
Next-Gen Cloud Security: IRDS4C’s Deception Strategy for Early Intrusion and

Ransomware Detection

Ahmed El-Kosairy* , Nashwa AbdelBaki

Centre of Informatics Science, School of Information Technology and Computer Science, Nile University, Giza 12588, Egypt

Corresponding Author Email: ah.elkosairy@nu.edu.eg

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsse.150502 ABSTRACT

Received: 7 March 2025

Revised: 15 April 2025

Accepted: 19 May 2025

Available online: 31 May 2025

Cloud computing is rapidly expanding, offering users efficient and cost effective data

storage and management. However, increased adoption has also amplified security

vulnerabilities, particularly from sophisticated threats such as ransomware, which

encrypts user data and demands payment for its release. Traditional cybersecurity methods

are insufficient against these evolving threats, particularly zero-day attacks and advanced

persistent threats (APTs). This paper introduces IRDS4C, an Intrusion and Ransomware

Detection System specifically designed for cloud infrastructures, leveraging innovative

deception strategies. Unlike conventional systems that rely on signature based or

behavioral detections, IRDS4C strategically deploys decoy mechanism including

carefully positioned fake files, high and low interaction honeypots, and decoy resources

to proactively mislead and capture malicious actors. By positioning these decoys in

commonly targeted locations and utilizing naming strategy optimize for early interaction,

IRDS4C rapidly identifies ransomware activity and intrusions. Experimental validation

demonstrates that IRDS4C significantly outperforms traditional methods such as file

hashing and entropy analysis, achieving faster detection with higher accuracy.

Consequently, IRDS4C effectively prevents attackers from accessing critical production

data, marking a substantial advancement in proactive cloud security.

Keywords:

deception systems, fake files, decoy,

honeypots, intrusion detection, ransomware

detection

1. INTRODUCTION

Cybersecurity is an ongoing battle between security

professionals and cybercriminals. As organizations trying to

change their info and on-prem to cloud technologies, hackers

continue to develop more advanced attack methods to exploit

vulnerabilities. Cyber threats have evolved beyond simple

malware infections and phishing attempts attackers now

leverage sophisticated techniques, including zero-day exploits,

ransomware, and APTs to compromise cloud infrastructures.

Offering scalability, flexibility, without cost consumption.

However, this widespread adoption has also introduced

security challenges. Web applications and cloud based

systems are prime targets for cyberattacks due to the shared

responsibility model, where security obligations are divided

between cloud providers and users. Misconfigurations, weak

authentication, and insider threats further increase the risk of

data breaches. To protect cloud environments, organizations

use IDS, IPS, and Web Application Firewalls (WAF). While

these tools help monitor and prevent known threats, they rely

heavily on signature based detection [1]. This approach is

ineffective against zero-day attacks [2], where hackers exploit

unknown vulnerabilities before security teams can respond.

Moreover, behavior analysis and AI security systems, while

promising, often generate false positives and require frequent

updates to stay effective [3, 4]. A more proactive approach is

needed one that goes beyond traditional security measures.

Additionally, using advanced techniques to detect unknown

attacks is beneficial but insufficient by itself. Approaches

relying on Artificial, Machine Learning (AI&ML), and

Behavioral Analysis require significant time and extensive

tuning to minimize false positives. Moreover, these methods

can be costly and often necessitate additional infrastructure.

Since time is critical, most organizations aim to reduce the

Time to Detect (MTTD) and the Time to Respond (MTTR).

Therefore, relying on sophisticated detection methods only is

not adequate, particularly across various cloud service layers.

This paper introduces IRDS4C, an intrusion and ransomware

detection system designed to combine traditional security with

decoy techniques. IRDS4C provides multi layered detection

across all cloud layers, from the network border gateway down

to the hardware and server level. The core idea is to use

sophisticated deception techniques to mislead attackers and

detect abnormal behavior at every cloud layer, regardless of

the cloud service type. However, in this paper, our primary

focus is on the OS layer, as most targeted attacks such as

ransomware and data breaches predominantly aim to

compromise or corrupt this specific layer [5]. IRDS4C was

tested on Google Cloud and provides an innovative way to

detect and stop cyber threats before they compromise cloud

environments. This paper explores how IRDS4C enhances

security across these models by detecting and neutralizing

intrusions and ransomware attacks before they cause

significant damage.

International Journal of Safety and Security Engineering
Vol. 15, No. 5, May, 2025, pp. 873-882

Journal homepage: http://iieta.org/journals/ijsse

873

https://orcid.org/0009-0007-9139-4429
https://orcid.org/0000-0002-2724-6209
https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.150502&domain=pdf

2. BACKGROUND

The cloud introduces many benefits, such as scalability, cost

efficiency, and flexibility, but it also introduces new attack

surfaces that cybercriminals actively target. Unlike traditional

on-premises systems, where organizations have full control

over their security infrastructure, cloud environments operate

under a shared security responsibility model. Unfortunately,

many organizations fail to properly configure their cloud

environments, leaving them vulnerable to cyberattacks. One of

the most dangerous threats to cloud environment today is

ransomware, which has become a serious problem for

businesses and government institutions alike. As cloud

computing keeps expanding, so do the security problems that

come with it. The cloud brings many advantages like

scalability, cost savings, and flexibility, but at the same time,

it creates new opportunities for cybercriminals. Unlike

traditional IT systems where companies have full control over

their security, cloud environments follow a shared

responsibility model. The issue is, many organizations fail to

configure their cloud environment properly, which makes

them easy targets for hackers.

