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High fall accidents are frequently reported on construction sites, with inadequate opening 

protection being one of the major risk sources. Traditional manual inspection methods are 

inefficient and susceptible to subjective judgment. To enhance the efficiency and accuracy 

of Construction Safety Management (CSM), this study aims to develop an AI-based 

automated detection and report generation system. The system integrates YOLOv8 for 

object detection and the CLIP model for image-text matching, enabling real-time analysis 

of construction site images to automatically identify the absence of fall protection or non-

compliant installations and generate structured safety reports. The YOLOv8l-based object 

detection model yielded a precision of 0.943, recall of 0.952, and mAP@50 of 0.923. The 

CLIP-based semantic matching module achieved an accuracy of 85% for identifying non-

compliant fall protection conditions at an optimized similarity threshold of 0.66. These 

outcomes support the system's risk detection and regulatory compliance verification 

effectiveness. This system not only improves inspection efficiency and standardization of 

reports but also reduces human error, strengthens real-time hazard identification and 

response capabilities, and showcases its potential in driving the digital transformation of 

construction safety management. 
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1. INTRODUCTION

The construction industry is one of the least digitized 

sectors globally and, due to its highly labor-intensive nature, 

is also a high-risk industry where worker injuries frequently 

occur. Common causes of injuries include improper working 

postures, manual handling of heavy objects, and high-intensity 

operations [1]. Among these, Falls from Heights (FFH) are 

considered one of the primary causes of severe injuries and 

fatal accidents on construction sites. Studies showed that falls 

from heights account for 48% of all construction-related 

accidents, with scaffolding and roofing operations posing 

particularly high risks [2]. 

A study focusing on construction sites in Hong Kong 

analyzed the root causes of fall-from-height incidents and 

found that a lack of adequate protective equipment at open 

edges often led to accidents during high-elevation work. The 

study suggested that improving site design and providing 

better safety measures could effectively reduce the risk of falls 

[3]. Additionally, research highlighted that falls from heights 

represented a significant portion of construction accidents, 

underscoring the importance of standardized fall protection 

systems, especially in edge work operations [4]. 

The impact of fall-from-height accidents not only results in 

immediate injuries but also brings about substantial social and 

economic losses, particularly in cases where workers fall from 

unprotected edges or heights. In response, some studies 

proposed enhancing workers' safety awareness and strictly 

enforcing the correct use of protective equipment. These 

measures were considered crucial for effectively reducing the 

occurrence of such accidents [5]. 

With the rapid development of Artificial Intelligence (AI), 

advanced technologies such as Computer Vision (CV) and 

Natural Language Processing (NLP) were progressively 

applied to the field of construction management, aiming to 

assist safety personnel in monitoring construction site safety 

[6-9]. The high accident rate in the construction industry 

caused significant social harm, making the effective 

implementation of safety management a key focus. For 

instance, Fang et al. [10] developed an Image-Text Semantic 

Matching (ITSM) model to evaluate the semantic similarity 

between visual and textual features, determining whether 

workers' behaviors in images violated the safety regulations 

recorded in text. However, the model's binary output format 

limited scalability. Ding et al. [11] proposed a Visual Question 

Answering (VQA)-based inference framework for training 

and application in safety compliance checks. Emerging 

information technologies such as the Internet of Things (IoT) 

and computer vision were also applied to on-site safety 

monitoring [12]. These technologies require recording and 

storing large amounts of data, such as digital images and 

incident reports, as a basis for preventing future accidents [13]. 

However, extracting insights from massive datasets for safety 

management and decision-making remained a challenge [14]. 

Research showed that enhancing the standardization and 

transparency of reports helped strengthen communication 
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effectiveness and consistency within and outside organizations. 

Standardized reports provided a reference framework, 

simplified reporting processes, and ensured the accuracy and 

completeness of information transmission [15]. Furthermore, 

applying digital and intelligent technologies to optimize 

reporting processes through data management further 

enhances decision-making efficiency and information 

transparency. This was particularly important in construction 

management, where digital reporting improved information 

consistency and simplified the overall process [3]. Specifically, 

customized reporting processes allowed digital architectures 

to adjust according to the needs of multiple stakeholders, 

ensuring that reports accurately met various demands, 

especially in engineering projects involving multi-party 

collaboration [16]. Overall, enhancing standardization and 

transparency made reporting processes more consistent across 

different business scenarios, enabling more efficient and 

consistent satisfaction of diverse management requirements in 

construction project management [15]. 

Although recent studies have increasingly applied artificial 

intelligence to construction safety management and have 

developed image recognition–based risk detection systems, 

two major limitations remain. First, most existing image-text 

semantic matching (ITSM) approaches focus only on single-

level semantic alignment, often overlooking subtle 

distinctions related to the correctness of installation and 

regulatory compliance of fall protection facilities around 

openings. This results in limited precision and insufficient 

semantic depth in the detection outcomes. Second, current 

systems emphasize violation detection but lack mechanisms 

for tracking subsequent corrective actions, making it 

challenging to implement closed-loop risk management and 

verification. 

To address these issues, this study proposes an automated 

detection system that integrates YOLO for object detection 

and CLIP (Contrastive Language Image Pretraining) for 

image-text semantic matching. The system improves semantic 

resolution and detection accuracy while incorporating a report 

generation and feedback module to support real-time 

monitoring and continuous risk tracking. This integrated 

approach addresses the shortcomings of existing AI-based 

safety systems by enabling both precise risk identification and 

closed-loop safety management. 

