancement techniques are presented in Figure 2. 
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Table 3. Dataset MIIS 

 

Data 
Number of 

Original Images 

Number of HE 

Image 

Enhancements 

Number of 

AHE Image 

Enhancements 

Number of 

CLAHE Image 

Enhancements 

Number of BD 

Image 

Enhancements 

Training Data 140 140 140 140 140 

Validation Data 36 36 36 36 36 

 

   

(a) Original (b) HE (c) AHE 

  
(d) CLAHE (e) Blind Deblurring 

 

Figure 2. Fetal heart image 

 

Image quality enhancement aims to improve visual 

appearance to support more accurate analysis and feature 

extraction. In this study, several image enhancement methods 

are employed, including HE, as defined by Eq. (1) [19]. 

 

𝐻(𝑖) =  ∑ ∑ 𝛿(𝑓(𝑥, 𝑦) = 𝑖)

𝑁

𝑦=1

𝑀

𝑥=1

 (1) 

 

AHE, as defined by Eq. (2) [20], 

 

𝑓′(𝑥, 𝑦) =  
(𝐿 − 1)

|𝑊|
∑ 𝐻𝑊𝑥,𝑦

(𝑘)

𝑓(𝑥,𝑦)

𝑘=0

 (2) 

 

CLAHE, as defined by Eq. (3) [31], 

 

𝑓′(𝑥, 𝑦) =  
(𝐿 − 1)

|𝑊|
∑ min (𝐻𝑊𝑥,𝑦

(𝑘), 𝑇) +
𝐸

𝐿

𝑓(𝑥,𝑦)

𝑘=0

 (3) 

 

and BD, as defined by Eq. (4) [22]. 

 

�̂� = arg 𝑚𝑖𝑛𝑠 ∥ 𝐼 − 𝐾 ∗ 𝑆 ∥2+ 𝜆𝑅(𝑆) (4) 

 

3.3 Data annotation 

 

In parallel with the image enhancement process, all normal 

fetal heart images undergo annotation using ten labels that 

represent the anatomical features of the fetal heart. The 

annotation is carried out by precisely placing polygon points 

on the heart regions within each image. Once completed, the 

annotated images are exported in JavaScript Object Notation 

(JSON) format for further processing. In addition to enhancing 

image quality, this annotation process aims to generate ground 

truth images manually labelled data created by experts with 

the competence to identify anatomical features and structures 

in medical images. These ground truth images are the primary 

reference for training and evaluating image processing 

models. An example of the annotation result is shown in 

Figure 3. 

 

     
(a) AO       (b) AV       (c) LA        (d) LV      (e) MV 

 

     
(f) PV         (g) RA       (h) RV      (i) Spine     (j) TV 

 

Figure 3. Ground truth of annotation results 

 

3.4 Instance segmentation with Mask R-CNN 

 

We employed the Mask R-CNN technique for MIIS [23]. 

Mask R-CNN features a core architecture that utilises a 

convolutional neural network (CNN) backbone, such as 

ResNet, to extract feature maps from the input images. These 

feature maps are then processed by a Region Proposal 

Network (RPN) to generate candidate bounding boxes that 

indicate potential object locations, enabling the analysis to 

focus on specific regions of interest. 

 

 
Figure 4. Mask R-CNN architecture for deep learning-based 

MIIS 

 

The primary distinction between Mask R-CNN and its 

predecessor, Faster R-CNN, lies in using ROI Align instead of 

ROI Pooling. ROI Align is designed to preserve the spatial 

alignment of feature maps, which is crucial for improving the 

accuracy of detection and segmentation. This is especially 

important in medical imaging, where spatial distortion caused 

by ROI Pooling can significantly degrade the quality of the 

resulting segmentation [10]. The architecture and workflow of 
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Mask R-CNN as implemented in this study are illustrated in 

Figure 4. 