2.1 Ransomware history

Ransomware has evolved significantly since its inception,

becoming one of the most pressing cybersecurity threats today

[6]. The first known ransomware attack, the PC Cyborg Trojan

(also known as AIDS), emerged in 1989. Created by Dr.

Joseph L. Popp, this malware was distributed via 20K floppy

disks with name “AIDS Information – Introductory Diskettes”

to attendees of the World Health Organization’s AIDS

conference. Once installed, it encrypted file in Panama to

restore [7]. In the early 2010s, ransomware attacks became

more sophisticated and widespread. CryptoLocker, which

appeared in 2013, utilized strong encryption algorithms and

demanded payments in Bitcoin, making it nearly impossible to

recover files without paying the ransom [8]. Similarly,

TeslaCrypt, discovered in 2015, targeted specific file types,

particularly those associated with video games, and was

distributed through exploit kits like Angler [9]. The

ransomware landscape further transformed with the advent of

Ransomware as aService (RaaS). This approach allows

hackers to use ransomware tools to affiliates, lowering the

barrier to entry for launching attacks. Notable RaaS groups

include REvil, Ryuk, Conti, and DarkSide, which have been

responsible for high-profile attacks on various sectors,

including healthcare, education, and critical infrastructure.

Understanding the historical evolution of ransomware, from

the AIDS Trojan to modern RaaS operations, underscores the

increasing complexity and threat posed by these attacks. This

context highlights the necessity for advanced detection and

prevention systems like IRDS4C, which are designed to

address the sophisticated nature of contemporary ransomware

threats.

2.2 Ransomware types and families

There are different kinds of ransomware, each with its own

way of attacking victims [10]:

• Encrypting Ransomware: The most common type,

where files are encrypted and attackers demand

payment for the decryption key. Examples include

WannaCry, REvil, and LockBit.

• Locker Ransomware: Instead of encrypting files, this

type locks victims out of their own computers or

systems, showing a ransom message. Examples

include WinLocker and Petya.

• Scareware: This tricks victims into thinking their

system is infected with malware, pushing them to buy

a fake antivirus tool. It does not lock or encrypt files

but causes panic.

• Doxware (Leakware): Hackers steal critical info and

informed the client that it will be released it unless

the client/victim pays a money as a (ransom). Maze

and Babuk are examples of this method.

• Ransomware Worms: These spread across networks

without user interaction. NotPetya and WannaCry

spread automatically by exploiting system

vulnerabilities.

2.3 Traditional ways to detect ransomware

Most ransomware detection methods rely on signature-

based detection, which is used by traditional antivirus and

security software. This method scans files and compares them

to a database of known ransomware signatures [11]. While this

is effective against older threats, it has major weaknesses:

• Fails Against Zero-Day Attacks: Since this method

relies on existing malware databases, it cannot detect

new ransomware variants that have not been

documented yet.

• Evasion Tactics: Modern ransomware uses

techniques like code packing, polymorphism, and

encryption to change its appearance and avoid

detection.

• Constant Updates Needed: Security tools must

update frequently to recognize new ransomware

versions, but attackers create new threats faster than

updates can keep up.

Some other traditional detection methods include heuristic

analysis, which looks for suspicious behavior, and sandboxing,

where files are tested in a controlled environment before

running on a real system. While these methods provide better

protection than signature-based detection, they still struggle

against advanced ransomware that can bypass security

controls.

2.4 A smarter approach with deception based security

Because of these limitations, researchers have explored

deception-based techniques such as honeypots and decoy

systems to catch hackers and study their methods. Deception

security has been around since 1991 and works by misleading

attackers into revealing themselves [12]. By placing fake files,

decoy tokens, and monitored honeypot environments, security

teams can detect ransomware early before real data is

compromised. The IRDS4C framework is built on these decoy

techniques. It is designed to detect both ransomware and

intruders in cloud environments before they can cause damage.

In this section, we will discuss real-world ransomware

incidents, how cloud storage synchronization can help

ransomware spread, and why deception-based security is an

effective way to improve cloud security. We will also look at

different detection methods, such as file hashing, entropy

analysis, API hooking, and decoy resources, and compare how

effective they are against cloud-based attacks.

874

3. LITERATURE REVIEW

DDS Safe, a cloud service provider backup and storage

system for dentists, got infected with the ransomware called

ReVil in 2019. In the study [13], about 400 clinics couldn’t

access their data and were out of service. Another big attack

was NotPetya. NotPetya takes advantage of system

weaknesses to break into networks and operating systems.

Unlike many other ransomware types, it doesn’t need to trick

a user into clicking anything [14]. The objective is to encrypt

the files and data before getting noticed. This type of attack is

known as "Ransomware-as-a-Service" (RaaS). Examples

include REvil, WannaCry, BadRabbit, and NotPetya.

Understanding how ransomware infects cloud storage is very

important. One of the biggest risks is how cloud storage syncs

with local storage. Services like Google Drive let users work

on the local folders, and any changes automatically update in

the cloud [15]. Ransomware takes advantage of this to

spread.To protect cloud servers with sensitive data,

researchers focus on detecting intruders. Since 1991, decoy

systems have been used to confuse hackers [16]. In the study

[17], author showed how honey files and tokens can trick

attackers. Similarly, Whitham [18] explained how honeypots

can detect unauthorized access by feeding intruders fake data.