 

 

2. RELATED WORK 

 

2.1 Construction safety management (CSM) 

 

Construction safety management (CSM) comprises a set of 

strategies, practices, and methodologies specifically designed 

to ensure the safety of construction labor forces. Its primary 

objective is to systematically predict, identify, and prevent 

risks that might endanger construction workers, public safety, 

or infrastructure integrity [17]. The construction site's 

temporary and dynamic nature and frequent interactions 

among personnel, machinery, and materials created an 

environment prone to unforeseen hazards. Common incidents, 

such as "falls from height" and "being struck by objects," not 

only highlighted the frequency of accidents but also revealed 

systemic challenges within existing safety regulations [18]. 

Many accidents occurred at scaffolding, rooftops, and open 

edges, particularly when adequate protective equipment was 

lacking or structural supports were unstable. Preventing such 

incidents required rigorous equipment inspections and a stable 

construction environment [2, 19]. Additionally, failures in 

management systems, insufficient supervision, and inadequate 

safety management plans further exacerbated the risks of falls. 

The absence of standardized management processes and 

effective safety education was also identified as a root cause 

of accidents [20]. 

Artificial Intelligence (AI) technologies made significant 

contributions to construction safety, encompassing 

applications in machine learning (ML), computer vision (CV), 

natural language processing (NLP), knowledge-based systems, 

and robotics [21]. Computer vision, deep learning, and action 

recognition were among the most commonly utilized 

technologies in construction safety, with primary applications 

in risk assessment and real-time monitoring. Research 

highlighted that AI, particularly computer vision, 

demonstrated notable success in construction safety. For 

instance, computer vision detected whether workers were 

wearing personal protective equipment (PPE) such as helmets 

or harnesses, thereby reducing the likelihood of falls from 

height and other accidents. Moreover, computer vision 

technologies identified potential hazards on construction sites, 

such as unprotected edges and unstable scaffolding, and 

enhanced safety through real-time monitoring [22]. Although 

the research topics in construction safety were diverse, they 

could be divided into two perspectives: management-driven 

and technology-driven. The first perspective suggested that 

improving management performance ensured construction 

safety and prevented site accidents. This research direction 

typically included safety climate, safety culture, worker skills 

and behaviors, and risk management. The second perspective 

focused on using various technologies to ensure construction 

site safety, including developing new technological tools to 

promote real-time monitoring and risk prevention [17]. 

 

Table 1. Various computer vision tasks are used in safety 

management 

 

Task 
Primary 

Applications 

Major 

Algorithms/Models 

Object 

recognition 

Detect 

construction site 

openings, 

guardrails, safety 

nets, and covers 

YOLOv8, YOLOv10, 

Faster R-CNN 

Object 

tracking 

Tracking worker 

movements, 

machinery 

operations 

DeepSORT, ByteTrack, 

SORT 

Action 

recognition 

Detecting unsafe 

behaviors (e.g., 

not wearing 

safety 

equipment) 

TimeSformer, PoseC3D, 

RNN 

Image-text 

semantic 

matching 

Automatic 

comparison with 

construction 

regulations, 

safety violation 

analysis 

CLIP, ALIGN, BLIP 

 

Construction safety management aims to protect workers 

from various potential risks through systematic strategies and 

practices, and the rise of AI technologies has further reinforced 

this goal. Technologies such as computer vision and deep 

learning enable real-time monitoring of site safety conditions, 
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helping to identify and reduce the occurrence of hazardous 

events, such as falls from height. Meanwhile, integrating 

management-driven and technology-driven perspectives 

contributes to more efficient safety management, enhancing 

overall construction site safety and management effectiveness. 

In the field of fall risk prevention in construction, 

researchers proposed various methods to mitigate the risks 

associated with working at heights while also addressing the 

limitations of these approaches. First, risk identification and 

assessment based on risk matrices was a standard method that 

categorized hazards during construction processes to develop 

targeted preventive measures. However, this method relied 

heavily on managers' understanding and subjective judgment 

of the construction site, which might have overlooked latent 

risks. Furthermore, the effectiveness of its preventive 

measures was limited by the decision-makers' experience [23]. 

 

2.2 Computer vision 

 

2.2.1 Object Recognition models 

The core tasks of computer vision encompass various 

functionalities, including image classification, object 

detection, image segmentation, and visual question answering. 

These tasks aimed to enable machines to understand and 

analyze visual data. Recent advancements in deep learning 

technologies have significantly improved the performance of 

these tasks [24, 25]. Computer vision provides machines with 

human-like visual capabilities. Through specialized 

algorithms, it processes visual information, identifies objects, 

understands contexts, and detects anomalies. Table 1 

summarizes common computer vision tasks and some widely 

adopted algorithms used in safety applications. 

The main objective of this study is to ensure that fall 

protection facilities around construction site openings can be 

effectively detected and further verify whether their 

installation complies with safety regulations. Therefore, this 

study will delve into the technical applications of Object 

Recognition and image-text semantic matching models. 

In the Object Recognition section, this study aims to 

automate the identification of protective facilities around 

construction site openings, including guardrails, fences, and 

temporary protective structures, through deep learning 

techniques. Traditional manual inspection methods are time-

consuming and prone to subjective judgment, while the 

introduction of Object Recognition technology significantly 

improves detection accuracy and efficiency, reducing human 

error. 

Common Object Recognition models are listed in Table 2. 