3.5 Model evaluation 

To evaluate the performance of image segmentation 

models, three primary metrics are commonly used: Mean 

Average Precision (mAP), Intersection over Union (IoU), and 

Dice Similarity Coefficient (DSC). Among these, mAP serves 

as the main evaluation metric for assessing segmentation 

accuracy, as it accounts for the average precision across 

various IoU thresholds and reflects the model's capability to 

detect and classify objects accurately. The mAP value is 

computed as the mean of the Average Precision (AP) scores 

across all segmented object classes, as defined in Eq. (5). [32]: 

𝑚𝐴𝑃 =  
1

𝑁
 ∑ 𝐴𝑃𝑖

𝑁

𝑖=1

(5) 

where, N is the number of classes and denotes the Average 

Precision for the 𝑖-th class. 
Furthermore, IoU measures the extent of overlap between 

the predicted segmentation and the ground truth. The IoU 

value is calculated by comparing the area of intersection 

between the prediction and the ground truth with the area of 

their union, as defined in Eq. (6) [33]: 

𝐼𝑜𝑈 =  
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
(6) 

where, A represents the pixels in the predicted segment and B 

represents the pixels in the ground truth segment. A higher IoU 

value indicates a more accurate segmentation performed by 

the model. 

Next, the Dice Similarity Coefficient (DSC), or Dice Score, 

is used to measure the similarity between two segments, 

specifically between the predicted segmentation and the 

ground truth. This metric is particularly useful in segmentation 

evaluation due to its higher sensitivity to small object sizes. 

The DSC is defined by Eq. (7) [34]: 

𝐷𝑆𝐶 =  
2|𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
(7) 

where, A and B represent the pixels of the predicted and 

ground truth segments, respectively. The DSC value ranges 

from 0 to 1, with a value of 1 indicating a perfect segmentation. 

3.6 Training setup 

At this stage, the environment and training parameters for 

the Mask R-CNN model were configured to ensure an optimal 

and consistent training process. This phase aimed to develop 

an instance segmentation model capable of accurately 

identifying and distinguishing anatomical structures in fetal 

heart images, through system configuration and training 

parameter adjustments tailored to the characteristics of the 

medical imaging data. An ablation study was conducted to 

determine the optimal hyperparameter settings. Key 

parameters such as learning rate, batch size, and number of 

epochs were varied to assess their impact on model accuracy, 

convergence, and overall performance. The results indicated 

that the best balance between stability and efficiency was 

achieved with a learning rate of 0.01, a batch size of 1 due to 

GPU capacity limitations, and 20 epochs with 500 steps per 

epoch. The detailed training parameters are presented in Table 

4. 

Table 4. Model training setting and environment 

Parameter Details 

Hardware 

Nvidia GeForce GTX 1050 Ti GPU with 768 

CUDA cores, a GPU clock of 1392/1506 

MHz, 4GB of GDDR5 GPU memory, and a 

memory bandwidth of 112.1 GB/s 

Train 

Environment 

Python 3.6.13, with the TensorFlow 1.14.0 

and Keras 2.3.1 libraries, and Protobuf 3.19.6 

Batch Size 1 

Epochs 20 

Step Per Epoch 500 

Learning Rate 0.01 

Learning 

Momentum 
[0.7,0.9] 

Optimization 

Algorithm 
Adam optimizer 

Image Size 512×512 

Image 

Enhancement 

[Original, HE, AHE, CLAHE, Blind 

Deblurring] 

3.7 Model segmentation design 

In this study, image segmentation models were developed 

using uniformly controlled experimental parameters to ensure 

consistency and fairness in performance evaluation. The fixed 

parameters applied across all experiments included 500 steps 

per epoch, 20 training epochs, a ResNet-50 backbone, 

Stochastic Gradient Descent (SGD) as the optimizer, a batch 

size of 1, and a learning rate of 0.01. These parameter values 

were selected based on the default configuration of Mask R-

CNN, while the batch size was adjusted to accommodate the 

limitations of the available GPU resources. 

The independent variables in this experiment were the 

learning momentum (LM) values and the image enhancement 

techniques applied to the training data. Two momentum 

values, 0.7 and 0.9, were investigated. These values were 

chosen based on prior studies demonstrating their 

effectiveness in accelerating convergence and stabilizing SGD 

training in medical imaging contexts. A lower momentum 

(e.g., 0.7) allows greater sensitivity to gradient updates, while 

a higher momentum (e.g., 0.9) offers more stability and 

smoother optimization, making this range suitable for 

comparative performance analysis. 

The main image enhancement techniques explored in this 

study include HE, AHE, CLAHE, and BD. In addition to 

evaluating each enhancement method individually, this study 

also examined potential synergies by applying various 

combinations, including HE + CLAHE, AHE + CLAHE, HE 

+ BD, AHE + BD, HE + CLAHE + BD, and AHE + CLAHE

+ BD. These were also compared with no enhancement (i.e.,

the original images).