Decoy files and tokens help track unauthorized activity in

cloud servers, and decoy resources can also be used to detect

ransomware or malware trying to steal or encrypt sensitive

files [19, 20]. The IRDS4C model is built on decoy techniques

[21]. These techniques are very important for keeping the

system stable and secure. It is based on four main ideas to fool

hackers and make them interact with the decoy resources. The

first one is making sure the fake resources look real enough to

convince the attacker. The second one is reachability, which

means placing decoys in common folders where ransomware

usually looks for files. The third one is diversity—using

different types of decoys at the same endpoint so intrusions

and ransomware can be caught quickly. The fourth is making

sure that real users don’t mistakenly interact with decoy files.

To catch intrusions within the cloud system, decoy endpoints,

honey folders, and honey tokens are used.

Honey files come in two types [21]: "high" and "low"

interaction files. High-interaction files confuse hackers and

keep them engaged with fake data. Low-interaction decoy files,

on the other hand, quickly detect scripts or ransomware trying

to steal or encrypt files. Different kinds of decoy servers [22]

and fake tokens (such as decoy emails, fake directories, or fake

pictures). The more honey servers are used [23, 24], the better

the detection rate. Many techniques exist to detect ransomware,

both in cloud and on-premises setups.

This paper focuses on detecting ransomware in Windows

systems and protecting files from being encrypted or corrupted.

Microsoft Windows is the commone used OS worldwide, with

over 70% shares. Linux and Unix will be explored in future

work. One common technique is Comparing Files Hashing,

which calculates the hash value of files and checks for changes

over time [25]. Another method is Comparing File Entropy

Value, which measures randomness in file data to detect

suspicious activity [26]. A third method uses hooking API

functions, which allows the system to monitor file system

activity for unusual changes [27]. Finally, decoy assets use a

positioning technique to trick ransomware into interacting

with them first as listed in Table 1.

Our paper uses file event-handler watching with fake

methods and reallocating ways. If ransomware or any

code/script tries to access IRDS4C’s low-interaction files

filled with random data, it gets detected instantly. The high-

interaction decoy files mislead hackers and push them deeper

into fake traps. The decoy resources include fake folders,

partitions, and storage, helping detect intrusions, unauthorized

access, and ransomware attacks. Using both high and low-

interaction files ensures that both simple and advanced attacks

can be caught effectively.

Table 1. Differences among detection methods for

ransomware [28]

Methods Strengths Downsides

Comparing files

hashing

Works on all

windows

platforms with

accurate results

Uses a lot of RAM and

system resources

Comparing file

entropy value

Works on all

windows

platforms

Can have false

positives, also

consumes RAM and

resources

Hooking file

system API

functions

Accurate results,

no extra RAM

usage

Not compatible with all

Windows versions,

ransomware can

sometimes detect it

Decoy resources

using

positioning

technique

Accurate

detection, no

extra RAM usage

Needs proper file

placement, only works

with NTFS

4. IRDS4C SYSTEM CHARACTERISTICS

The IRDS4C system is developed around the approach/idea

of using fake files and tokens to catch intruders and

ransomware in cloud servers. These decoy resources could be

anything such as a student's report card, a harmless looking

image, or even a fake word document. The content inside

might not be important, but it’s enough to lure attackers. If an

intruder tries to access these deceptions [29], an alert is

triggered, making it clear that unauthorized activity, possibly

ransomware, is happening.

4.1 IRDS4C and reallocating method to detect

ransomware

IRDS4C detects ransomware by placing decoy files in a

way that makes them the first target of an attack. In Windows,

ransomware searches for files using Find_First_File (FFF) &

Find_Next_File (FNF) [30]. These methods sort files based on

their ANSI/ASCII values in ascending order. Ransomware

usually goes after important files like documents and

spreadsheets stored in common directories. For example,

ransomware prioritizes files with extensions like

(.pdf, .docx, .txt) inside folders such as My Documents,

Desktop, and the C:\ drive. To take advantage of this behavior,

IRDS4C places decoy files at the top of the search results,

ensuring they are attacked first. If ransomware encrypts or

modifies these fake files, our system detects it immediately

and stops the attack. To make sure these decoy files appear

first, we use special file names that start with characters like

“#” or “!” since ANSI and ASCII sorting prioritize these

symbols [31]. For instance, naming a file #00000.txt or!.jnt

ensures it is listed at the top. This trick makes ransomware

interact with the decoy files before any real data is affected,

allowing IRDS4C to detect and respond in time as illustrated

in Table 2.

875

Table 2. ANSI code characters table

Dec. Hex Unicode Char.

32 20 U+0020

33 21 U+0021 !

34 22 U+0022 ”

35 23 U+0023 #

36 24 U+0024 $

37 25 U+0025 %

38 26 U+0026 &

39 27 U+0027 ’

40 28 U+0028 (

41 29 U+0029)

42 2A U+002A *

43 2B U+002B +

44 2C U+002C ,

45 2D U+002D -

46 2E U+002E .

47 2F U+002F /

48 30 U+0030 0

4.2 Misleading contents and IRDS4C

IRDS4C doesn’t just place fake files—it also uses deceptive

content to trick attackers into revealing their presence. This

method, called High Interaction Mode, misleads hackers by

providing them with fake but realistic-looking information.

For example, a decoy file might appear to contain login

credentials for another system, but it directs the attacker to

another fake server where their actions can be monitored.

A similar trick is used with honey tokens, where fake

registry entries suggest remote desktop connections leading to

a non-existent system inside the cloud. These honey files, in

different formats like .pdf, .txt, and .docx, are placed in well-

known locations such as My Desktop and My Documents.

