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With the initiation of disruptive technologies like Internet of Things (IoT), Artificial 

Intelligence (AI), 5G/6G wireless communication, data plays a significant factor as an 

economic asset eencompassing all aspects of existence. With maximising number of data 

resources, privacy breaches and information leakage have become the major bottleneck 

in terms of maintaining the secured data exchange that creates the major threat in every 

human’s life. Collaborative Learning is considered to be secured learning framework 

which is deployed for the prevention of data leakage by allowing the user’s intelligent 

applications to run locally. But still there exist the daunting challenges in Federated 

Learning (FL) frameworks when applied for the IoT based Smart Systems such as mode 

of sharing with designing the satisfactory incentive mechanism. In this context, novel FL 

framework which employs the attribute based encryption (ABE) with the Heterogeneous 

Chaotic Layered Encryption (HCLE) schemes that provides the fine-grained access 

control and assures more secure data management for the secured information sharing 

process in IoT based systems. The proposed FL framework encrypts the intelligent model 

updates through ABE-HCLE schemes, ensuring more privacy under the multiple attacks 

and in fully dishonest environment. The complete environment was simulated using 

Python 3.19 using TensorFlow-FATE FL and Charm-Crypto Libraries to deploy the 

proposed model in the IoT environment. The comprehensive experimentation has been 

conducted using BoTNET datasets thereby analysing the performance of the proposed 

framework in leveraging the numerous threats. Extensive simulation outcomes depict the 

resilience of the recommended approach to varied assaults, attaining over the 95% 

convergence in the privacy elevated FL rounds within 70 Interaction phases and offering 

solid privacy measures. Using the Optimized Light Weight Learning Model (OPLWLM), 

to Categorise the multiple attacks achieving the average performance of 98.5% on larger 

datasets. ABE-HCLE relied encryption protects the weight attributes and prevents the 

reliable data leakages while reducing the computational cost to 0.010 seconds every 

round. Theoretical and empirical outcomes assure the approach’s strength to elevate the 

privacy and offer the impressive operation in mitigating the multiple attacks in the smart 

IoT systems. 
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1. INTRODUCTION

The IoT hold a prominent place in modern urban 

development discussions, where the infusion of Information 

and Communication Technology (ICT) is crucial for 

revolutionizing personal living environments and lifestyles [1-

3]. These systems make utilize of the advanced data analytics 

and wireless communication techniques to elevate the 

resources, enhance the service delivery and scales the life of 

people to comfort zone. These systems define the people’s life 

by their capability to effectively organize enormous data 

constructed from the multiple sources –ranging from health 

records to traffic data. 

1.1 Threats in existing IoT systems 

Despite numerous advantages offered by these systems, the 

challenge of collecting data remains significant. This issue is 

further intensified by stringent data protection laws and the 

increasing emphasis on privacy, leading to the creation of 

fragmented data environments, often referred to as ‘data 

islands,’ within urban landscapes. Information stored on cloud 

platforms is vulnerable to cyber threats, thereby risking the 

exposure of users' sensitive information. Additionally, 

consolidating vast amounts of data into centralized 

repositories raises critical concerns regarding data privacy and 

security [4-6]. For example, centralized storage systems can 

create single points of failure, making them highly prone to 

network breaches and unauthorized intrusions. Furthermore, 
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third-party cloud service providers may not always be fully 

reliable, and challenges associated with key management and 

data storage amplify the risks. A single security breach has the 

potential to completely compromise data confidentiality. 

 

1.2 FL models  

 

FL is a kind of distributed training that prevents the direct 

uploads of user private data. These learning models typically 

utilize multiple participants to train the model with the local 

data which are contributed to model development while 

maintaining the data privacy. This distributed training model 

prevents the model poisoning and opt individuals for the next 

round of training to favour model convergence. The 

implementation of FL for IoT devices encounters several 

challenges, including substantial communication overhead, 

difficulties in achieving model convergence across 

heterogeneous ambient, and the pressing require for strong 

security measures to prevent data breaches regarding training 

processes [7-11]. To address these concerns, Privacy-

Preserving FL (PPFL), a secure variant of FL, mitigates 

potential privacy risks by incorporating advanced procedures 

like differential privacy (DP), secure multiparty computation 

(SMPC), and homomorphic encryption (HE). DP enhances 

data confidentiality by initiating noise to obfuscate training 

data or model attributes, assuring that individual data points 

minimally influence the final results [12]. However, this 

addition of noise often slows model convergence and reduces 

accuracy during aggregation [13, 14]. SMPC, a cryptographic 

framework, enables Joint computations among multiple 

parties with input privacy protection. Despite its advantages, 

SMPC involves intricate cryptographic protocols and frequent 

network communications, leading to increased computational 

demands and latency, particularly in large-scale deployments. 

 

1.3 Motivation and contribution of the research article  

 

As discussed above, FL and PPFL remains susceptible to 

many attacks due to high computation cost implementation, 

high latency and non-resistant against the multiple data. To 

overcome this aforementioned problem, hybrid encryption 

scheme which combines the attribute based encryption (ABE) 

with heterogeneous chaotic layers(HCL) to form the high 

secured data transmission with the les computational overhead. 

The key features of the proposed hybrid encryption-based 

PPFL include: 

 

1. Provides the Strong Encryption Scheme against 

challenging attacks such as unintentional data 

leakage, GAN-based inference attacks [15, 16], and 

membership inference attacks [17] that remain poorly 

handled by the present frameworks. 

2. Non-Linear Chaotic behaviours are explored to 

provide the high resistant to the growing attacks by 

reducing the computational costs [18], resource 

constraints, and optimization issues within PPFL for 

real-time applications. 

3. This Study explores scalability and efficiency of 

ABE systems for large-scale, datasets. 

 

In this context, the key contributions of this research article 

are as follows: 

 

a. The paper proposes the Hybrid Encryption (HE) 

scheme which integrates the advantages of ABE and 

Chaotic behaviour to ensure the security in PPFL 

against the attacks. 

b. The paper introduces the novel Optimized X-Long 

Short Term Memory (X-LSTM) architectures that 

combines global and local training incorporating the 

hybrid chaotic encryption schemes. 

c. The novel heterogeneous chaotic encryption layers 

which essence the advantages of the Logistic Maps, 

Henon and HCL Maps to form the hybrid encryption 

model to secure the weights of the learning 

framework. 

d. The recommended approach is examined by utilizing 

the BoTNET approach with heterogeneous and non-

independent, identically distributed (non-i.i.d.) 

datasets to evaluate the resilience of encryption 

techniques and the precision of federated models 

under practical scenarios 

e. The computational overhead and intricacies 

associated with both global and local training, as well 

as the integration of hybrid encryption procedures, 

are thoroughly evaluated to establish the feasibility 

and applicability of the recommended approach in 

practical scenarios. 

f. Extensive assessment of the proposed framework 

utilizing performance measures like accuracy, 

precision, recall, specificity, and F1-score reveals its 

superior capability, achieving an accuracy rate of 

98%, thereby surpassing existing learning systems in 

both consistency and performance. 