In total, 22 different models were trained and evaluated, 

representing all possible combinations of the eleven 

enhancement configurations with two different momentum 

values applied during the optimization process. This 

comprehensive experimental design was conceived to 

systematically assess the effects of both preprocessing 

strategies and momentum variations on instance segmentation 

accuracy, all under consistent training conditions. The 

complete list of model configurations is presented in Table 5. 
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Table 5. Model experimentation 

Model LM Image Enhancement 

model 1 0.7 Original 

model 2 0.9 Original 

model 3 0.7 HE 

model 4 0.9 HE 

model 5 0.7 AHE 

model 6 0.9 AHE 

model 7 0.7 CLAHE 

model 8 0.9 CLAHE 

model 9 0.7 Blind Deblurring 

model 10 0.9 Blind Deblurring 

model 11 0.7 HE + CLAHE 

model 12 0.9 HE + CLAHE 

model 13 0.7 AHE + CLAHE 

model 14 0.9 AHE + CLAHE 

model 15 0.7 HE + Blind Deblurring 

model 16 0.9 HE + Blind Deblurring 

model 17 0.7 AHE + Blind Deblurring 

model 18 0.9 AHE + Blind Deblurring 

model 19 0.7 HE + CLAHE + Blind Deblurring 

model 20 0.9 HE + CLAHE + Blind Deblurring 

model 21 0.7 AHE + CLAHE + Blind Deblurring 

model 22 0.9 AHE + CLAHE + Blind Deblurring 

4. RESULTS

This study aims to evaluate the performance of several 

Mask R-CNN models in object detection and instance 

segmentation tasks using fetal heart anatomical images. 

4.1 Experimental results and loss analysis 

A total of 22 Mask R-CNN models were evaluated based on 

twelve key loss components, encompassing all aspects of 

training and validation: mean loss, mean validation loss, mean 

RPN classification loss, mean validation RPN classification 

loss, mean RPN bounding box loss, mean validation RPN 

bounding box loss, mean Mask R-CNN classification loss, 

mean validation Mask R-CNN classification loss, mean Mask 

R-CNN bounding box loss, mean validation Mask R-CNN

bounding box loss, mean Mask R-CNN mask loss, and mean 

validation Mask R-CNN mask loss. This evaluation aimed to 

assess the stability of the learning process and the 

generalization capability of the models to unseen data. 

In general, the mean training loss ranged from 0.5509 to 

0.6441, with the lowest value achieved by Model 9, indicating 

efficient learning during training. Meanwhile, the mean 

validation loss exhibited a wider range, from 3.6182 to 4.3479. 

Model 17 recorded the lowest validation loss, reflecting 

relatively better generalization ability, whereas Model 2 

recorded the highest mean validation loss, indicating a strong 

tendency toward overfitting. 

Regarding the RPN classification loss, the average training 

values were very small, ranging from 0.0074 (Model 15) to 

0.0096 (Model 12), suggesting that the models generally 

succeeded in distinguishing between object and non-object 

regions during training. However, the validation values varied 

significantly, with Model 18 recording the highest value of 

0.7328. This suggests that the model struggled to detect 

objects on unseen data. The RPN bounding box loss, which 

measures the accuracy of the RPN in predicting object 

proposal boxes, had its lowest training value in Model 9 at 

0.0894, while the best validation result was achieved by Model 

17 with 0.5794. Conversely, Model 18 again showed the 

highest value of 0.9604, indicating instability in localizing 

bounding boxes during validation. 

The Mask R-CNN classification loss showed much higher 

values compared to other components. During training, the 

loss ranged from 0.1216 to 0.1338, but rose substantially 

during validation, from 1.4452 (Model 19) to 1.8048 (Model 

14). This underscores that object classification remains a 

major challenge, particularly when models are tested on new 

data. Nevertheless, despite having the highest classification 

loss, Model 14 managed to achieve outstanding segmentation 

results. For the Mask R-CNN bounding box loss, the models 

remained relatively stable in both training and validation 

phases, with training values ranging from 0.1086 to 0.1409 

and validation values from 0.3942 to 0.4625. Model 11 and 

Model 17 demonstrated the most optimal validation bounding 

box loss, indicating consistent spatial accuracy on unseen data. 

Figure 5. Comparison of training and validation loss components across models 
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Finally, the Mask R-CNN mask loss, which is closely 

related to pixel-level segmentation quality, ranged from 

0.2217 to 0.2350 during training and from 0.5277 to 0.6688 

during validation. Model 4 achieved the lowest validation 

mask loss (0.5277), while Models 5 and 13 recorded the 

highest values (0.6688). This suggests that using AHE as the 

sole image enhancement technique may degrade segmentation 

performance during validation, possibly due to excessive 

contrast enhancement introducing noise to pixel features. 