Hackers are naturally drawn to these files because they believe

they contain something valuable [32].

To further tempt attackers, these files are given attention-

grabbing names like “Password_List.docx” or

“Confidential_Financial_Report.pdf”. The moment any of

these fake files are opened, IRDS4C detects it and raises an

alert [33].

Besides decoy files, different decoy methods are used based

on the cloud model (IaaS, PaaS, or SaaS). Table 3 shows how

different types of decoys are applied [34, 35].

Table 3. Deception systems methods for cloud system

Cloud Model IaaS PaaS SaaS

Honey Net (Decoy Routers & Switches) ✓ ✓ ✓

Decoy Hypervisor ✓ ✓ ✓

Decoy Endpoints ✓ ✓ ✓

Decoy Folder&Files for OS ✓ ✓

Face Tokens for OS ✓ ✓

Face Tokens for Web Apps ✓ ✓

The IRDS4C system architecture is shown in Figure 1,

demonstrating how decoy system is applied to detect

ransomware and intrusions. It works by creating decoy

resources at multiple levels inside cloud environments.

• For cloud servers: Decoy files, folders, website

directories, and email accounts are used to detect

breaches.

• For cloud networks: Decoy servers and IP addresses

are used. These include Honey endpoints, and Honey

IPs.

Figure 1. Proposed IRDS4C framework structure [36]

876

All activities around these decoys are closely monitored

using the event_handler watcher for cloud APIs & hypervisors,

ensuring that any suspicious activity is detected and responded

to in real-time.

By combining all these deception strategies, IRDS4C

significantly improves cloud environment security by catching

threats before they can cause real harm [36].

5. IRDS4C EVALUATION

We tested a series of experiments to check if our IRDS4C

system really works. The results of these tests are explained in

this section. We set up IRDS4C on Google Cloud Platform

[37], as seen in Figure 2, and applied and tested it on (I-P-S-

aaS) models. To properly test IRDS4C, we built different test

environments and ran three experiments focusing on

ransomware and intrusions. Experiment 1: We tested IRDS4C

against various ransomware samples. The goal was to measure

how fast it detects threats and how accurate it is in identifying

different types of ransomware attempt 2: We took the same

ransomware samples from attempt 1 and tested them using two

other well known methods: File Hashing and File Entropy

techniques. Then, we compared their results with IRDS4C’s

performance to see which method was better. Experiment 3:

We checked how well IRDS4C can catch intruders. To do this,

we made SaaS and PaaS portals publicly available on the

internet and observed if IRDS4C could detect unauthorized

access attempts in a smart way. These experiments helped us

understand IRDS4C’s strengths and how well it performs in

real world scenarios.

The IRDS4C framework was subjected to rigorous testing

to evaluate its effectiveness in detecting and mitigating

ransomware and intrusion activities within cloud

environments. The evaluation was conducted using a diverse

set of ransomware samples, including prominent variants such

as WannaCry, Ryuk, and Sodinokibi, across different cloud

models.

For the experimental setup, the IRDS4C framework was

deployed on the Google Cloud Platform and tested with cloud

layers. Multiple experiments were conducted using a diverse

set of ransomware samples and intrusion scenarios [36].

VMware Setup:

• Software Version: VMware Workstation Pro 17.0

• Virtual Machines: Each machine had:

o 4 CPUs

o 8 GB RAM

o 100 GB SSD storage

o Network: Bridged mode with individual

virtual network adapters

• Snapshots: We created snapshots right after installing

and setting up everything. This way, every test started

from the exact same point.

Operating Systems Used:

• WinServer_2019

• Ubuntu Server 20.04.3 LTS

OS Configuration:

• Both systems were fully updated as of January 2025.

• Windows Defender antivirus was turned off to focus

on how IRDS4C itself detects threats.

• Ubuntu's built-in firewall (UFW) was enabled with

basic settings, and SELinux was set to permissive

mode for controlled testing.

• We ran tests on both default setups and hardened

security setups to see how different security settings

affect IRDS4C’s detection.

Test Environment Setup:

• Network: All virtual machines were linked together

using a dedicated virtual switch inside VMware.

Each had a unique static IP address, and firewall rules

were set clearly to allow ransomware and simulated

attack activities.

• Simulating Attacks: We used specific scripts to run

ransomware samples (7 samples), and for intrusions

like SQL injections or privilege escalation, we used

standard security testing tools like Metasploit and

OWASP ZAP.

This approach let us accurately see how well IRDS4C spots

and reacts to threats.