It can be observed that the YOLO series models show 

significant advantages in processing speed compared to other 

models. Due to its high speed and single-stage architecture, the 

YOLO (You Only Look Once) model is widely adopted in 

various object detection applications. With continuous 

optimization over versions, YOLO models effectively 

addressed challenges in diverse application scenarios [26]. 

 

Table 2. Object Recognition model performance comparison 

 
Architecture mAP@50 GPU Latency 

YOLOv8 0.62 1.3ms 

Faster R-CNN 0.41 54ms 

EfficientDet 0.47 N/A 

 

Some studies proposed a globally optimized YOLO-based 

object detection technique for construction site applications 

that emphasized improving detection performance in dynamic 

environments. By integrating spatial interaction information, 

the model's overall detection capability in construction 

environments was significantly enhanced [27]. Another study 

compared the performance of YOLOv5 and YOLOv8 in 

detecting construction risk factors. The results showed that 

both versions achieved excellent accuracy in recognizing 

workers and personal protective equipment (PPE) [28]. 

Regarding high-risk areas, one study applied the YOLO 

model to detect open edges. It utilized a specially annotated 

dataset for training, which enabled the model to identify 

hazardous boundaries at construction sites accurately and 

instantly alert workers to enhance on-site safety [29]. 

Additionally, in construction safety management, the YOLO 

model was employed to monitor heavy equipment and worker 

behavior, such as detecting whether workers had entered 

hazardous zones or failed to comply with safety regulations, 

thereby improving overall construction management 

efficiency [30]. 

Therefore, this study selects the YOLO series model to 

detect the presence of fall protection facilities around site 

openings. The system can learn and recognize various types of 

fall protection facilities by collecting many real-world 

construction site images for training. The system 

automatically generates alerts when it detects the absence of 

protection or improper installation around openings. 

 

2.2.2 ITSM models and methods 

In the image-text semantic matching section, this study 

employs Cross-modal Technology, utilizing models like CLIP 

(Contrastive Language-Image Pretraining) to semantically 

compare the protective facilities in images with construction 

safety standard texts to verify compliance. 

Contrastive Learning-Based Models: These models 

employed contrastive learning to embed images and texts into 

a shared semantic space. For example, the CLIP model 

demonstrated outstanding performance in open-domain image 

retrieval and cross-modal search. The training objective of 

CLIP was to bring semantically related image-text pairs closer 

and push unrelated pairs further apart, showing exceptional 

performance in zero-shot learning where limited annotations 

were available [31, 32]. 

Local and Global Matching Models: Models like 

VisualBERT and UNITER segmented images into multiple 

regions and aligned them with corresponding text tokens to 

achieve more refined semantic matching. This method was 

particularly suitable for application scenarios that required 

high semantic alignment, such as scene understanding or 

medical image analysis, where precision was crucial [33]. 

Multi-View Attention Models: Some models adopted 

multi-view attention mechanisms to enhance the accuracy of 

ITSM. For example, the Multi-View Attention Model 

(MVAM) represented images and texts from different 

perspectives to capture richer semantic information and 

improve matching performance. This approach was suitable 

for semantically complex scenarios, enabling the model to 

capture subtle differences between images and texts [34]. 

Among these, CLIP stood out for its diversity and flexibility, 

making it a foundational model in visual-language processing. 

It was widely applied in cross-domain ITSM systems, such as 

cross-modal retrieval and visual question answering tasks. 

Compared to specialized task-oriented models like multi-view 

attention and local-global matching models, CLIP’s design 

was more adaptable to open-domain and unstructured tasks 
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due to its large-scale image-text paired training, which 

enhanced its semantic alignment capabilities and cross-

domain generalization [35, 36]. Furthermore, CLIP 

demonstrated exceptional performance in zero-shot learning, 

cross-modal retrieval, and open-domain understanding tasks 

[31, 32]. 

In recent years, YOLO and CLIP models have been widely 

applied in construction safety, demonstrating significant 

technological potential. YOLO models, with their real-time 

inference speed and high detection accuracy, were particularly 

well-suited for rapid-response risk monitoring on construction 

sites. By incorporating attention mechanisms and feature 

fusion strategies, YOLO models effectively detected objects 

such as safety helmets and guardrails even in complex site 

environments [37, 38]. However, YOLO still had limitations 

in detecting small or partially occluded objects and performed 

inconsistently under extreme lighting or visual interference 

conditions [39]. The CLIP model, on the other hand, possessed 

strong cross-modal semantic alignment capabilities, enabling 

connections between images and text and supporting semantic 

image-text queries, which showed promising applications in 

intelligent construction management [40]. Nevertheless, 

CLIP’s limited sensitivity to fine-grained local features 

restricted its ability to identify minor violations in real 

construction site scenarios [41]. 

Based on the literature review in this section, detecting fall 

protection measures around construction site openings is 

critical for ensuring worker safety. However, traditional 

inspection methods rely heavily on manual inspections, which 

are inefficient and prone to subjective errors. In previous 

studies, deep learning technologies, particularly Object 

Detection and image-text semantic matching (ITSM), have 

demonstrated significant effectiveness and are considered 

capable of substantially enhancing safety monitoring 

efficiency on construction sites. 