Overall, this analysis indicates that the combination of 

image enhancement techniques and training parameters 

significantly influences each loss component. Models 9 and 17 

consistently demonstrated a balanced performance between 

training and validation, particularly in the RPN and bounding 

box components. Meanwhile, despite having the highest 

classification loss on validation, Model 14 produced superior 

segmentation performance, suggesting that high loss in a 

single component does not necessarily correlate negatively 

with final segmentation quality. Figure 5 presents a 

comprehensive comparison of all training and validation loss 

components across the 22 evaluated models. This visualization 

reveals consistent trends, where most models exhibit higher 

validation losses than training losses a common indication of 

overfitting. The graph also highlights stark contrasts between 

components such as mrcnn_class_loss and mrcnn_mask_loss, 

which can help identify specific weaknesses in each model. 

 

4.2 Comparison of evaluation metrics for segmentation 

models 

 

The performance evaluation of medical image segmentation 

models was carried out using three key metrics: Intersection 

over Union (IoU), Dice Similarity Coefficient (DCS), and 

mean Average Precision (mAP). These metrics provide a 

comprehensive assessment of both the spatial accuracy and 

detection precision of anatomical structure segmentation in 

ultrasound images (Figure 6). 

 

 
 

 

Figure 6. Average IoU, DCS, and mAP per model 

 

     
(a) IoU                                   (b) DCS     (c) mAP 

 
(d) legend 

 

Figure 7. Comparison of IoU, DCS, and mAP per class across 22 Mask R-CNN models 
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An analysis of the 22 evaluated models revealed notable 

variation in performance metrics, which depended on the 

applied image enhancement technique and momentum 

parameter. The average IoU ranged from 0.4473 (Model 8) to 

0.5887 (Model 14), with other strong performers including 

Model 13 (0.5744), Model 18 (0.5800), and Model 5 (0.5233). 

A similar trend was observed for DCS, where scores varied 

from 0.5765 (Model 11) to 0.7032 (Model 14), followed by 

Model 13 (0.6819) and Model 18 (0.6933). For mAP, Model 

14 again achieved the highest score (0.3049), while Model 13 

(0.2965) and Model 18 (0.3007) also demonstrated superior 

performance. 

To further assess the consistency and reliability of the 

models, the standard deviation for each evaluation metric was 

computed across all models. The resulting values were 0.5120 

± 0.0366 for IoU, 0.6145 ± 0.0382 for DCS, and 0.2753 ± 

0.0184 for mAP. These relatively low deviations suggest a 

moderate level of variability, indicating that while 

preprocessing strategies significantly affect segmentation 

quality, most configurations produced stable outcomes. 

Notably, Model 14 not only achieved the highest performance 

across all metrics but also demonstrated statistical robustness, 

reinforcing its effectiveness for segmenting small and low-

contrast anatomical structures in fetal heart ultrasound images. 

This superior performance can be attributed to the synergistic 

use of AHE and CLAHE. AHE enhances local contrast in 

small regions, helping to delineate fine anatomical boundaries, 

while CLAHE limits noise amplification by clipping 

histogram peaks, making it suitable for noisy medical images. 

Their combined application improves feature visibility 

without over-enhancing artifacts. Additionally, the use of a 

higher momentum value (0.9) facilitates more stable and 

consistent learning by reducing the variance in gradient 

updates, which supports better generalization to unseen data. 

Together, these factors contribute to the strong segmentation 

performance observed in Model 14. 

