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Ensuring helmet compliance in motorcycle parking areas remains a challenge due to the 

ineffectiveness of the manual checking system. While substantial research has been 

undertaken on smart parking systems, their integration with driving safety compliance 

remains limited. This work presents a novel intelligent barrier gate control system that 

uses deep learning-based object detection to automate helmet compliance verification. 

The system uniquely combines several advanced technologies. An Arduino Uno operates 

the physical barrier gate, while a Raspberry Pi 5 processes real-time video input to detect 

helmet usage using a YOLO based deep learning model. Hailo-8L AI accelerator is 

utilized to enhance efficiency. A custom dataset of 3,146 labeled images (2,202 for 

training, 630 for samples, and 314 for testing) was used to train the model. Performance 

evaluation shows that the system achieves a mean Average Precision (mAP) of 0.9825, 

indicating high detection accuracy. Real-world testing in the Diponegoro University 

campus parking lot demonstrates consistent barrier gate operation, with response times 

ranging from 6 to 7.8 seconds and an average of 7.11 seconds. The system also shows 

optimized low power consumption of only 2.3W. This system addresses manual checks 

at Diponegoro University and supports automated safety enforcement and intelligent 

access control. 
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1. INTRODUCTION

Many segments of Indonesian society, especially university 

students, now consider motorcycles an essential transportation 

requirement. Badan Pusat Statistik (BPS) statistics show 

Indonesia recorded 125.305.332 motorcycles in 2022. Based 

on the same statistic, there were 139.258 road accidents in 

Indonesia, a considerable rise of 35.613 instances over the year 

before [1]. This indicates that the large number of motorcycle 

riders does not translate into a commensurate level of 

compliance with traffic laws, such as helmet usage [2]. 

Non-compliance with helmet use is one of the main factors 

contributing to the high number of fatal accidents, since 

helmets are crucial in protecting riders from fatal head injuries 

[3]. In Indonesia, the automated surveillance system for 

driving safety compliance has been implemented on highways 

to detect and take action against traffic violations through the 

implementation of Electronic Traffic Law Enforcement 

(ETLE) [4]. However, a similar system has yet to be 

implemented in campus areas that also experience high traffic 

density, such as Diponegoro University. At the campus, 

driving compliance inspections, including helmet use, are 

conducted manually by security staff at the entrances of each 

faculty parking area before riders are allowed to enter. 

While helmet compliance enforcement is feasible, it poses 

obstacles in Diponegoro University parking spaces due to the 

lack of an automated barrier gate system. Without a system to 

control which riders are permitted entry, motorcycles can pass 

through unchecked, making it challenging to enforce helmet 

regulations effectively. The dependence on manual 

inspections by security personnel is inefficient and prone to 

human mistakes, particularly during busy periods when many 

vehicles enter simultaneously. 

Automated parking systems have been extensively 

researched to improve efficiency and security in vehicle access 

control. A comprehensive review emphasizes various research 

on smart parking solutions, including methodologies, sensor 

technologies, networking strategies, and computational 

approaches. These systems generally use sensors, camera-

based images, or a mix of the two to assess whether a parking 

space is occupied [5]. However, these studies are primarily 

concerned with parking space management to detect the 

availability of parking slots for motorcycle riders.  

While considerable research has focused on parking 

availability, applying comparable technology to monitor 

compliance with safety regulations, such as helmet use, 

remains limited. With the growing number of two-wheeled 

vehicles and the related risk of accidents, a YOLO-based 

helmet detection system might provide a solution to improve 

road safety. Our work explores the development of a parking 

system that integrates helmet compliance monitoring with an 

automatic barrier gate within a parking area. 
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Machine learning with object detection is frequently used to 

automate driving safety compliance inspections, such as 

helmet detection. One popular approach is YOLO (You Only 

Look Once), which detects things in real time. YOLO is a 

Deep Learning Algorithm that can determine whether 

motorcycle riders are wearing helmets using a trained dataset 

[6].  

Helmet detection for traffic violation monitoring has 

become a notable application of the YOLO algorithm. By 

leveraging YOLOv8, a system could detect motorcycles, 

riders, and helmets from real-time video footage. This method 

enables automatic recognition of helmet compliance without 

needing direct human involvement, making it an achievable 

option for increasing road safety enforcement. The model 

works by first identifying motorbikes and their riders inside a 

given frame, then performing a classification step to assess the 

existence of a helmet. By training on a diversified dataset, 

YOLOv8 improves detection accuracy over various 

environmental conditions, assuring reliability even in complex 

environments. The capacity to evaluate video data in real time 

makes this technique ideal for high-traffic locations where 

human monitoring may be ineffective [7]. 