Figure 2. Google cloud platform dashboard

877

Table 4. IRDS4C and ransomware detection

Family # Sample Detected After Detection Rate
Type(s) of Attack

File Encryption Stealing Info Deleting Files

BadRabbit 20 12 sec 20/20 √ √

Phobos (RedLine) 11 9 sec 11/11 √ √

Sodinokibi (REvil) 6 15 sec 6/6 √ √ √

Ryuk 6 10 sec 6/6 √ √

WannaCry 4 10 sec 4/4 √ √

Notpetya 3 17 sec 3/3 √ √

Netwalker 3 14 sec 3/3 √ √

Total 53 53/53

Table 5. Results

Ransomware

Family

IRDS4C

Detection Time

File Hashing

Detection Time

File Entropy

Detection Time

IRDS4C

Detection Score

File Hashing

Score

File Entropy

Score

BadRabbit 12 sec 50 sec 52 sec 20/20 20/20 18/20

Phobos

(RedLine)
9 sec 35 sec 11 sec 11/11 11/11 10/11

Sodinokibi

(REvil)
15 sec 55 sec 18 sec 6/6 6/6 3/6

Ryuk 10 sec 40 sec 17 sec 6/6 6/6 5/6

WannaCry 10 sec 49 sec 40 sec 4/4 4/4 4/4

NotPetya 17 sec 30 sec 50 sec 3/3 3/3 3/3

Netwalker 14 sec 37 sec 24 sec 3/3 3/3 3/3

5.1 Attempt 1: Challenges ransomware detection

The total of 53 samples from seven notorious ransomware

families BadRabbit, NotPetya, Phobos (RedLine), WannaCry,

Sodinokibi (REvil), Ryuk, and Netwalker were used to

evaluate the IRDS4C framework [38]. These samples were

sourced from reputable malware analysis services and

executed in a controlled cloud environment [39] as illustrated

in Table 4 and Figure 3.

Table 4 and Figure 3 summarize the detailed evaluation

results of IRDS4C's detection capability against several

prevalent ransomware families. Table 3 specifically includes

more information of ransomware samples tested per family,

including BadRabbit (20 samples), Phobos (RedLine) (11

samples), Sodinokibi (REvil) (6 samples), Ryuk (6 samples),

WannaCry (4 samples), NotPetya (3 samples), and Netwalker

(3 samples). It also documents IRDS4C's response times,

measured in seconds, and clearly indicates the malicious

behaviors executed by each ransomware type, such as file

encryption, information theft, and file deletion. Figure 4

visually illustrates the detection speeds of IRDS4C for each

ransomware type, facilitating a direct comparison.

IRDS4C's detection performance was consistently strong,

identifying ransomware activity rapidly, typically between 9

and 17 seconds after initial execution. Phobos ransomware

showed the fastest detection at 9 seconds, while NotPetya,

known for its complexity, had the longest detection time at 17

seconds. These differences in detection times can be attributed

to each ransomware's distinctive behavior patterns, encryption

methods, and file-access mechanisms. The consistent accuracy

(100% detection) and rapid response demonstrated by

IRDS4C underline its effectiveness and reliability, suggesting

that employing deception-based techniques significantly

enhances ransomware detection capabilities in cloud-based

systems.

Figure 3. The detection, in seconds, per ransomware families

which IRDS4C detected

5.2 Experiment 2: Comparing detection techniques

IRDS4C was compared with existing detection mechanisms

like file_hashing and file_entropy techniques as illustrated in

Figure 4 and Table 5. The same samples were used to assess

detection times and accuracy [36].

Figure 4. IRDS4C against the other methods for detection

per sec [36]

878

5.2.1 Performance metrics

• Detection Rate: Percentage of successful detections.

• Mean_Time_to_Detect (MTTD): The average time

from attack initiation to detection.

• False Positive Rate: Percentage of benign activities

incorrectly flagged.

• Resource Utilization: CPU, memory, and network

overhead.

Measuring the Mean Time to Detect (MTTD) [40] for the

IRDS4C framework, file hashing, and file entropy involves

calculating the average time taken to detect ransomware

threats across each method. This can help demonstrate the

effectiveness and efficiency of the IRDS4C system in

comparison to traditional methods. Here’s how to approach it:

Steps to Measure MTTD

Data Collection:

• Gather the detection times for each ransomware

family for IRDS4C, file hashing, and file entropy

from your experimental results.

• Create a dataset that lists the detection times for each

method.

Calculate MTTD for Each Method:

• The Mean Time to Detect is calculating using the

equation:

𝑀𝑇𝑇𝐷 =
∑ 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒𝑠

𝑁
 (1)

where, _N is the total_number of detected rasnomware for that

method, all the results for the MTTD mentioned in Table 6.

Table 6. Mean Time to Detect (MTTD) for 3 detection

methods

Detection Method MTTD (Seconds)

IRDS4C 12.43
File Hashing 42.29
File Entropy 30.29

Results:

• Detection Rate: IRDS4C achieved 100% detection.

• MTTD: IRDS4C averaged 12.43 seconds,

outperforming traditional methods.

• False Positive Rate [41]: IRDS4C recorded 0% false

positives in static environment such as servers and

SCADA systems. The zero false positive rate is

ensured because only ransomware or attackers will

access these canary files, which act as tripwires.

Created in unused directories and hidden from

regular users, they remain untouched by legitimate

processes. Any access attempt signals malicious

activity, such as file enumeration, unauthorized

access, or ransomware encryption, making detection

highly reliable.

• Resource Efficiency: Minimal overhead introduced.

5.3 Attempt 3: Evaluating intruders’ detection

The objective of this attempt was to evaluate how well

IRDS4C detects intruders trying to break into cloud systems.

We set up honey files, honey tokens, and honey endpoints,

then let three attackers try to access sensitive information on

our test machines. We focused on monitoring the behavior of

these three experienced intruders using a five-layer detection

system.

• Layer 1 - Decoy Files: We developed fake

folders/files with tempting names, like Webconfig

password.docx and Username and password.xls, to

trick intruders into interacting with them.

• Layer 2 - Decoy Tokens: We placed fake items like

misleading directories, such as /wbconfign and

/admin, to lure attackers looking for restricted access

points.

• Layer 3 - Decoy Servers: We set up honey servers,

such as Honey Web and Honey DB, to see if intruders

would interact with them.