 

1.4 Structure of the research paper  

 

The remaining of the manuscript is structured as pursues: 

Section-2 depicts the relevant studies by varied researchers. 

The preliminaries background of ABE, Chaotic Systems are 

described in Section-3. The system model, dataset description, 

model description, proposed PPFL with the encryption 

schemes are illustrated in the Section-4. The experimental 

outcomes, results analysis and comparative investigations are 

depicted in Section-5. Finally, the paper is wrapped up with 

the future endeavours in Section-6. 

 

 

2. RELATED WORKS  

 

Narkedimilli et al. [19] introduced FL-DABE-BC, an 

advanced FL framework that integrated Decentralized 

Attribute-Based Encryption, HE, Secure Multi-Party 

Computation, and blockchain technology for IoT scenarios. 

The framework enabled secure local data encryption through 

DABE for decentralized authentication and performed secure 

computations on encrypted data via HE. Initial deep learning 

models were distributed via blockchain to edge devices. While 

the framework effectively addressed secure decentralized 

learning challenges in IoT environments, its performance 

overhead in resource-constrained environments remained a 

major concern. 

Xiong et al. [20] proposed an effective privacy-elevated 

asynchronous FL scheme for multimedia data in edge-based 

IoT, combining revocable attribute-relied encryption and DP. 

The framework introduced an asynchronous weight-relied 

aggregation scheme to elevate training efficacy and model 

caliber while maintaining privacy throughout the process. 
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Performance evaluation showed significant improvements 

with 63.3% reduction in cryptography runtime and 61.9% 

reduction in global model aggregation time compared to 

existing procedures. The approach maintained competitive 

accuracy rates across multiple datasets while ensuring privacy 

preservation. However, the framework’s performance in 

highly heterogeneous IoT environments required additional 

optimization. 

Saidi et al. [21] developed an integrated approach 

combining CP-ABE and CKKS encryption to enhance privacy 

in FL environments without compromising performance. 

Secret sharing procedures protected model weights by 

preventing single points of failure while maintaining strong 

data privacy guarantees. The framework demonstrated 

promising results compared to existing approaches in terms of 

security and efficiency. Nevertheless, the system’s scalability 

with increasing numbers of attributes and participants needed 

further exploration. 

Nabi et al. [22] proposed a distributed privacy-preserving 

learning-based chaotic encryption framework designed for 

cognitive healthcare IoT systems. This framework ensured 

secure data transmission while maintaining the confidentiality 

of sensitive medical information. By leveraging chaotic 

encryption, the model enhanced security in cognitive IoT 

applications and addressed privacy concerns in healthcare 

systems. The authors validated the framework’s performance 

using extensive experimental analysis, demonstrating its 

robustness and efficiency in securing IoT-based healthcare 

systems. However, a significant drawback of the study was the 

potential computational overhead associated with chaotic 

encryption, which might limit its scalability for large-scale IoT 

deployments in resource-constrained environments. 

Shen et al. [23] introduced a security-elevated FL procedure 

incorporating homomorphic encryption and secret sharing 

after identifying vulnerabilities in the PEPFL framework. 

Their analysis uncovered an attack strategy that succeeded in 

retrieving private information when participant numbers 

remained below 300. The proposed solution implemented 

private gradient inference. Experimental results confirmed 

significant reduction in collusion risks while maintaining 

uninterrupted training capability. Meanwhile, the scheme 

showed minimal impact on model training accuracy, but its 

performance was limited under varying network conditions. 

Garcia-Rodriguez and Skarmeta [24] developed a 

comprehensive privacy-preserving attribute-relied approach 

for IoT device lifecycle management using p-ABC schemes 

with distributed issuance capability. The solution integrated 

with W3C’s standards to facilitate adoption and compatibility 

with existing systems. The framework addressed device 

lifecycle challenges following self-sovereign principles and 

demonstrated practical applicability through implementation 

in the H2020 ERATOSTHENES project. While the 

framework effectively addressed IoT identity management 

requirements, it fell short in terms of performance 

optimization for resource-constrained environments. 

Ma et al. [25] introduced xMK-CKKS, an enhanced variant 

of the MK-CKKS multi-key HE protocol tailored for secure 

FL. This method encrypted model updates by utilizing a 

collective public key prior to server transmission and required 

cooperation among all involved devices for decryption. Their 

solution safeguarded against privacy breaches from shared 

model updates and proved resilient to collusion between the 

server and participating devices. The evaluation highlighted its 

superior approach. However, the system’s scalability with 

large numbers of participating devices required further 

investigation. 

Arumugam et al. [26] proposed ECC-BFL, combining 

Elliptical Curve Cryptography with Blockchain-relied FL to 

ensure user privacy and gradient confidentiality. The 

framework achieved impressive metrics including 95% 

classification accuracy and 92% transaction speed, with 

significant improvements in communication and computation 

overhead. Comparative analysis against existing methods 

demonstrated superior performance across multiple 

parameters. The solution effectively balanced security 

requirements with system efficiency. Nevertheless, the 

blockchain component’s scalability in large-scale 

deployments remained constrained. 

 

Table 1. Quick summary of the different existing works 

 
S. No Author & Year Technology Key Advantages Main Limitation 

1 Narkedimilli et al. 

[19] 

Decentralized Attribute-Based 

Encryption, Blockchain 

Secure local encryption with 

decentralized authentication 

Performance overhead in resource-

constrained IoT 

2 Xiong et al. [20] Revocable attribute-based 

encryption , Differential 

privacy 

63.3% reduced cryptography 

runtime 

Poor performance in heterogeneous IoT 

3 Saidi et al. [21] CP-ABE, CKKS encryption, 

Secret sharing 

Granular access control with 

secure computation 

Limited scalability with increasing 

attributes 

4 Nabi et al. [22] Chaotic encryption for secure 

data transmission 

Ensures data security and 

privacy in cognitive IoT 

systems 

Computational overhead may limit 

scalability in resource-constrained 

environments 

5 Shen et al. [23] Homomorphic encryption, 

Secret sharing 

Significant reduction in 

collusion risks 

Poor performance in varying networks 

6 Garcia-Rodriguez 

and Skarmeta [24] 

p-ABC schemes, W3C 

Verifiable Credentials 

Compatible with W3C 

standards 

Poor resource optimization 

7 Ma et al. [25] Multi-key HE protocol Superior communication costs Increased computational complexity 

8 Arumugam et al. 

[26] 

Elliptical Curve Cryptography, 

Blockchain 

95% classification accuracy Limited blockchain scalability 

9 Lin et al. [27] Attribute-based access control, 

Federated deep learning 

High data integrity Scalability issues in dynamic setups 

10 Islam and Madria 

[28] 

Revocable ABE, DMG-SDS Unlimited user revocation High computational cost 
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Lin et al. [27] introduced SACM, an attribute-relied Secure 

Access Control Mechanism for IoT-Health leveraging FL. The 

framework innovatively correlated users’ social attributes with 

trust levels based on social influences using graph 

convolutional networks. Access permissions were determined 

through trust thresholds specific to each occupation, with 

federated deep learning optimizing control parameters. 