Building upon the validation of these research findings and 

the successful application of these technologies, this study 

aims to integrate YOLO and CLIP techniques further. By 

leveraging YOLO's high-speed object detection capabilities 

and the cross-modal semantic matching of CLIP, the objective 

is to develop an automated detection system for construction 

site opening protection. This system is expected to 

automatically detect fall protection facilities around 

construction site openings, perform real-time assessments of 

their compliance with safety regulations, and ultimately 

generate standardized inspection reports to enhance the 

efficiency and accuracy of construction safety management. 

 

 

3. METHODOLOGY 

 

3.1 Object Recognition model 

 

This section introduces an Object Recognition model for 

image recognition of construction site openings and fall 

protection facilities. The objective is to enhance the model's 

generalization ability through a diverse training dataset. This 

dataset includes images of construction site openings and fall 

protection facilities collected from open computer vision 

platforms. Images are annotated using a randomized method 

(detailed in Section 3.1.1) and are divided into training, testing, 

and validation sets. This partition helps fine-tune parameters 

during training to prevent overfitting while ensuring robust 

performance on unseen data. 

 

 
 

Figure 1. Model training process 
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To improve recognition performance, the training data 

undergoes preprocessing and data augmentation. The training 

process is conducted using the PyTorch framework. Various 

evaluation metrics are introduced to evaluate the model's 

performance comprehensively. The framework is illustrated in 

Figure 1. 

 

3.1.1 Hazard image dataset 

The dataset employed in this study primarily consists of 

images of construction site openings captured on-site, along 

with images of fall protection facilities—including guardrails, 

opening covers, and safety nets—collected from open-source 

computer vision platforms. All images were annotated using 

labelImg, and the dataset was randomly divided into training, 

validation, and testing subsets in a ratio of 8:1:1. The training 

set was used to facilitate model learning, the validation set was 

utilized during the training phase to monitor performance, 

adjust hyperparameters, and prevent overfitting, while the 

testing set was reserved for final evaluation to assess the 

model’s generalization on unseen data. The original dataset 

included 184 on-site images of construction openings and 

2,163 of fall protection facilities. After applying data 

augmentation techniques, the total number of images in the 

dataset increased to 7,041. 

To enhance the model's generalization capability, a series of 

preprocessing and data augmentation operations were applied 

to the dataset. First, all training images were subjected to auto-

orientation to ensure consistency in image direction. Second, 

to meet the input requirements of the neural network, the 

dimensions of each image were uniformly resized to 640x640 

pixels. In terms of data augmentation, to simulate variations in 

perspectives and scales, the following methods were applied 

to each training sample, generating three transformed images: 

Horizontal and Vertical Flipping: Simulates changes in 

object orientation within the scene. 

90-Degree Rotation: Includes clockwise, counterclockwise 

rotations, and vertical flipping to enhance the model's 

robustness to directional changes. 

Random Cropping: Randomly crops images within a 

scaling range of 0% to 20%, helping the model learn to 

recognize objects from partial perspectives. 

 

3.1.2 Model development and training 

This study constructed an object detection model based on 

YOLOv8 using the PyTorch framework in a Python 3.11 

environment within PyCharm. All experiments were 

conducted on a PC equipped with the following specifications: 

CPU: 12th Gen Intel(R) Core(TM) i7-12700KF 3.60 GHz, 

GPU: NVIDIA GeForce RTX 3070-12G, and RAM: 32 GB. 

 

Table 3. Key hyperparameters 

 
Parameters Value 

Model YOLOv8, YOLOv10 

Batch size 8 

Epochs 100 

Optimizer AdamW 

Loss Function Cross-Entropy Loss 

IoU 0.7 

Learning Rate 0.00125 

 

Before training the YOLO model, a pre-trained base model 

was selected to enhance efficiency and performance. The 

network architecture was adjusted as needed, and key 

hyperparameters like learning rate and batch size were 

optimized (Table 3). During training, the model processed 

image data to generate predictions, calculated loss values 

against ground truth, and updated parameters via 

backpropagation. This iterative process continued until the 

performance was satisfactory or the set number of epochs was 

reached. 

The table presents a series of key parameters configured 

during the training of the YOLOv8 and YOLOv10 models. 

These parameters are carefully selected to optimize the 

training process and enhance model performance, as explained 

below: 

Model: 

This study will test all models from YOLOv8 and 

YOLOv10. 

Batch Size: 

Set to 8, representing the number of images processed in 

each iteration. A large batch size may result in more stable 

gradient estimation, but can cause memory overflow on 

limited hardware. Conversely, a small batch size may lead to 

high gradient variance, affecting the stability of model 

convergence. Empirical testing revealed that a medium-sized 

batch provides a good trade-off between training efficiency 

and resource constraints, ensuring consistent training progress. 

Epochs: 

Set to 100, indicating that the training data is used in full 

100 times. Insufficient epochs may result in underfitting, 

where the model fails to learn adequate features. However, 

excessively high epochs may lead to overfitting, particularly 

without regularization or early stopping mechanisms. 

Appropriate epoch selection should be guided by the model’s 

validation performance trend and dynamically adjusted based 

on convergence behavior. 

Optimizer: 

The AdamW optimizer was employed, which uses adaptive 

learning rates and is designed to improve model performance 

by adjusting parameters dynamically during training. 

Compared to traditional optimizers such as SGD or standard 

Adam, AdamW improves convergence efficiency in high-

dimensional parameter spaces and helps reduce overfitting, 

which is especially important when training deep neural 

networks on safety-critical datasets. 

Loss Function: 

Cross-entropy loss was used, a function commonly applied 

to classification tasks to measure the difference between the 

predicted probability distribution and the actual labels. 