• Layer 4 - Decoy Partitions: We created fake storage

partitions to detect access attempts.

• Layer 5 - Decoy Shared Folders: We added decoy

folders to track if attackers attempted to open shared

files.

5.3.1 Intruder testing results

• Intruder 1: Entered the cloud test environment at

11:00 AM. IRDS4C detected the breach after 15

minutes (11:15 AM) via Decoy Files. The attacker

tried opening Webconfig password.docx and also

accessed Honey Web & Honey DB servers, the decoy

partition, and the decoy folder. However, they

ignored Decoy Tokens and never accessed real

system resources.

• Intruder 2: Started at 2:40 PM, detected 7 minutes

later at 2:47 PM. This attacker interacted with Decoy

Files (Username and password.xlsx), and also

accessed Decoy Tokens, particularly the fake URL

/webconfig. They also interacted with decoy servers,

partitions, and folders but never reached real files.

• Intruder 3: More careful and strategic than the others,

this attacker started at 3:00 PM and was detected 13

minutes later at 3:13 PM. Instead of touching Decoy

Files, they interacted with Decoy Tokens first, such

as the /admin fake directory. They also accessed

Honey Web & Honey DB servers, the decoy partition,

and decoy folders but did not reach real files as listed

in Table 7.

Table 7. IRDS4C intrusion detection results

Detection Type Intruder 1 Intruder 2 Intruder 3

Start Access Time 11:00_AM 2:40_PM 3:00_PM

Detection Time 11:15 AM (15 min) 2:47 PM (7 min) 3:13 PM (13 min)

Fake Files Webconfig password.docx Username and password.xlsx Not Accessed

Fake Tokens - /webconfig fake URL /admin fake URL

Fake Servers Honey Web & Honey DB Honey Web & Honey DB Honey Web & Honey DB

Fake Partition (G:) Fake partition (G:) Fake partition (G:) Fake partition

Fake Shared Folder Web_share_ files Web_share_files Web_shar_ files

Total Fake Resources Accessed 4/5 5/5 4/5

Real Resources Accessed 0 0 0

879

These tests show that IRDS4C successfully tricked and

detected all intruders before they could access real files. Each

attacker followed a different approach, but the system

identified and flagged all of them based on their interactions

with our decoy system as illustrated in Figure 5.

Figure 5. Intruders’ detection matrix

6. CONCLUSIONS AND FUTURE WORK

While traditional security measures play an essential role in

protecting systems, they are no longer enough to counter

modern cyber threats, especially as attacks become more

advanced and specifically targeted. Cloud computing has now

become a fundamental part of daily life, with almost everyone

using cloud system through the laptops or cellphone devices.

Therefore, a new and improved approach is needed to detect

0day attacks, particularly ransomware, and identify any form

of intrusion or unauthorized access in cloud computing.

In this paper, we introduced IRDS4C, a framework

designed to catch hackers and ransomware using deception

techniques, such as honeycombs and tokens. The IRDS4C

system relies on honeypots and decoy resources to monitor and

detect threats within Win OS without consuming excessive

memory, RAM/CPU, or other cloud resources.

Unlike other security solutions, IRDS4C is designed to

work across different cloud system layers. We examined its

functionalities and compared its performance with commonly

used ransomware detection techniques, such as file hashing

and entropy-based methods. Our results demonstrated that

IRDS4C achieved higher accuracy rates and detection scores.

Furthermore, our intrusion detection tests showed that

IRDS4C was capable of identifying intruders early, preventing

them from accessing any real files or sensitive data.

While IRDS4C has demonstrated strong capabilities in

rapidly detecting ransomware and intrusion attempts within

cloud environments, it currently has notable limitations.

Specifically, the system is optimized exclusively for Windows

environments and the NTFS file system [42, 43], limiting its

immediate applicability across platforms utilizing Linux,

macOS, SCADA, or other file systems. Recognizing these

constraints, future research will focus on expanding IRDS4C's

compatibility to these additional platforms and integrating

advanced detection techniques such as Windows API hooking

to support diverse file systems. Furthermore, incorporating

artificial intelligence and machine learning approaches will

enhance IRDS4C's ability to detect zero-day threats and

complex cyber-attacks more effectively.

Future developments will also focus on exploitation

detection techniques and signature-based threat detection to

improve security. Moreover, an automated response

mechanism may be introduced, allowing the system to take

immediate actions upon detecting suspicious activities.

To further enhance its threat detection capabilities, we will

integrate Artificial Intelligence (AI) methods to identify

anomalies and unusual behavior in cloud systems. This

approach will improve the framework’s ability to detect and

prevent sophisticated cyber threats. Additionally, machine

learning will be employed to recognize and neutralize zero-

day threats, making IRDS4C even more effective in combating

modern cyberattacks.

REFERENCES

[1] Aradi, Z., Bánáti, A. (2025). The role of honeypots in

modern cybersecurity strategies. In 2025 IEEE 23rd

World Symposium on Applied Machine Intelligence and

Informatics (SAMI), Stará Lesná, Slovakia, pp. 000189-

000196.

https://doi.org/10.1109/SAMI63904.2025.10883300

[2] Tulashvili, Y., Kosheliuk, V. (2025). Orchestrating

honeypot deployment in lightweight container platforms

to improve security. International Science Journal of

Engineering & Agriculture, 4(1): 1-13.

https://doi.org/10.46299/j.isjea.20250401.01

[3] Millar, S., McLaughlin, N., del Rincon, J.M., Miller, P.