Experimental results showed effective access control. 

However, the system’s performance in highly dynamic social 

networks required additional investigation. 

Islam and Madria [28] proposed a revocable collusion-

resistant ABE scheme supporting unlimited user revocation 

without affecting non-revoked users’ secret membership keys. 

The framework extended to DMG-SDS, enabling dynamic 

multi-group operations while maintaining key integrity. 

Performance assessment showed significant advantages over 

contemporary schemes in multi-group data sharing scenarios. 

The approach effectively addressed security requirements 

while maintaining practical implementation capabilities. 

Meanwhile, the system’s efficiency with extremely large user 

groups might benefit from further optimization. Table 1 

highlights the summary of distinct existing procedures. 

 

 

3. SYSTEM OVERVIEW 

 

This section details about the overview of attribute 

encryption system used as the hybrid model for the proposed 

framework. 

 

3.1 Attribute based encryption system (ABE)-An overview  

 

Attribute-based encryption (ABE) is a cryptographic 

method that offers precise control over who can access 

encrypted data. Unlike traditional encryption procedures, 

where a secret key is required for decryption and only 

authorized individuals can utilize it, ABE enables encryption 

using attributes such as an Individual’s role or location. The 

ability to access the encrypted data depends on the parameters 

of the individual making the request. In 2005, Abebe and 

Hussain [29] proposed ABE as a framework for managing data 

access through the use of attributes. Since then, ABE has 

gained considerable attention in research and found 

applications in areas like wireless networks, IoT and cloud 

computing. 

ABE provides varied benefits compared to conventional 

encryption scheme. It desires for detailed utilization control, 

enabling the granting or revocation of access rights which 

relies on changing conditions like user role updates. This 

characteristic makes ABE especially applicable in IoT settings, 

where many devices with diverse utilities and access levels 

interact within a network. Additionally, ABE ensures data 

confidentiality and privacy, as only those whose features meet 

the access policy are able to decrypt the data. This means that 

whenever if a malicious entity gains entry to the encrypted 

data, they cannot decrypt it without possessing the required 

attributes. While, ABE has few drawbacks. For instance, the 

decryption process can be computationally demanding, as it 

involves evaluating complex access policies. Furthermore, the 

use of ABE can lead to larger cipher texts, which may pose 

challenges for storing and transmitting large datasets over the 

network. 

 

 

4. PROPOSED METHODOLOGY 

 

Figure 1 shows the proposed framework deployed for PPFL 

to mitigate the different attacks. The suggested framework 

consists of four major parts such as Key generation, Data 

Collection from IoT devices, Centralised Model design using 

Optimized X-LSTM model and proposed PPFL training 

model. The Thorough description of the recommended 

approach is as pursues  

 

4.1 System model  

 

As portrayed in Figure 1, the system model comprises of 

pursuing components: 1) Key Manager 2) Cloud Manager 3) 

Communication layers 4) User Nodes  

a. Key manager: The key manager (KM) generates the 

keys for the both the central server and IoT systems using 

ABE-HCL techniques. This module automatically computes 

the system public key and system master keys which are 

distributed to the nodes and cloud for formulating the strong 

encryption and decryption process. 

b. Cloud Manager: This layer of cloud Seeks to create the 

global approach by opting a set of attributes that produce 

various attribute value keys for potential entities. The cipher 

text is generated by the models are generated using the Cloud 

manager. 

c. Communication layer: This layer enables for 

transmission of the encrypted local models and weights from 

the nodes to cloud layer. 

d. User Nodes: The user nodes are IoT nodes which are 

used to collect the local data thereby training the local schemes 

and sends to the cloud server in an encrypted manner. 

 

4.2 Centralized model design 

 

The centralized model design for the recommended 

approach consists of Extended Long Short-Term Memory and 

Optimized Learning networks for the detection of multiple 

attacks. 

 

4.2.1 Recurrent Neural Networks (RNN)-An overview  

In RNN, the hidden layers of one network are linked to the 

hidden layers of further nodes in a new network. RNNs are 

primarily designed for applications involving time series and 

large-scale data analysis because they can recall past 

information and encode historical data within a few 

milliseconds. This approach allows for the direct creation of 

graph structures using nodes and their sequences. 

Consequently, it can demonstrate dynamic behaviour for 

synchronizing sequences. By utilizing an internal state 

(memory), RNNs process input sequences, leveraging prior 

data to forecast future outcomes. However, in practical service 

platforms, while the gap among past and future data is 

significant, this approach hurdles to retain meaningful 

information from earlier data, causing to the vanishing 

gradient challenge. As a result, the outcomes may not be ideal 

for real-time scenarios. To resolve this issue, the performance 

of RNNs has been enhanced through the constructing of Long 

Short-Term Memory (LSTM) networks [30]. 

 

4.2.2 LSTM-An overview  

LSTM networks are widely used learning models, known 

for their flexibility in handling memory and reliability for large 

databases. The LSTM architecture is given in Figure 2. 
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Figure 1. Proposed framework for the ABE-HCL enabled FL model 

 

 
 

Figure 2. LSTM structure 

 

The recommended hybrid learning model integrates LSTM 

with the Whale Optimization approach. LSTM consists of 

three key components: the input gate (I.G), the forget gate 

(F.G), the cell input (V.I), and the output gate (D.G). Typically, 

LSTM is a memory-driven neural network(NN) designed to 

retain values after each loop. Given that xt represents the 

current input and ht denotes the output at time step t, with ht−1 

as the previous output, the cell input state is Vt, and the cell 
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output state is Lt (with its preceding state Lt-1, the gates' states 

are represented by kt, Tf, and T0. The structure of LSTM 

operates such that both Lt and ht are transmitted to the 

subsequent NN layer in the Recurrent Neural Network (RNN). 

The LSTM mechanism merges the output of the prior unit with 

the recent input state, where the output and forget gates 

facilitate updates to the memory. To determine Gt and ht, the 

pursuing equations are utilized. 