Multiple research studies have demonstrated that automated 

barrier gate systems based on embedded devices such as 

Raspberry Pi and Arduino improve efficiency by replacing 

manual procedures with intelligent access control methods, 

thereby enhancing security and parking management [8-10]. 

These solutions enhance access control efficiency and provide 

a foundation for integrating machine learning-based 

compliance monitoring. A smart parking system might be 

developed by combining Raspberry Pi's computing capacity 

with YOLO for real-time helmet identification and Arduino 

for automated barrier gate control, allowing for the 

enforcement of helmet regulations while improving overall 

parking management on campus. 

An AI accelerator such as the Hailo-8L can speed up real-

time detection to increase the system's efficiency. The Hailo-

8L AI processor is designed to run deep learning models 

quickly and efficiently [11]. This technique is especially well-

suited for campus traffic monitoring systems because it allows 

local data processing without relying on significant 

computational resources. Hailo-8L enables the system to 

detect helmets with high accuracy and fast reaction times. This 

allows the automated barrier gate to make real-time decisions, 

such as denying entry to riders who violate helmet regulations. 

Therefore, the design of a Barrier Gate Control Technology 

for Parking Systems that incorporates deep learning into 

automated barrier gates and an AI accelerator like Hailo-8L 

offers a novel integration of multiple subsystems into a unified, 

intelligent solution. Unlike previous researches that address 

helmet detection or access control separately, this research 

unifies real-time safety regulation enforcement with physical 

access control. This strategy enables direct processing on edge 

devices using YOLO-based helmet detection models 

optimized by Hailo-8L, ensuring fast and accurate inference 

directly. Combined with automated barrier gate control and a 

hardware-efficient setup using Raspberry Pi and Arduino, this 

solution offers a practical approach for campus-scale 

deployment. The novelty lies in the end-to-end integration of 

computer vision, edge AI acceleration, and physical gate 

control, enabling automatic access control in real time. This 

approach offers a scalable and practical solution for improving 

traffic safety, while accelerating the campus's transformation 

into a smarter and automated environment. 

2. LITERATURE REVIEW 

 

2.1 Hardware technologies in barrier gate control 

 

Previous research has implemented various hardware 

components to automate barrier gate systems. The system in 

the study [8] shows how an Arduino-based controller may 

control a gate mechanism by utilizing an Arduino Mega, a DC 

motor, RFID, and ultrasonic sensors. Likewise, the study [9] 

offers an Arduino Uno-based smart parking system. 

Meanwhile, this research [10] presents a more advanced setup 

by integrating a Raspberry Pi 3 as the primary processing unit 

in an automated parking system. The system utilizes an 

ultrasonic sensor, a wired camera, and a DC motor to perform 

license plate recognition using the YOLO algorithm. The 

Raspberry Pi operates as a standalone computing device, 

responsible for processing image data from the camera, and 

controlling the stepper motor to open or close the barrier gate 

based on the recognized license plate, demonstrates that the 

combination of YOLO and Raspberry Pi can be effectively 

applied to improve the efficiency of automated barrier gate. 

These implementations show that Arduino and Raspberry 

Pi are commonly used in automated barrier gates, with each 

component playing a distinct role, such as motor control, 

object detection, and real-time decision-making. These 

findings form a foundation for the proposed system. 

This research utilizes various available microcontrollers and 

single-board computers, specifically the Arduino Uno and 

Raspberry Pi 5. The Arduino Uno is selected due to its 

simplicity, broad community support, and sufficient I/O 

capabilities [12] to control actuators and sensors in automated 

barrier gates. The Raspberry Pi 5, the latest generation in the 

Raspberry Pi family [13] offers significant processing power 

and memory bandwidth improvements, making it suitable for 

executing deep learning models such as YOLOv8. These 

choices balance performance and integration flexibility for the 

proposed system.  

A linear actuator is a component that can extend and retract 

linearly. For centuries, such actuators have relied on hydraulic 

power [14]. Linear actuators play an essential role in creating 

accurate linear motion. These devices have been widely used 

in various applications, including automated vehicle steering 

systems, soft robotic actuators, prosthetics and rehabilitation, 

and automotive technologies [15]. Based on this research, we 

can use a linear actuator as a driving mechanism in an 

automated barrier gate. 