(2021). Multi-view deep learning for zero-day Android

malware detection. Journal of Information Security and

Applications, 58: 102718.

[4] Otoum, Y., Nayak, A. (2021). As-Ids: Anomaly and

signature based Ids for the Internet of Things. Journal of

Network and Systems Management, 29(3): 23.

https://doi.org/10.1007/s10922-021-09589-6

[5] Almotiri, Sultan H. (2025). AI driven IOMT security

framework for advanced malware and ransomware

detection in SDN. Journal of Cloud Computing, 14(1):

19.

[6] Einy, S., Oz, C., Navaei, Y.D. (2021). The anomaly-and

signature-based IDS for network security using hybrid

inference systems. Mathematical Problems in

Engineering, 2021(1): 6639714.

https://doi.org/10.1155/2021/6639714

[7] Subramanya, K.P.D., Ramakrishna, P.K.H. (2025). A

study on ransomware attack and its detection techniques.

AIP Conference Proceedings, 3278(1): 020015.

https://doi.org/10.1063/5.0262111

[8] Jabid, T., Masum, S., Shams, R.A., Chowdhury, A.,

Islam, M.M., Ferdaus, M.H., Ali, M.D., Islam, M. (2025).

A Brief History of Ransomware. CRC Press, pp. 3-17.

[9] Zeleke, S.N., Jember, A.F., Bochicchio, M. (2025).

Integrating explainable AI for effective malware

detection in encrypted network traffic. arXiv preprint

arXiv:2501.05387.

https://doi.org/10.48550/arXiv.2501.05387

[10] Sharma, S., Kaul, A. (2021). VANETs cloud:

Architecture, applications, challenges, and issues.

880

Archives of Computational Methods in Engineering, 28:

2081-2102. https://doi.org/10.1007/s11831-020-09447-9

[11] Mohanan, S., Sridhar, N., Bhatia, S. (2022). Comparative

Analysis of Cloud Computing Security Frameworks for

Financial Sector. In: Yang, XS., Sherratt, S., Dey, N.,

Joshi, A. (eds) Proceedings of Sixth International

Congress on Information and Communication

Technology. Lecture Notes in Networks and Systems,

vol 236. Springer, Singapore.

https://doi.org/10.1007/978-981-16-2380-6_90

[12] Nakkeeran, M., Mathi, S. (2022). A generalized

comprehensive security architecture framework for IoT

applications against cyber-attacks. In: Raje, R.R.,

Hussain, F., Kannan, R.J. (eds) Artificial Intelligence and

Technologies. Lecture Notes in Electrical Engineering,

vol 806. Springer, Singapore.

https://doi.org/10.1007/978-981-16-6448-9_46

[13] Glover, C. (2021). Ransomcloud: How and why

ransomware is targeting the cloud.

https://techmonitor.ai/technology/cybersecurity/ransom

cloud. Accessed on Jun. 15, 2025.

[14] Mos, M.A., Chowdhury, M.M. (2020). The growing

influence of ransomware. In 2020 IEEE International

Conference on Electro Information Technology (EIT),

Chicago, IL, USA, pp. 643-647.

https://doi.org/10.1109/EIT48999.2020.9208254

[15] Prajapati, P., Shah, P. (2022). A review on secure data

deduplication: Cloud storage security issue. Journal of

King Saud University-Computer and Information

Sciences, 34(7): 3996-4007.

https://doi.org/10.1016/j.jksuci.2020.10.021

[16] Malin, C.H., Gudaitis, T., Holt, J.H., Kilkger, M. (2017).

Deception in the Digital Age. Academic Press.

[17] Reidegeld, K. A., Eisenacher, M., Kohl, M., Chamrad, D.,

Körting, G., Blüggel, M., Meyer, H.E., Stephan, C.

(2008). An easy-to-use Decoy Database Builder software

tool, implementing different decoy strategies for false

discovery rate calculation in automated MS/MS protein

identifications. Proteomics, 8(6): 1129-1137.

https://doi.org/10.1002/pmic.200701073

[18] Whitham, B. (2013). Canary files: Generating fake files

to detect critical data loss from complex computer

networks. In Second International Conference on Cyber

Security, Cyber Peacefare and Digital Forensic

(CyberSec2013), Kuala Lumpur, Malaysia, pp. 170-179.

[19] Sudha, I., Kannaki, A., Jeevidha, S. (2014). Alleviating

internal data theft attacks by decoy technology in cloud.

International Journal of Computer Science and Mobile

Computing, 3(3): 217-222.

[20] Virvilis, N., Vanautgaerden, B., Serrano, O.S. (2014).

Changing the game: The art of deceiving sophisticated

attackers. In 2014 6th International Conference on Cyber

Conflict (CyCon 2014), Tallinn, Estonia, pp. 87-97.

https://doi.org/10.1109/CYCON.2014.6916397

[21] Kahlhofer, Mario, Matteo Golinelli, and Stefan Rass.