  

𝐼. 𝐺: 𝑘𝑡 =  𝜃(𝐿𝑙
𝑖 . 𝐷𝑡 +  𝐿ℎ

𝑖 . 𝑒𝑡−1 + 𝑠𝑖) (1) 

 

𝐹. 𝐺: 𝑇𝑓  =  𝜃(𝐺𝑙
𝑓

. 𝐷𝑡 + 𝐿ℎ
𝑓

. 𝑒𝑡−1 + 𝑠𝑓) (2) 

 

𝐷. 𝐺: 𝑇𝑜 =  𝜃 (𝐿𝑙
0. 𝐷𝑡 + 𝐿ℎ

𝑜 . 𝑒𝑡−1 + 𝑠𝑜) (3) 

 

𝑉. 𝐼: 𝑇�̃� = tanh (𝐿𝑙
𝐶 . 𝐷𝑡 + 𝐿ℎ

𝐶 . 𝑒𝑡−1 + 𝑠𝐶) (4) 

 

The weight matrices among the input gates and output 

layers are denoted as 𝐿𝑙
0, 𝐿𝑙

𝑓
, 𝐿𝑙

𝑖 , 𝐿𝑙
𝐶 , while the weight criteria 

among the hidden and input layers are represented by 

𝐿𝑙
0, 𝐿𝑙

𝑓
, 𝐿𝑙

𝑖 , 𝐿𝑙
𝐶 . The bias vectors are labelled as 𝑠𝑖 , 𝑠𝑓 , 𝑠𝑜 , 𝑠𝐶  and 

the hyperbolic function tanh is applied. The output state of the 

cell is ascertained by the pursuing formulas: 

 

𝑇𝐶 = 𝑘𝑡 ∗  𝑇�̃� + 𝑇𝑓 ∗ 𝑇𝑡−1 (5) 

 

𝑒𝑡 = 𝑇𝑜 ∗ tanh (𝑇𝐶) (6) 

 

The equation above yields the final output score. 

 

4.3 Extended LSTM model –Its working mechanism  

 

To elevate the storage capacity of LSTMs, the memory cell 

is extended from a scalar c∈R to a matrix C ∈ Rdxd, allowing 

for retrieval via matrix multiplication. At a given time, t, a pair 

of vectors-a key kt ∈ Rd and a value vt∈Rd stored, following 

the terminology used in Transformers. Subsequently, at time 

t+τ, the value vt is acquired using a query vector qt+τ ∈ Rd. This 

mechanism aligns with the framework of Bidirectional 

Associative Memories (BAMs). The process employs the 

covariance update rule to encode the key-value pairs 

effectively. 

 

𝐶𝑡 = 𝐶𝑡−1 + 𝑣𝑡𝑘𝑡
𝑇 (7) 

 

We presume a layer normalization step is performed prior 

to projecting inputs into key and value spaces, ensuring these 

projections have a mean of zero. The rule for updating the 

covariance matrix is designed to optimize the separability of 

retrieved binary vectors. This optimal separability corresponds 

to achieving the highest possible signal-to-noise ratio. 

Enhanced separability can be achieved by restricting acquired 

to pairwise interactions and accepting the quadratic 

computational complexity associated with attention 

mechanisms.  

Building on this foundation, we embed the covariance 

update rule within the LSTM architecture. In this setup, the 

forget gate 𝑓𝑡 acts as a decay factor, controlling how much of 

the previous memory is retained. The input gate 𝑖𝑡 regulates 

the learning rate by controlling the flow of new information 

into memory. The output gate 𝑂𝑡 adjusts the influence of the 

current memory state on the output. These gates are standard 

in LSTM architectures and are integrated here to manage the 

dynamics of memory update and retrieval.  

Within this matrix memory framework, the normalizer state 

𝑛𝑡 is defined as a weighted summation of key vectors, with 

weights determined by the input gate  and the cumulative 

influence of all subsequent forget gates. This normalizer state 

effectively captures the dynamics of gate strengths. Given that 

the dot product among the query and the normalizer state can 

approach zero, taking the magnitude of this dot product and 

setting a minimum threshold (commonly 1.0) to ensure 

stability. Consequently, the forward propagation in the 

mLSTM model proceeds as: 

 

𝐶𝑡 = 𝑓𝑡  𝐶𝑡−1 + 𝑖𝑡  𝑣𝑡𝑘𝑡
𝑇 

Cell state 
(8) 

 

𝑛𝑡 = 𝑓𝑡  𝑛𝑡−1 + 𝑖𝑡  𝑘_𝑡 

Normalizer state 
(9) 

 

ℎ𝑡 = 𝑜𝑡  ⨀ ℎ𝑡 ,̃  ℎ�̃� = 𝐶𝑡  𝑞𝑡/𝑚𝑎𝑥{|𝑛𝑡
𝑇  𝑞𝑡|, 1} 

Hidden state 
(10) 

 

where, the intermediate vectors are computed as: 

 

𝑞𝑡 = 𝑊𝑞  𝑥𝑡 + 𝑏𝑞  

Query input 
(11) 

 

𝑘𝑡 =
1

√𝑑
 𝑊𝑘𝑥𝑡 + 𝑏𝑘  

Key input 
(12) 

 

𝑣𝑡 = 𝑊𝑣 𝑥𝑡 + 𝑏𝑣 

Value input 
(13) 

 

Gate activations are calculated using: 

 

𝑖𝑡 = exp (𝑖�̃�), 𝑖�̃� = 𝑤𝑖
𝑇 𝑥𝑡 + 𝑏𝑖 

Input gate 
(14) 

 

𝑓𝑡 =  𝜎(𝑓�̃�) 𝑂𝑅 exp( 𝑓�̃�) , 𝑓�̃� = 𝑤𝑓  𝑥𝑡 + 𝑏𝑓 

Forget gate 
(15) 

 

𝑜𝑡 = 𝜎(𝑜�̃�), 𝑜�̃� = 𝑊𝑜𝑥𝑡 + 𝑏𝑜 

Output gate 
(16) 

 

The mLSTM framework, similar to the traditional LSTM, 

accommodates multiple memory cells. In the context of 

mLSTM, having multiple heads is synonymous with having 

multiple cells due to the absence of memory integration.  

 

4.4 X-LSTM architecture 

 

An xLSTM block is designed to non-linearly condense past 

information within a high-dimensional space, which enhances 

the ability to distinguish between different historical contexts 

or sequences. This separation of histories is crucial for 

accurately predicting the subsequent sequence element, such 

as the next token. The approach is grounded in Cover's 

Theorem [31], which suggests that patterns non-linearly 

embedded into a higher-dimensional space are more likely to 

attain linear separation compared to the original space. 

The advantages of two configurations for residual block 

architectures: 

1. Residual Block with Post Up-Projection: Similar to 

the design in Transformers, this configuration 
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initially condenses past information non-linearly 

within the original space. It then projects this 

representation linearly into a high-dimensional space, 

applies a non-linear activation function, and 

afterward, restores it to the original space.  