Intersection over Union (IoU): 

Set to 0.7, this metric evaluates the overlap between 

predicted and ground truth bounding boxes. If set too low, the 

model may overestimate accuracy, resulting in false positives. 

If set too high, it may miss partially correct predictions, 

increasing false negatives. 

Learning Rate: 

Set to 0.00125, a key factor determining the magnitude of 

weight updates. A well-chosen learning rate helps the model 

learn effectively, avoiding oscillations or excessively slow 

convergence during training. A high learning rate may cause 

unstable gradients or oscillation, especially in the early 

training stages. On the other hand, a very low learning rate 

slows down convergence, preventing the model from reaching 

optimal performance within a reasonable timeframe. Selecting 

a moderate and dynamically adjustable learning rate 

contributed to training stability and convergence efficiency in 

this study. 
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3.1.3 Evaluation metrics 

In object detection models, commonly used evaluation 

metrics include: 

Intersection-over-Union (IoU): 

To evaluate the model's performance, ground truth 

bounding boxes (manually annotated) are compared with the 

predicted bounding boxes. The Intersection-over-Union (IoU) 

metric is calculated as the ratio of the overlapping area 

between the predicted bounding box and the ground truth 

bounding box (intersection, ∩) to the combined area of both 

bounding boxes (union, ∪), as shown in Eq. (1): 
 

𝑰𝒐𝑼 =
𝑨𝒓𝒆𝒂 𝒐𝒇 𝑶𝒗𝒆𝒓𝒍𝒂𝒑

𝑨𝒓𝒆𝒂 𝒐𝒇 𝑼𝒏𝒊𝒐𝒏
=

∣𝑩𝒑𝒓𝒆𝒅∩𝑩𝒈𝒕∣

∣𝑩𝒑𝒓𝒆𝒅∪𝑩𝒈𝒕∣
  (1) 

 

where, 

𝐵𝑝𝑟𝑒𝑑  denotes the predicted bounding box generated by the 

object detection model. 

𝐵𝑔𝑡  denotes the ground truth bounding box annotated in the 

dataset. 

Average precision (AP):  

Precision and recall are calculated for various confidence 

score thresholds, allowing the precision-recall curve to be 

plotted. AP is computed as the area under the precision-recall 

curve, as defined in Eq. (2): 
 

𝑨𝑷 = ∫ 𝑷(𝒓)𝒅𝒓
𝟏

𝟎
  (2) 

 

where, 

P(r) denotes the precision as a function of recall r, 

describing the model’s precision at a given level of recall. 

r represents the recall, defined as the ratio of correctly 

predicted positive instances to all actual positive instances. 

Mean average precision(mAP): 

To evaluate the model's overall performance, mAP is 

calculated as the mean of the AP values across all categories. 

In object detection, mAP is traditionally computed for a single 

IoU threshold (denoted as mAPIoU). In YOLO series 

models 𝑚𝐴𝑃50 𝑎𝑛𝑑 𝑚𝐴𝑃50−95, are commonly used to 

represent precision metrics, as shown in Eq. (3): 

 

𝒎𝑨𝑷 =
𝟏

𝑪
∑ 𝑨𝑷𝑪

𝑪
𝑪=𝟏   (3) 

 

where, 

C is the total number of categories. 

𝑨𝑷𝒄 is the average precision for category c. 

Accuracy: 

Accuracy is the ratio of correct predictions to the total 

number of predictions, as shown in Eq. (4): 
 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
  (4) 

 

Precision:  

Precision is the ratio of true positive predictions to the total 

number of positive predictions, as shown in Eq. (5): 
 

𝑷𝒓𝒆𝒄𝒊𝒔�̇�𝒐𝒏 =
𝑻𝑷

𝑻𝑷+𝑭𝑷
  (5) 

 

Recall:  

Recall is the ratio of true positive predictions to the total 

number of actual positive cases, as shown in Eq. (6): 
 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷+𝑭𝑵
  (6) 

F1-score: 

The F1-score combines precision and recall into a single 

metric, calculated as their harmonic mean, as shown in Eq. (7). 

 

𝑭𝟏 − 𝑺𝒄𝒐𝒓𝒆 = 𝟐 ∗
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏∗𝑹𝒆 𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏+𝑹𝒆 𝒄𝒂𝒍𝒍
  (7) 

 

Notes: 

True Positive (TP): The number of positive samples 

correctly predicted as positive. 

False Positive (FP): The number of negative samples 

incorrectly predicted as positive. 

True Negative (TN): The number of negative samples 

correctly predicted as negative. 

False Negative (FN): The number of positive samples 

incorrectly predicted as negative. 

 

3.2 Image-text semantic matching 

 

This section explains the prepared textual descriptions, 

including installation requirements and safety regulations for 

fall protection facilities, which serve as the basis for image 

comparison. It also details the threshold settings to ensure the 

model accurately filters out non-compliant images. 

Additionally, the image-to-semantic matching process is 

described as enhancing detection accuracy. 

 

3.2.1 Text preparation 

This study aims to address safety management issues on 

construction sites, particularly focusing on identifying 

openings and fall protection facilities. To achieve this, content 

related to fall hazard prevention facilities was extracted from 

the Standards for Construction Safety and Health Facilities. 

Since the original legal texts are often lengthy, they were 

transformed into a format more suitable for CLIP model 

analysis. This process involved simplifying the detailed 

descriptions in the regulations into shorter sentences, enabling 

the model to perform ITSM more effectively. 