(2025). Koney: A cyber deception orchestration

framework for kubernetes. arXiv preprint

arXiv:2504.02431.

https://doi.org/10.48550/arXiv.2504.02431

[22] Mondal, A., Goswami, R.T. (2021). Enhanced Honeypot

cryptographic scheme and privacy preservation for an

effective prediction in cloud security. Microprocessors

and Microsystems, 81: 103719.

https://doi.org/10.1016/j.micpro.2020.103719

[23] Gill, K.S., Saxena, S., Sharma, A. (2020). GTM-CSec:

Game theoretic model for cloud security based on IDS

and honeypot. Computers & Security, 92: 101732.

https://doi.org/10.1016/j.cose.2020.101732

[24] Aydeger, A., Saputro, N., Akkaya, K. (2020). Cloud-

based deception against network reconnaissance attacks

using SDN and NFV. In 2020 IEEE 45th Conference on

Local Computer Networks (LCN), Sydney, NSW,

Australia, pp. 279-285.

https://doi.org/10.1109/LCN48667.2020.9314797

[25] Joshi, Y.S., Mahajan, H., Joshi, S.N., Gupta, K.P.,

Agarkar, A.A. (2021). Signature-less ransomware

detection and mitigation. Journal of Computer Virology

and Hacking Techniques, 17(4): 299-306.

https://doi.org/10.1007/s11416-021-00384-0

[26] Davies, S.R., Macfarlane, R., Buchanan, W.J. (2021).

Differential area analysis for ransomware attack

detection within mixed file datasets. Computers &

Security, 108: 102377.

https://doi.org/10.1016/j.cose.2021.102377

[27] Faghihi, F., Zulkernine, M. (2021). RansomCare: Data-

centric detection and mitigation against smartphone

crypto-ransomware. Computer Networks, 191: 108011.

https://doi.org/10.1016/j.comnet.2021.108011

[28] El-Kosairy, A., Azer, M.A. (2018). Intrusion and

ransomware detection system. In 2018 1st International

Conference on Computer Applications & Information

Security (ICCAIS), Riyadh, Saudi Arabia, pp. 1-7.

https://doi.org/10.1109/CAIS.2018.8471688

[29] Negi, P.S., Garg, A., Lal, R. (2020). Intrusion detection

and prevention using honeypot network for cloud

security. In 2020 10th International Conference on Cloud

Computing, Data Science & Engineering (Confluence),

Noida, India, pp. 129-132.

https://doi.org/10.1109/Confluence47617.2020.9057961

[30] Lee, S., Kim, H.K., Kim, K. (2019). Ransomware

protection using the moving target defense perspective.

Computers & Electrical Engineering, 78: 288-299.

https://doi.org/10.1016/j.compeleceng.2019.07.014

[31] Gundoor, T.K. (2025). Identifying nobel features in non-

portable executable malware files. IAENG International

Journal of Computer Science, 52(1): 121.

[32] Shokouhinejad, H., Razavi-Far, R., Mohammadian, H.,

Rabbani, M., Ansong, S., Higgins, G., Ghorbani, A.A.

(2025). Recent advances in malware detection: Graph

learning and explainability. arXiv preprint

arXiv:2502.10556.

https://doi.org/10.48550/arXiv.2502.10556

[33] Morić, Z., Dakić, V., Regvart, D. (2025). Advancing

CYBERSECURITY with honeypots and deception

strategies. In Informatics, 12(1): 14.
https://doi.org/10.3390/informatics12010014

[34] Saxena, M.A., Ubnare, G., Dubey, A. (2019). Virtual

public cloud model in honeypot for data security: A new

technique. In Proceedings of the 2019 5th International

Conference on Computing and Artificial Intelligence, pp.

66-71. https://doi.org/10.1145/3330482.3330516

[35] Kara, I., Aydos, M. (2022). The rise of ransomware:

Forensic analysis for windows based ransomware attacks.

Expert Systems with Applications, 190: 116198.

https://doi.org/10.1016/j.eswa.2021.116198

[36] El-Kosairy, A., Abdelbaki, N. (2023). Deception as a

service: Intrusion and ransomware detection system for

cloud computing (IRDS4C). Advances in Computational

881

Intelligence, 3(3): 9. https://doi.org/10.1007/s43674-

023-00056-0

[37] Poongodi, T., Beena, T.L.A., Sumathi, D., Suresh, P.

(2022). Behavioral malware detection and classification

using deep learning approaches. In Applications of

Computational Intelligence in Multi-Disciplinary

Research, pp. 29-45. https://doi.org/10.1016/B978-0-12-

823978-0.00015-0

[38] Lai, A.C.T., Ke, P.F., Ho, A. (2025). Ransomware IR

model: Proactive threat intelligence-based incident

response strategy. arXiv preprint arXiv:2502.01221.

https://doi.org/10.48550/arXiv.2502.01221

[39] Any Run. (2022). Ryuk analysis by Any.Run.

https://app.any.run/tasks/077ab638-12e2-4a5e-95fc-

302be8eb60f4/.

[40] Chatterjee, S. (2025). Using SIEM and SOAR for real-

time cybersecurity operations in oil and gas. International

Journal of Innovative Research and Creative Technology,

6(2): 1-11.

[41] Kaur, P., Kaur, H. (2025). Honeypots and honeynets:

Investigating attack vectors. In Emerging Trends in

Computer Science and Its Application, pp. 192-197.

CRC Press.

[42] Peng, Z., Feng, X., Tang, L., Zhai, M. (2015). A data

recovery method for NTFS files system. In International

Conference on Applications and Techniques in

Information Security, pp. 379-386.

[43] Chang, X., Hao, F., Wu, J., Feng, G. (2019). File

recovery of high-order clearing first cluster based on

FAT32. In: Vaidya, J., Zhang, X., Li, J. (eds) Cyberspace

Safety and Security. CSS 2019. Lecture Notes in

Computer Science, Springer, Cham, 11982.

https://doi.org/10.1007/978-3-030-37337-5_38

882