2. Residual Block with Pre Up-Projection: Aligned 

with the architecture of State Space Models, this 

variant starts by projecting the data linearly into a 

high-dimensional space, where the past is non-

linearly summarized. The representation is then 

linearly mapped back to the original space. 

 

4.5 Optimized learning model  

 

In this work, Ashera CAT Swarm Optimized Deep Learning 

Networks, inspired by Cat Swarm Optimization [32], are used 

for the effective prediction of multiple attacks in IoT systems. 

Training and testing is done using 10-fold cross-validation to 

reduce the bias vectors during testing. The thorough 

representation of the approach is explained below. 

 

4.5.1 Ashera CAT Swarm Optimization model  

The Ashera CAT Swarm Optimization (CSO) algorithm is 

a contagious, single-objective optimization technique aspired 

by the traits of Ashera cats, particularly their resting and 

tracing actions. Ashera cats appear to be lethargic, spending 

most of their time resting. Despite their idle state, they 

maintain heightened awareness of their environment. During 

these periods of rest, they stay alert and observant, and upon 

recognition of a target, they quickly move towards it. The CSO 

approach mimics this dual behavior by combining these two 

characteristics into its framework. The algorithm operates in 

two phases: the seeking and tracing modes. Each Ashera CAT 

in the algorithm represents a potential solution, with a position 

in the search space, a fitness value, and a flag. The location 

consists of multiple dimensions, each with an associated 

velocity, while the fitness value indicates the quality of the 

resolution. The flag serves to categorize the cat as either in 

seeking or tracing mode. In practice, the number of Ashera 

CATs participating in each iteration needs to be specified. 

These cats are processed through the approach, with the best 

performing one at every loop being stored in memory. The cat 

with the highest fitness at the final loop is selected as the 

solution. Figure 3 depicts the flow of the Ashera CSO 

approach, and the workings of the seeking and tracing phases 

are further explored in the subsequent segment. 

Seeking Modes. This phase mimics the dormant trait of 

Ashera cats, here four key factors are crucial: the memory pool 

search (MPS), the search scope of the chosen dimension 

(SSCD), the number of dimensions to alter (NDA), and the 

consideration of self-position (CSP). These parameters are all 

adjusted and established by the individual through a trial-and-

error process. 

SMP determines the quantity of potential positions to be 

considered by an Ashera CAT, essentially defining how many 

candidate locations are generated, from which one will be 

selected for the Ashera CAT’s next move. For instance, if 

SMP is set to 5, five random positions will be generated for 

each Ashera CAT, and one will be chosen as the next location. 

The method used to randomize these locations depends on the 

values of the varied dual attributes: CDC and SRD. CDC 

indicates the proportion of dimensions to be altered, which 

ranges from 0 to 1. For instance, if the search space has five 

dimensions and CDC is set to 0.2, then four dimensions will 

be randomly chosen for modification, leaving the remaining 

one unchanged. SRD specifies the mutation ratio for the 

chosen dimensions, indicating how much of the selected 

dimensions (as determined by CDC) will be adjusted. Finally, 

SPC is a Boolean flag that indicates while the recent location 

position of an Ashera CAT should be included as a candidate 

for the upcoming loop or not. 

If the SPC flag is enabled, for each Ashera CAT, the system 

should generate (SMP-1) candidates instead of the usual SMP. 

This adjustment accounts for the recent location being 

included as one of the candidates. The steps involved in 

seeking phase are outlined as pursues: 

(1) Initiate multiple SMP duplicates of the recent location 

of Ashera CAT. 

 

 
 

Figure 3. Entire working process for the Ashera CAT swarm optimization 
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(2) For every instance, randomly choose a set number of 

CDC dimensions to undergo mutation. Additionally, randomly 

increase or decrease the SRD values from the existing values, 

which will interchange the previous locations, as described in 

Eq. (17). 

 

𝑥(𝑛𝑒𝑤_𝑐𝑎𝑡) = (1 + 𝑟𝑎𝑛𝑑 + 𝑆𝑅𝐷) ∗ 𝑥(𝑜𝑙𝑑_𝑐𝑎𝑡) (17) 

 

where, x(new_Ashera CAT) is new Ashera CAT’s new 

location, x(old_Ashera CAT) is Ashera CAT’s initial location 

and rand is random interval of time among [0,1]. 

The Fitness Function (FF) is calculated as per the following 

expression (18), and the candidate location is chosen which 

relies on the highest probability corresponding to the Fitness 

Function value. This approach selects the position with the 

highest FF, ensuring the optimal candidate is selected based 

on its fitness ranking.  

 

𝑃(𝑖) = |(𝐹𝐹(𝑖) − 𝐹𝐹(𝑏)|/(𝐹𝐹𝑚𝑎𝑥 − 𝐹𝐹𝑚𝑖𝑛) (18) 

 

The fitness of the recent Ashera CAT is denoted as FF(i), 

while FF(b) represents the total population of Ashera CAT. 

FFmax indicates the highest value of the FF, and FFmin refers 

to the lowest value of the FF. 

Tracing Modes. In this phase, the trait of Ashera Cats is 

replicated by mimicking their tracing actions. Initially, random 

velocity values are assigned to each dimension of an Ashera 

Cat’s position. However, in subsequent iterations, the velocity 

values must be modified accordingly. This method of 

movement for Ashera Cats is described as pursues: 

(i) Upgrade velocities (V (ASHERA CAT)) for all 

dimensions regarding to below Eq. (19): 

 

𝑉(𝐶𝐴𝑇) = 𝑉(𝐶𝐴𝑇) + 𝑎 ∗ 𝑐 (𝑥(𝑛𝑒𝑤_𝑐𝑎𝑡) −
𝑥(𝑜𝑙𝑑_𝑐𝑎𝑡))  

(19) 

 

where, a and c are constants. 

 

4.5.2 Hyper parameter tuning process  

The proposed Optimized are utilized to optimize the 

weights of X_LSTM dense networks. Initially, the 

hyperparameters are opted at random and moved to the X-

LSTM training network. The novel FF which is coined based 

on ACO model is given in Eq. (20). 

 

𝐹itness Function =  Min(MSE(Predicted value −

Actual Value))  
(20) 

 

The fitness function is computed based on the minimum 

error which is measured by MSE (mean Square Error) among 

the predicted value and actual value. Once the 

hyperparameters are optimized using Eq. (16), dense training 

layers classifies data into normal and attacks. The complete 

phase of operation of the recommended approach is 

represented in Algorithm-1.  

 
Steps Algorithm-1 // Pseudo Code for the Proposed 

Model 

01  Input = Bias weights, Hidden layers, Epochs, Learning 

Rate  

02 Output: Prediction of Normal/Attack 

03 Randomly allocate the bias weights, learning rate, 

hidden layers and epochs. 