A loop detector is an inductive sensor embedded in the 

ground that operates by detecting changes in the magnetic field 

caused by the presence of a vehicle. This sensor consists of a 

coil of wire installed in the ground and is connected to a 

control system capable of recognizing magnetic field 

disturbances when a vehicle passes or stops in a designated 

area [16]. According to the research, loop detectors are utilized 

in automated barrier gates to detect the presence of a vehicle. 

 

2.2 Object detection in parking systems 

 

Deep learning has emerged as a vital technique for 

generating accurate and efficient helmet detection systems. 

Unlike traditional rule-based methods, deep learning does not 

require manually constructed features, allowing models to 

generalize across various datasets and complicated urban 

traffic situations. Deep learning-based helmet detection 

systems, notably those based on CNNs and transformer 
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topologies, have been shown in research to improve detection 

accuracy and robustness considerably. Even when helmets are 

tiny, partially concealed, or visually similar to other headgear, 

the deep-learning approach detects helmets accurately and 

reliably [17]. These improvements have transformed deep 

learning into a vital tool for road safety enforcement, allowing 

for real-time, automated monitoring of helmet compliance to 

assist law enforcement and traffic management. 

Convolutional Neural Networks (CNN) are a key deep 

learning approach in helmet identification, with architectures 

such as Faster R-CNN, SSD, and specifically YOLO capable 

of detecting helmet presence in various lighting conditions, 

angles, and backgrounds unds [18]. Deep learning models can 

automatically learn visual helmet characteristics through non-

linear transformation layers without requiring complex 

manual feature engineering. Adapting to complex data allows 

helmet detection systems to operate with high accuracy, 

making them highly effective solutions for monitoring 

personal protective equipment compliance in industrial, 

construction, and transportation environments [17, 19]. 

Helmet detection for traffic violation monitoring has 

become a prominent application of the YOLO algorithm, 

allowing for automatic enforcement of helmet-wearing 

requirements among motorcycle riders. YOLOv8 enables a 

system to efficiently recognize motorcycles, riders, and 

helmets in real-time video footage, providing rapid and precise 

identification without human interaction. The detection 

process involves a two-step approach, where YOLOv8 first 

recognizes motorcycles and riders within a video frame and 

then classifies whether the detected rider is wearing a helmet. 

Training on a broad dataset increases the model's robustness, 

allowing it to adapt to changing lighting conditions, helmet 

designs, and angles. Compared to prior YOLO versions, 

YOLOv8 has higher accuracy, shorter inference, and better 

object tracking, making it especially effective in high-traffic 

areas where manual monitoring is unfeasible. Research has 

demonstrated that YOLOv8-based helmet detection systems 

reliably improve traffic safety enforcement and reduce 

accident risks. With its real-time processing abilities, this 

technique is suited for high-traffic areas where manual 

surveillance is impractical [7].  

YOLOv8 has achieved strong performance metrics in 

motorcycle helmet detection tasks, confirming its suitability 

for real-time traffic monitoring. In one study, YOLOv8 

attained a mean Average Precision (mAP@0.5:0.95) of 

0.42675 for helmet detection, with class-specific mAP values 

of 0.914 for "with helmet" and 0.865 for "without helmet" 

categories [20]. In another investigation, YOLOv8 reached an 

overall mAP@0.5 of 0.85, with precision and recall values of 

0.838 and 0.782 [21]. This level of accuracy ensures reliable 

identification of non-compliant riders even in complex urban 

settings characterized by high vehicle density and variable 

lighting. Compared to earlier YOLO versions, YOLOv8 not 

only reduces false detections but also accelerates inference, 

which is essential for real-time enforcement systems. 

YOLOv8n, the nano variant of YOLOv8, is chosen in this 

system due to its suitability for edge processing in real-time 

environments. While newer versions may deliver slightly 

higher accuracy in general object detection tasks, research 

such as Vaikunth et al. [22] indicates that in specific 

applications like helmet detection, the performance gap 

between YOLOv8 and its successors is minimal or even 

reversed in specific scenarios. This trade-off makes YOLOv8n 

a practical and efficient choice for applications like helmet 

detection in proposed systems, where speed and hardware 

performance are crucial. 