The evaluation was conducted based on ten fetal heart 

anatomical classes: LV, LA, RV, RA, AO, Spine, PV, MV, 

TV, and AV. Figure 7 illustrates performance comparisons 

across classes. For the LV class, segmentation performance 

varied across models, with Model 17 achieving the best results 

(IoU: 0.7169, DCS: 0.8005, and mAP: 0.3182). In the LA 

class, peak performance was observed in Models 5 and 9, with 

Model 5 recording the highest DCS (0.6878) and Model 9 the 

highest IoU (0.5970). Model 14, however, achieved the top 

mAP (0.2810). For the RV class, Model 14 again excelled with 

an IoU of 0.7365, DCS of 0.8468, and the highest mAP of 

0.3451.  In the RA class, Models 16 and 22 stood out for IoU 

and DCS, respectively, while Model 20 achieved the highest 

mAP (0.4534). The AO class showed consistent performance, 

with Model 4 reaching the highest mAP (0.9494), while 

Models 18 and 12 excelled in IoU and DCS. For the Spine 

class, Models 11 and 5 recorded the best DCS (0.8168) and 

IoU (0.6176), respectively, with Model 14 maintaining stable 

performance (mAP: 0.2745). In the PV class, Model 21 

achieved the highest DCS (0.7550), and Model 13 had the top 

mAP (0.1781). For MV, Model 13 again led in mAP (0.1892), 

while Models 3 and 6 had the highest DCS and IoU. In the TV 

class, Model 13 showed the best performance across all 

metrics. Finally, in the AV class, Models 21 and 18 led in 

DCS, while Model 13 achieved the best mAP (0.0942). 

5. DISCUSSIONS AND FINDINGS

Evaluation based on average IoU reveals considerable 

performance variation across models. Model 14 recorded the 

highest average IoU of 0.5887, indicating superior 

segmentation capability across all classes. Specifically, this 

model also demonstrated strong performance in segmenting 

the RV, RA, and AO structures, critical components in fetal 

heart imaging. Models 6 and 18 also showed competitive 

performance, with average IoU scores above 0.50, suggesting 

stable segmentation across various anatomical structures. In 

contrast, models such as Model 1 and Model 11 exhibited 

relatively low performance, particularly in classes like LA and 

AV, which may be attributed to their small size or low contrast 

in the original images. 

The measurement results with DCS support the findings 

from the IoU metrics, Model 14 again ranked the highest 

(average DCS = 0.7032), reinforcing the conclusion that this 

model can produce consistent segmentation with high overlap 

with the ground truth. Models 18 and 13 also demonstrated 

strong DCS performance, with average scores above 0.68. 

Classes such as RV and AO generally exhibited high DCS 

scores across most models, likely due to their clearer 

morphological contours and boundaries. In contrast, classes 

like TV and AV tended to have lower DCS scores, indicating 

that these structures are more challenging to segment 

accurately. 

In the mAP evaluation, Model 14 again demonstrated the 

best performance with an average score of 0.3049, reinforcing 

its dominance across various evaluation metrics. This 

indicates that the model is not only capable of producing 

accurate segmentation predictions but also maintains 

consistency across different instances. Interestingly, although 

some models achieved relatively high IoU or DCS values, they 

did not necessarily maintain similarly high performance in 

mAP. For example, Model 6, which recorded strong IoU and 

DCS scores, showed a slightly lower mAP compared to 

models 14 and 13. This suggests that strong spatial 

segmentation does not always guarantee precise instance-level 

detection. 

Among all evaluated models, Model 14 consistently 

demonstrated the best performance across the three main 

evaluation metrics: average IoU (0.5887), DCS (0.7032), and 

mAP (0.3049). The success of this model can be attributed to 

two key factors: the use of a LM value of 0.9 and the 

application of a combined preprocessing technique using AHE 

and CLAHE. The combination of AHE and CLAHE proved 

effective in enhancing local contrast in fetal cardiac ultrasound 

images, which is crucial for highlighting boundaries of small 

and low-contrast structures such as AV, TV, and LA. 

Meanwhile, the relatively high LM value helped the model 

achieve stability during training while maintaining good 

generalisation on test data. These findings indicate that 

selecting appropriate image preprocessing strategies and 

tuning hyperparameters optimally significantly impact 

segmentation performance. 

6. CONCLUSION

This study highlights the critical role of image enhancement 

and training parameter optimization in improving deep 

learning-based segmentation of fetal heart structures in 

ultrasound images. Specifically, the combination of AHE and 
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CLAHE was found to be particularly effective for enhancing 

local contrast, which in turn improved the delineation of small 

and low-contrast anatomical regions. Models trained with 

higher momentum values exhibited better generalization and 

stability, suggesting the importance of careful hyperparameter 

tuning. Overall, these findings underscore that successful 

segmentation of complex anatomical structures requires not 

only robust model architectures but also thoughtfully designed 

preprocessing strategies. 

Future work will focus on extending this model to handle 

3D ultrasound volumes and incorporating post-processing 

techniques to refine segmentation boundaries. Additionally, 

ensemble-based architectures may be explored to dynamically 

select or combine models based on anatomical class 

characteristics, with the goal of enhancing robustness and 

enabling practical clinical deployment in fetal cardiac 

assessment. 
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