04 Commence the three parameters such as  

05 While (true) 

06     Compute the output from XLSTM cells utilizing Eq. 

(8) to (16) 

07           Compute the Fitness function utilizing the Eq. 

(19) 

08       For t=1 to N where N= Maximum Iteration 

09         Allocate the bias weights and input layers by Eq. 

(8) to (16) 

10                         Compute the fitness function by 

utilizing Eq. (19) 

11                                           If (Fitness function = = Eq. 

(19)) 

12                                                                           Go to Step 17 

13                                       Else    

14                                                  Go to Step 08 

15 End 

16 End 

17     If (output value <=1) 

18                 //Normal is Ascertained 

19 Else if (output value >1 && output value <=2) 

20                 // Attacks are Ascertained 

21 Else 

22  Go to Step 09 

23 End 

24 End 

25 End 

 

4.6 FL model for the proposed network  

 

FL is considered to be promising framework that used to 

construct the privacy-preserving learning models that guards 

the privacy. In the progress of learning framework, global 

model based on the ACAT-X-LSTM model is trained with the 

help of other participants and the decentralized data overseen 

by the central cloud/server. The individual receives a common 

global scheme from the server and execute training on their 

individual local datasets. Afterward, they pass the weights or 

gradients of their locally trained scheme to the task publisher 

for updating the global approach. (Algorithm-2 presents the 

working mechanism of the proposed model). Specifically, 

Fed-X-LSTM is formulated with the objective function is 

rewritten relied on the Fed-Avg functions which are 

represented as follows: 

 

𝑓(𝑤) = ∑
𝑁(𝑖)

𝑁
∗ 𝐹(𝑊)

𝑗
𝑗=1   (21) 

 

The algorithm follows a straightforward approach, where j 

portrays the total count of participants, and 𝑛(i) portrays the 

count of training samples for the j-th participant. Initially, 

specific nodes are chosen within each batch for training across 

epochs. Subsequently, each node transmits its weight upgrades 

to the central server. 

 

𝒘 < − − − − 𝒘 < − − −𝜼𝜶𝑳(𝒘, 𝒉) (22) 

 

The server then gathers all the wt+1k values to compute the 

weighted average of the updated global wt+1, which is 

subsequently transmitted to each participant. 

 

(𝑤) = ∑
𝑁(𝑖)

𝑁
∗ 𝑊(𝑗 + 1)

𝑗
𝑗=1   (23) 

 
Steps Algorithm-2 //FL for the Recommended Optimized 

Model 

1 The Central transfers sends a weights of the model to 

each user nodes in an Encryption framework (Section-

4.7). 

2 All the weights are encrypted by using proposed 
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encryption schemes (As mentioned in 4.7). 

3 Every Ch-IoT nodes trains the retrieved weights 

utilizing decryption process using their own private data 

and transfers to server in an encrypted. 

4 The server systems aggregate the partial models using 

Eq. (23) through their parameters and builds the 

federated model. 

5 The main server examines a stopping criterion by 

assessing the FF, represented by Eq. (22). If the criterion 

is met, the FL (FL) progress wraps up; instead, it begins 

again from step 1. 

 

4.7 HCL schemes for techniques  

 

As discussed PPFL requires more security in sharing of the 

private data to train the federated model. Therefore, the chaotic 

preserving procedures are used in FL. In this research, chaotic 

procedures are utilized along with ABE for maintaining the 

privacy and encrypting the data from the nodes to server. To 

establish the chaotic principles, a heterogeneous combination 

of the Henon and HCL maps is employed in the proposed 

framework. The multi-HCL attractors are favoured over varied 

residing chaotic maps like circle, sine, logistic maps and tent 

due to their superior randomness and the capability to 

manipulate chaotic trajectories by adjusting initial phases. 

 

4.7.1 HCL attractors 

Dynamic systems that exhibit multi-HCL attractors often 

demonstrate more intricate behaviour compared to typical 

chaotic systems with single-HCL attractors. The equation 

governing the state space for an automatic chaotic system is 

expressed as: 

 

�̇�1 = −𝑎𝑥1 + 𝑏𝑥2𝑥3 (24) 

 

�̇�2 = −𝑐𝑥2
3 + 𝑑𝑥1𝑥3 (25) 

 

�̇�3 = 𝑒𝑥3 − 𝑓𝑥1𝑥2 (26) 

 

The above Eqs. (24)-(26) could be revised by the adding the 

hyperbolic equation 𝑝1 𝑡𝑎𝑛ℎ( 𝑥2 + 𝑔) which is given in below 

equations: 

 

�̇�1 = −𝑎𝑥1 + 𝑏𝑥2𝑥3 (27) 

 

�̇�2 = −𝑐𝑥2
3 + 𝑑𝑥1𝑥3 (28) 

 

�̇�3 = 𝑒𝑥3 − 𝑓𝑥1𝑥2 + 𝑝1 𝑡𝑎𝑛ℎ( 𝑥2 + 𝑔) (29) 

 

Chaotic attractor is acquired when 𝑎 = 2 , 𝑏 = 6 , 𝑐 = 6 , 

𝑑 = 3 , 𝑒 = 3 , 𝑓 = 1 , 𝑝1 = 1 , 𝑔 = 2  and the chosen initial 

factors are [𝑥1(0), 𝑥2(0), 𝑥3(0)] = [0.1,0.1,0.6].  
When the hyperbolic function is applied originally with a 

parameter value of g=−3 and the starting conditions 

[0.1,−0.1,−0.6], a double-HCL attractor is observed, as 

portrayed in Figure 4. 

 

4.7.2 Henon maps-its principles of working  

Henon Maps [33] are the disruptive quadratic and non-

linear maps given by its characteristic equation. 

 

𝑋𝑛+1=1 − 𝑎𝑋𝑛
2 +𝑌𝑛

  (30) 

 

𝑌𝑛+1=1 − 𝑏𝑋𝑛
  (31) 

 

The classical maps rely on the dual parameters an and b 

which has the values of a=1.4 and b=1.3. For the classical 

values, Henon map is chaotic. For the varied values of an and 

b, henon maps may exhibit the chaotic behavior which can be 

identified with the several times of iteration. Figure 5 

represents the chaotic behavior of the henon maps using 

classical values. 

In the proposed HCL techniques, HCL and henon maps are 

combined to form the ensemble techniques. The random 

output from the henon maps will be the input to the HCL 

attractors. The integration of the two maps leads to the high 

randomness outputs that can be used to create the strong keys 

against the multiple keys. Figure 6 shows the bifurcation 

diagram for the proposed HCL technique. The mathematically 

HCL is expressed by modifying the Eq. (30) and Eq. (31). 