Research indicated that the CLIP model performed more 

efficiently in learning and predicting image content when 

processing concise and precise textual descriptions [42]. 

Data collected from social media platforms further 

demonstrated how short texts improved image-text alignment 

efficiency in various contexts, especially descriptive text and 

image pairing [43]. A novel contrastive training method 

introduced in recent studies optimized representation 

alignment through large-scale image-caption and text-text 

pairs, allowing the model to excel in text-image and text-text 

matching tasks. This highlighted the importance of concise 

sentences in enhancing the performance of the CLIP model 

[44]. The training and application of the CLIP model 

consistently demonstrated its superior ITSM capabilities, 

particularly in zero-shot learning scenarios when dealing with 

new images similar to the training data distribution [42]. Noted 

that the CLIP model, through its contrastive learning 

framework, effectively aligns image and text representations, 

enabling accurate image recognition and classification. 

 

3.2.2 Threshold setting and performance analysis 

To achieve ITSM for assisting construction site safety 

inspections, this study developed a text description database 

based on relevant safety regulations. This database serves as 

the semantic basis for the CLIP model, containing descriptions 

of various non-compliance scenarios related to construction 

opening protection measures. These descriptions cover 
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common safety violations, such as "excessive guardrail 

spacing" and "incorrect guardrail installation". During system 

operation, the CLIP model processes input images and selects 

the most appropriate violation description from the database to 

determine whether a given image corresponds to a specific 

non-compliance scenario. 

To ensure the accuracy and reliability of the ITSM process, 

this study conducted threshold optimization and sensitivity 

analysis for the CLIP model. The threshold value directly 

influences the sensitivity and accuracy of the violation 

detection system: 

Excessively high threshold: If the threshold is set too high, 

the CLIP model will only classify an image as a violation if its 

similarity score exceeds the defined threshold. This could 

result in false negatives, where certain non-compliant 

scenarios remain undetected due to lower similarity scores. 

Consequently, some potential hazards may be overlooked by 

on-site personnel, compromising the comprehensiveness of 

safety management. 

Excessively low threshold: If the threshold is set too low, 

even images with relatively low similarity scores may be 

classified as violations, leading to false positives. This would 

generate an excessive number of reports containing non-

violative conditions, thereby increasing the workload of safety 

inspectors and reducing the practical utility of the system. 

The image-text matching process is illustrated in Figure 2. 

The system first captures images of the construction site, 

which are processed through an image encoder to extract 

visual feature vectors. Simultaneously, predefined textual 

descriptions of potential safety violations (e.g., "the spacing 

between guardrails is too wide") are input into a text encoder 

to generate corresponding textual feature vectors. 

After feature extraction, visual and textual features are 

projected into a shared embedding space. Within this space, 

the system performs semantic matching by calculating the 

cosine similarity between the feature vectors. The similarity 

score represents the semantic alignment between the site 

image and the violation descriptions. In the example shown in 

Figure 2, the calculated cosine similarity is 0.72. If this score 

exceeds the system's predefined threshold, the system 

automatically classifies the image as a "violation." 

 

 
 

Figure 2. Semantic matching process for construction site 

safety compliance using CLIP 

 

3.3 System framework and workflow 

 

Figure 3 illustrates the complete system architecture for the 

automated construction safety inspection process, which is 

divided into four main stages: Data Input, Object Detection, 

Semantic Matching, and Risk Report Generation, achieving 

real-time monitoring and risk management. 

First, the system starts with the Input Phase, where users 

upload construction site images as the foundational data for 

subsequent analysis. These images undergo Standardize 

Image processing to ensure consistent size and resolution, 

enhancing the accuracy and stability of the model analysis. 

After standardization, the images enter the Detect Image 

process, where the YOLO model automatically detects 

construction openings, guardrails, fences, and fall protection 

installations, marking potential hazard areas for further 

evaluation. 

 

 
 

Figure 3. System framework 
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Next, as shown in Figure 3, the detected images proceed to 

the Vectorize stage, where image features are encoded into 

high-dimensional vectors and compared with predefined 

safety regulations. This process utilizes Similarity 

Comparison to calculate the cosine similarity between image 

and text descriptions, determining whether the site 

installations comply with safety standards. If the similarity 

score exceeds the system-defined Threshold Standard, the 

image is flagged as a "Potential Violation" for further 

processing. 

Following the similarity matching, the system automatically 

enters the Generate Risk Report stage, generating structured 

reports for the identified potential hazards. These reports detail 

the location, type, and risk level of the non-compliant 

installations. The generated reports are then presented in the 

Review Report interface, allowing site management personnel 

to review and handle the detected issues, enhancing the 

transparency and traceability of inspection results. 

Finally, after the inspection and report generation processes 

are complete, the system transitions to the End phase, 

indicating the completion of that batch of inspections. As 

depicted in Figure 3, this entire workflow achieves full 

automation from data collection to semantic matching, risk 

identification, report generation, and review. It not only 

reduces the costs associated with manual inspections but also 

enables real-time detection of potential construction hazards, 

ensuring site safety and improving management efficiency. 

 

 

4. RESULTS 

 

This section discusses the results of the Object Recognition 

model and image-text semantic matching. In the Object 

Recognition part, the analysis focuses on the model's accuracy 

and stability in detecting construction openings and fall 

protection facilities. In the image-text semantic matching part, 

the effectiveness of the CLIP model in comparing images with 

safety regulations is examined, along with its recognition 

capabilities under zero-shot learning to ensure compliance 

with safety standards. 