 

 
 

Figure 4. Non –linear behaviour diagram of multi-HCL attractors  
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Figure 5. Non –linear behaviour diagram of Henon MAPS 

 

 
 

Figure 6. Non–linear behaviour diagram of HCL maps at the initial condition when a=0.3, b=0.1 

 

𝑋𝑛+1=1 − 𝑎𝑋𝑛
2 +𝑌𝑛

   +F(s) (32) 

 

𝑌𝑛+1=1 − 𝑏𝑋𝑛
  +F(s) (33) 

 

where, F(s) is HCL maps. 

 

4.7.3 ABE-HCL encryption technique 

In this study, Cipher text policy based attribute relied 

encryption schemes (CP-ABE) based on the HCL techniques. 

For the encryption process, access policies (AP) are initiated 

by utilizing user attributes and the data can only be decrypted 

by the receiver if their attributes fulfil the AP's conditions. As 

the first step, public key(PK) and master key(MK) are 

constructed. By utilizing the AP and PK, a ciphertext is created. 

The secret keys are generated by utilizing mater keys and an 

attribute sets. To make the model as more resistant against the 

collusion attacks, the proposed study incorporates the 

heterogeneous chaotic encryption schemes to be more resistant 

against the collusion attacks. In the existing technique, 

attribute-based encryption (CP-ABE) procedures often rely 

on bilinear pairings of elliptic curves, known as pairing-

friendly curves. Let G1 and G2 be cyclic groups of prime 

order p, and let e: G1 × G1 → G2 be a bilinear map. In this 

proposed research, all the maps are generated based on the 

HCL technique which produces the more random keys 

which are unpredictable for tampering. 

Encryption using HCL maps introduces additional security 

and privacy levels by modifying the input parameters 

(Algorithm-3). For encryption with HCL maps, a permutation 

operation is performed between each element of the input data 

and a chaotic value constructed by the HCL maps. The ith 

element of the plaintext data is diffused with the random value 
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from the HCL maps to generate robust encrypted data. Prior to 

encryption, both the HCL maps and the data are scaled to a 

common factor of 16 to reduce process challenge. Similarly, 

in the reversible operation (Algorithm-4), a diffusion 

operation is performed among the encrypted data and the same 

encryption key (or parameter), which restores the original 

plaintext. The unique properties of chaotic systems, like 

ergodicity, sensitivity and determinism to initial phases, make 

them an attractive option for designing cryptographic systems. 

A prominent strength of chaos-relied encryption approaches is 

their computational efficiency [34]. 

Step Algorithm-3// ABE-HCL based privacy Encryption 

Schemes 

1 Input: Data Parameters (D) 

2 Output: Encrypted Data (E) 

3 Key generation Process (PK) using HCL maps 

4 Initial conditions selections 

5 Generate the HCL maps (G) and encrypts in 

accordance to the access policies AP 

6 For i= 1 to n_iteration 

7  F= Data.G(i) 

 Formation of Cipher text in according to the 

access policies AP 

8 End 

9 The output from the encryption process 

Algorithm-4// ABE-HCL based privacy Decryption 

Schemes 

1 Input: Encrypted Data (E) 

2 Output: Plain Data (P) 

3 First checks the attribute set satisfies access policy AP 

4 If Satisfies the AP 

5  Recover the messages 

6 Else 

7  Decryption Fails 

8 End 

9 The output from the decryption process 

The encryption and decryption processes, as detailed in 

Algorithm-3 and Algorithm-4, comprise several stages: 1) Key 

Generation: The keys are created by looping among varied 

originating criteria of the HCL maps. 2) Diffusion: This phase 

facilitates the interaction among the data and the HCL keys to 

generate the encrypted data. The primary goal of this research 

is to establish a multi-variable relationship among the original 

and the encrypted data. Furthermore, during encryption, 

numerous loops are applied to refresh the HCL maps and keys. 

Each iteration may modify the key to initiate additional 

randomness, thereby enhancing the security of the encryption 

process as per the AP. 4) The final encrypted outcome unveils 

increased Irregularity and greater Quantitative independence 

from the original data.5) The reversible progress of decryption 

is involved by checking the cipher text in accordance to AP if 

matches, decryption starts otherwise it ends. 

5. RESULTS AND DISCUSSIONS

This segment demonstrates about the experimentation setup, 

outcomes discussion and comparative analysis of the proposed 

model. 

This segment furnishes about the experimentation 

procedures, discussion for outcomes and atlast wrapped with 

the thorough comparison with the varied cutting-edge 

approaches. 

5.1 Experimental outcomes 

Experimental evaluations are carried out using TensorFlow 

version 2.3.3 along with Pandas 1.22 and Numpy 1.20. For the 

implementation of the FL framework, the TensorFlow 

Federated Library Flower is leveraged [35]. All the 

cryptographic algorithms are implemented in Crypto-charm 

libraries. Additionally, the proposed model was evaluated 

from the BoTNET-IoT datasets [36]. The data used for the 

evaluation in which the 70% of total data were used for 

training, 20% of data were used for testing and at last 10% of 

data is used for validation. 

The ablation experimentation is utilized in the four folded 

mode to prove the effectiveness of every segment of 

recommended approach. The detailed descriptions of the 

recommended approach are presented below. 

5.2 Ablation experiment outcomes 

5.2.1 Model evaluation 

To assess the efficiency of the recommended approach, 

performance metrics like specificity, precision, accuracy, F1- 

Score, and recall are calculated. Additionally, AUC (Area 

under ROC) and confusion matrix to validate supremacy of the 

recommended approach. The mathematical formulations for 

computing the performance metrics are outlined in Table 2. 

Greater values for these metrics signify superior performance. 

To address the network's overfitting challenge and elevate 

generalization, the early stopping procedure [37] is utilized. 

This approach halts the training process of the proposed 

network when the validation performance fails to improve 

over a specified number of consecutive iterations. To prove the 

effectiveness of the proposed framework, variants of federated 

LSTM such as Fed-LSTM [38], mLSTM [39], Fed-Hybrid 

LSTM [40], FAF-LSTM [41], Fed-Stacked LSTM [42] and 

Conventional LSTM [43]. 

Table 2. Mathematical expressions for the performance 

metrics’ calculation 

Performance Metrics Mathematical Expression 

Accuracy 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
Recall TP

T P+FN
x100 

Specificity 𝑇𝑁

𝑇𝑁 + 𝐹𝑃
Precision 𝑇𝑁

𝑇𝑃 + 𝐹𝑃
F1-Score 

2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

5.2.2 Discussions 

Figure 7 depicts the performance of the recommended 

approach with the changes in the drop-out ratios. Even though 

the drop-outs are increased, model is capable of showing the 

stable performance in the detecting the attacks. As shown in 

Figure 7 Ashera CAT optimized LSTM with its FL technology 

has maintained the average accuracy of 0.974, precision of 

0.965, recall of 0.96, Specificity of 0.96 and F1-score of 0.965 

with the increase in the drop-out ratios. Figure 8-17 illustrates 

the performance of the recommended and residing approach 

with the changes in the number of participants. In the first and 

second round of experimentation with the reduced count of 

individuals, every approach has shown the stable performance 

in recognizing the assaults. As the participants increases, 
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performance of conventional LSTM drops by 12%, Fed-

LSTM by 11.4%, mLSTM by 19.2%, Fed-FAF-LSTM by 

10.5%, Fed-Hybrid_LSTM by 9.3%, Fed-Stacked-LSTM by 

14,3% respectively. But the performance of the proposed 

federated framework drops only 1.5% as the participants 

increases. The role of federated optimized learning layers has 

portrayed the greater performance than the varied residing 

approaches. 

 

 
 

Figure 7. Performance of the recommended approach in recognizing the varied attacks with the varied drop-outs 

 

 
 

Figure 8. Accuracy of the varied approach in recognizing the varied threats with the varied drop-outs 

 

 
 

Figure 9. Precision of the varied approach in recognizing the varied threats with the varied drop-outs 
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Figure 10. Recall of the varied approach in recognizing the 

varied threats with the varied drop-outs 

Figure 11. F1-scores of the varied approach in recognizing 

the varied threats with the varied drop-outs 

 

 
 

Figure 12. Performance of the recommended fed approach with the maximising number of the participants 

 

 
 

Figure 13. Performance of the traditional LSTM model with the maximising number of the participants 
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Figure 14. Performance of Fed-mLSTM approach in detecting the different attacks for the maximising number of participants 

Figure 15. Performance of Fed-LSTM approach in recognizing the varied attacks for the maximising count of individuals 

Figure 16. Performance of Fed-FAF-LSTM approach in recognising the varied threats for the increased count of individuals 
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Figure 17. Performance of Fed-Hybrid-LSTM approach in recognizing the varied threats for the increased number of participants 

(a) 

(b) 

Figure 18. NIST standard test results a) Result of first six standard test b) Result of second six standard test 

5.3 Security analysis and its outcomes 

In this experimentation, the security robustness of the 

encrypted bits was assessed and examined through the 

implementation of the National Institute of Standards and 

Technology (NIST) tests. These tests ensure the randomness 

of the encrypted bits, adapting them for the secure 

communication of private models to central servers. The 12 

essential NIST were performed, and the experimentation 

results are shown in Figure 18 (a) & (b). 
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Figure 19. Communication time analysis for the different ABE encryption models integrated in the FL process 

Table 3. Comparison analysis between the existing works and proposed works 

Work Details Proposed Model 
Performance Analysis 

Accuracy CT (Sec) ET (Sec) DT (Sec) 

Shen et al. [23] PPFL-MKFHE 0.92 0.567 2.45 2.89 

Narkedimilli et al. [19] FL_DABE-BC N/A 0.833 n/a n/a 

Lin et al. [27] DeepFeed 0.90 0.892 1.89 1.90 

Xiong et al. [20] ABE-FL 0.91 0.67 2.99 3.01 

Saidei et al. [21] Chaotic Encryption with FL 0.92 0.453 1.64 1.56 

Proposed Model ABE-HCL with FL 0.965 0.390 1.92 1.99 

To validate the randomness of the recommended encryption 

procedure, 12 tests of NIST suite has to be passed in which the 

randomness value of P is set to be greater than 0.001. From the 

Figures 18(a)-(b), it is evident that the proposed encryption 

scheme has passed the NIST test which has proved its strength 

of protecting the PPFL in mitigating the multiple attacks. 

5.4 Communication time analysis 

The communication time analysis has been calculated by 

the time of transmitting update from clients to server. The 

mathematical expression of the communication time is 

expressed as follows 

𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 = N × Tsend + Taggregate (34) 

where, Tsend is the time for transmitting the data from devices 

to server whereas Taggregate  is the time taken by the 

server/cloud for aggregation process. N represents the number 

of rounds. For this experimentation, different existing 

Communication time for ABE techniques with FL models and 

proposed ABE-HCL integrated in FL process are considered. 

Based the Figure 19, it is very obvious that the 

recommended FL process has consume only 0.45secs with the 

maximum number of 10 which is 45% lesser than ABE 

technique, 35% lesser than KP-ABE, 27% lesser than CP-ABE 

and 25% lesser than MABE techniques. Hence the 

communication cost of using the proposed encryption model 

in FL has consumed only lesser communication overhead in 

transmitting and aggregating the global model. 

5.5 Comparative analysis by different works 

Table 3 presents a performance comparison between the 

recommended approach and various methods proposed by 

authors discussed in Section 2 (Related Works), using a 

bandwidth of 500 megabytes. 

From the Table 3, recommended approach has yielded the 

best performance in recognising the multiple threats but still 

has higher encryption and decryption time than the residing 

works. 

This is due to the fact that the recommended approach has 

integrated with the HCL with ABE to produce the best 

randomness values. But still it has scope of improvisation in 

reducing the encryption and decryption time suitable for the 

IoT devices. 

6. CONCLUSION AND FUTURE ENHANCEMENT

This current study, recommended protocol based on the FL 

with the novel ABE-HCL encryption techniques has been 

presented The optimized LSTM network works on the 

principle of Ashera CAT optimization approach was 

recommended for an effective detection of multiple attacks. 

Later, Optimized approaches are transformed from 

conventional training approaches into federated distributed 

networks, enabling more efficient resource utilization and 

improved performance. The ABE-HCL maps are utilized to 

encrypt and decrypt the local schemes, transforming the 

distributed scheme into a privacy-preserving mechanism 

capable of mitigating various types of attacks. Comprehensive 
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experiments were conducted using the BotNET datasets, and 

several performance metrics are evaluated and analysed. In the 

initial experimentation, metrics like F1-score, accuracy, recall, 

and precision were computed for the recommended federated 

approach and varied residing cutting-edge LSTM procedures. 

The outcomes portray that the recommended approach 

surpasses the others, achieving the highest accuracy of 0.97, 

an F1-score of 0.965, precision of 0.96 and recall of 0.96. 

Computational time was also assessed, with the distributed 

model showing shorter processing times examined to the 

varied approaches. Finally, the approach’s privacy was 

validated through NIST standard tests. Across all 

experimentations, the recommended distributed learning 

approach exhibited optimal performance, establishing their 

strong potential for IoT systems. 

In future, Computational overhead is needed to be infused 

for varied Edge/Fog gateway devices to enhance the 

approach’s efficiencies including computation, 

communication and secured storage. Moreover, full approach 

would be refined for managing real-time datasets. 
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