 

4.1 Object Recognition model results 

 

Table 4 compares the performance of various YOLO 

models (YOLOv8 and YOLOv10 series) in construction site 

image recognition, including Precision, Recall, mAP@50, 

mAP@50-95, and Training Time. The results indicate that 

model performance improves as the number of parameters 

increases. Among the tested models, YOLOv8l demonstrated 

outstanding performance across all key metrics, particularly in 

terms of precision, recall, and mAP@50, showing high 

detection accuracy and stability. Additionally, YOLOv8l 

required a relatively shorter training time. Therefore, 

YOLOv8l was ultimately selected as the object detection 

model for the proposed system. 

To further analyze the performance differences among 

various YOLO versions, this study summarizes the number of 

layers, parameters, and computational complexity (GFLOPs) 

for each model, as shown in Table 5. Overall, the results 

indicate a positive correlation between the number of 

parameters and detection performance metrics (mAP, 

precision, and recall). However, increasing the number of 

parameters also significantly extends training time. For 

instance, although YOLOv10x offers high accuracy, its 

training time reaches up to 67 hours, making it less ideal for 

construction sites that require rapid deployment. 

 

Table 4. Object detection model data comparison 

 

Model 
Precis

-ion 
Recall 

mAP

@50 

mAP

@50-

95 

Training 

Time (hr) 

YOLOv8n 0.815 0.823 0.802 0.764 1.90 

YOLOv8s 0.861 0.876 0.853 0.821 1.98 

YOLOv8m 0.902 0.907 0.892 0.858 3.88 

YOLOv8l 0.943 0.952 0.923 0.914 5.78 

YOLOv8x 0.946 0.923 0.925 0.915 9.46 

YOLOv10n 0.785 0.803 0.791 0.732 1.84 

YOLOv10s 0.814 0.825 0.805 0.774 2.85 

YOLOv10m 0.865 0.874 0.859 0.823 4.20 

YOLOv10b 0.902 0.894 0.877 0.852 5.33 

YOLOv10l 0.920 0.912 0.910 0.885 5.20 

YOLOv10x 0.925 0.915 0.914 0.886 67.00 

 

Table 5. Model summary 

 
Versions Layers Parameters GFLOPs 

YOLOv8n 218 3,006,428 8.1 

YOLOv8s 168 11,127,132 28.4 

YOLOv8m 218 25,842,076 78.7 

YOLOv8l 268 43,609,692 164.68 

YOLOv8x 268 68,127,420 257.4 

YOLOv10n 102 2,265,948 6.5 

YOLOv10s 106 7,219,548 21.4 

YOLOv10m 136 15,315,484 58.9 

YOLOv10b 142 19,007,196 91.6 

YOLOv10l 174 24,312,412 120.0 

YOLOv10x 192 29,400,380 160.0 

 

YOLOv8 and YOLOv10 both demonstrated robust 

detection accuracy in this study. YOLOv8 adopts a decoupled 

head and lightweight backbone, which shortens training time 

and supports rapid deployment on medium-scale datasets. In 

contrast, YOLOv10 incorporates Unified Label Assignment 

and Dynamic Head mechanisms, which improve detection for 

small-scale objects, but require longer training time due to its 

deeper network and higher parameter complexity. 

 

Table 6. Comparison between YOLOv8 and YOLOv10 

 
Item YOLOv8 YOLOv10 

Execution Speed 
Faster inference 

and training 

Slightly slower but 

more stable 

Detection of Large 

Safety Structures 
High accuracy 

Comparable or 

slightly higher 

Detection of Small 

or Occluded 

Objects 

Moderate 

performance 

Better capability in 

detecting small 

objects 

Model Size and 

Deployment 

Feasibility 

Lightweight model, 

suitable for edge 

deployment 

Larger model, 

suitable for 

resource-rich 

environments 

 

As shown in Table 6, both YOLOv8 and YOLOv10 

performed well in detecting fall protection facilities around 

construction openings. Among them, YOLOv8l yielded high 

precision, recall, and mAP scores, while maintaining shorter 

inference times, making it well-suited for on-site inspection 

systems that demand rapid feedback. In particular, YOLOv8 

demonstrated faster inference and training speeds, improved 

detection accuracy for large safety structures such as 

guardrails, and a lightweight architecture conducive to edge 
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deployment. 

On the other hand, YOLOv10x achieved slightly higher 

mAP scores and showed superior performance in detecting 

small or occluded objects. However, its training time reached 

67 hours, and due to its higher model complexity, it is more 

appropriate for deployment in resource-rich environments 

rather than in real-time field applications. 

 

4.2 Image-text semantic matching results 

 

Table 7 presents the impact of different threshold settings 

on the detection accuracy of the proposed system. The results 

show that when the threshold is set to 0.66, the system 

achieves the highest detection accuracy of 85% (28/33), 

indicating that this threshold effectively balances FP and FN. 

 

Table 7. Detection performance by threshold level 

 
Threshold Accuracy 

0 18/33=55% 

0.65 26/33=79% 

0.66 28/33=85% 

0.67 22/33=67% 

0.68 15/33=45% 

0.69 3/33=9% 

0.70 3/33=9% 

0.75 0/33=0% 

 

At lower thresholds (e.g., 0 or 0.65), the system can still 

detect some violation scenarios, but with a higher risk of false 

positives. However, the detection accuracy drops significantly 

as the threshold gradually increases to 0.67 or above. In 

particular, when the threshold reaches 0.75, the system is 

entirely unable to detect any violations, demonstrating that 

excessively high thresholds overly restrict the matching results 

between images and text. 

This observation reflects that threshold settings have a 

decisive impact on detection performance in the image-text 

semantic matching process of the CLIP model. If the threshold 

is too high, potential risks may go undetected; if it is too low, 

it may cause a surge in false positives. Therefore, this study 

selects 0.66 as the optimal threshold to achieve a balance 

between detection accuracy and stability. 

 

4.3 System interface 

 

Figure 4 illustrates the complete interface workflow of the 

automated detection and report generation system developed 

in this study. Upon entering the system, users first access the 

basic information input interface, as shown in Figure 4(a). At 

this stage, users are required to fill in basic information such 

as project name, person in charge, inspection date, and 

inspection location to ensure that the subsequent analysis 

report can accurately correspond to the specific location and 

time of the construction site. After completing the information 

input, users click the "Run" button, and the system 

automatically performs image recognition and image-text 

matching, leading to the directory list page as depicted in 

Figure 4(b). 

In Figure 4(b), the system displays all previously analyzed 

records in a directory format, allowing users to search for 

historical data quickly. Each directory item is labeled with date 

and location information. Users only need to click on the 

corresponding directory to access the detailed report view 

page, as shown in Figure 4(c). The system automatically 

organizes all detected deficiencies from the analysis into a 

structured report on this interface. 

 

 
 

Figure 4. System interface display 
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Figure 5. Report display 
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In Figure 4(c), users can select any report file, and the 

system will display detailed reasons for violations, image 

evidence, and corresponding standard regulations, helping 

management personnel quickly understand the issues and take 

corrective actions. Additionally, if on-site corrections and 

improvements have been made, the system provides an update 

upload function, allowing users to instantly upload the latest 

image records and perform a secondary inspection through the 

system to verify whether the corrections meet safety standards. 

This design accelerates the handling efficiency of on-site 

deficiencies and ensures transparency and real-time updates of 

inspection results, effectively enhancing the safety 

management level of construction sites. 

The final report format is shown in Figure 5, which provides 

a detailed presentation of the basic information entered by the 

user through the interface, along with the system's analysis 

results. The report includes the original data provided by the 

user and the conclusions derived from the analysis tools. It 

offers a comprehensive risk assessment and recommendations, 

enabling relevant personnel to understand the on-site situation 

and take appropriate measures. 

 

 

5. CONCLUSION AND RECOMMENDATIONS 

 

In traditional construction site management, inspecting fall 

protection facilities around openings primarily relies on 

manual visual inspection. This method is time-consuming and 

prone to errors due to subjective judgment, making it 

challenging to ensure that all openings meet safety standards. 

Particularly in large-scale construction projects, the numerous 

and widely distributed openings increase inspection difficulty 

and labor costs, resulting in many potential safety risks not 

being identified in time, thereby raising the risk of falls. 

According to statistics from Taiwan's Occupational Safety and 

Health Administration, falls from heights are among the most 

fatal accidents in the construction industry, accounting for a 

major proportion of construction site incidents. 

To address these issues, this study developed an automated 

detection and report generation system for construction site 

opening safety risks based on image recognition technology. 

The system integrates the YOLO model for object detection, 

enabling rapid identification of openings and the presence of 

fall protection facilities in construction site images. 

Simultaneously, it employs the CLIP model for image-text 

semantic matching, effectively filtering image content that 

aligns most closely with violation descriptions and 

automatically generating structured risk reports. The research 

results indicate that the system achieves high accuracy in 

identifying unprotected openings and reaches an accuracy rate 

of 85% in detecting non-compliant protective installations, 

demonstrating significant detection performance. 

To further enhance the system's accuracy and coverage in 

detecting fall protection facilities around construction site 

openings, future research is suggested to focus on two main 

directions. First, expanding the image dataset and diversifying 

the types of protective facilities, including more varied 

construction scenarios and different materials and forms of 

protective equipment, such as safety lines, temporary 

guardrails, and more. By increasing the diversity of image 

samples, the deep learning model's recognition capability in 

different construction environments can be improved, 

enhancing the system's ability to assess the compliance of 

protective facilities. Furthermore, richer image data can help 

the model learn better about various site layouts and complex 

backgrounds of fall protection facilities around openings, 

reducing false positives and false negatives, and improving 

overall detection efficiency. 

Secondly, although this study focuses on the automated 

detection and report generation of fall protection facilities 

around openings, risk management at construction sites is not 

limited to fall protection. It also includes various safety risks 

such as electric shocks, slips, falling objects, and heavy 

equipment entrapment. Therefore, future research should 

consider integrating detection technologies for other hazards 

into the system architecture, building a more comprehensive 

construction safety monitoring system. By integrating 

multiple hazard types, the system can instantly detect potential 

dangers at construction sites and automatically generate 

diversified risk detection reports, helping management 

personnel accurately and comprehensively understand the 

site's safety status. This multi-dimensional hazard recognition 

model is expected to significantly strengthen disaster 

prevention capabilities at construction sites, improve the 

accuracy and response speed of accident prevention, achieve 

higher safety management standards, and promote the digital 

transformation of construction safety management. 
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