The impact of helmet detection technology goes beyond 

traffic surveillance and law enforcement, finding applications 

in access control and transportation safety systems. Helmet 

detection in parking systems can be used with automated 

access control devices, such as barrier gates, to ensure safety 

compliance. This technology improves parking facility 

security and regulatory compliance by permitting only fully 

equipped riders to gain entry. Combining YOLO-based object 

detection with an automated barrier gate significantly 

advances intelligent transportation systems, improving safety 

enforcement in real-world applications. 

 

2.3 AI accelerator hardware 

 

The Hailo-8 AI accelerator offers a significant leap in edge 

AI processing for object detection, providing more accuracy 

and less latency than traditional hardware such as the Jetson 

Orin Nano. The Hailo-8 improves accuracy by over 12% while 

reducing latency by 20 milliseconds, making it ideal for 

security and automation applications. This efficiency is due to 

its particular neural processing architecture, which allows for 

real-time inference with low power consumption. Unlike 

GPUs, which are frequently power-intensive and have higher 

processing times, the Hailo-8 is intended for low-power edge 

AI deployment, making it ideal for intelligent surveillance, 

transportation safety, and industrial automation [11]. 

The Hailo-8L, when paired with a Raspberry Pi 5, achieves 

low-latency inference (~53 ms) with higher frame rates (up to 

42 FPS) and lower power consumption (10.4–10.6 W), 

compared to desktop GPU setups that require 45–50 W power 

while delivering lower frame rates (~16 FPS) and higher 

latency [23]. 

Previous research [24] showed that the use of the HEF 

(Hailo Executable Format) format optimized for the Hailo-8L 

accelerator significantly provides better performance than 

running the model using ONNX on the Raspberry Pi CPU. 

Tests show that processing using HEF with Hailo-8L can 

achieve speeds up to 15 times higher than execution on the 

Raspberry Pi CPU with ONNX, with a maximum frame rate 

of around 45 FPS versus only 3 FPS. In addition, the 

processing latency with HEF is also much lower, reducing the 

processing time from around 300 ms to less than 20 ms, which 

greatly supports real-time applications and rapid decision 

making. The use of HEF also shows efficiency in resource 

utilization and system stability in direct operations at the edge, 

without the need to rely on communication to the server or 

cloud. 

YOLOv8 excels in real-time helmet detection, adapting to 

shifting conditions with remarkable speed and accuracy. 

Hailo-8, an AI accelerator, improves processing efficiency 

even further. Using YOLO-based detection, hardware 

selection, and Raspberry Pi processing results in a robust smart 

parking system that improves safety and comfort at 

Diponegoro University.
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3. PROPOSED WORKS 

 

3.1 System architecture 

 

Figure 1 shows the proposed system architecture. It ensures 

automated helmet compliance enforcement while maintaining 

safe gate operation for motorcycle riders.  

 

 
 

Figure 1. System architecture 

 

The process starts with a camera capturing a video stream 

input sent to the Raspberry Pi 5. The Raspberry Pi 5 runs a 

YOLO-based helmet compliance model, which analyzes the 

video feed to identify whether or not the motorcycle rider is 

wearing a helmet. If compliance is identified, the Raspberry Pi 

5 sends an accept signal to the Arduino Uno, which controls 

the gate. The gate is opened by the linear actuator, which is 

controlled by the Arduino Uno, upon receiving an acceptable 

signal. Meanwhile, a loop vehicle detector constantly detects 

vehicle presence and sends a signal to the Arduino Uno. This 

signal keeps the gate open when the motorcycle rider hasn't 

completely passed through it, preventing it from closing 

prematurely. Once the vehicle has completely passed and the 

loop detector no longer detects its presence, the Arduino Uno 

sends a close signal to the linear actuator, closing the gate. This 

method improves safety by allowing only helmet-wearing 

motorcycle riders to pass through and preventing the gate from 

shutting on a moving vehicle. 

 

3.2 Datasets 

 

This research acquired the dataset through primary data 

collection via manual photography using smartphone cameras. 

The entire data collection process was systematically 

conducted at the research location, specifically the parking 

area of the Department of Computer Engineering, Faculty of 

Engineering, Diponegoro University. A total of 3.146 sample 

images were collected, ensuring a diverse representation of 

various conditions in the parking area, including lighting 

variations (morning, noon, cloudy, and shaded conditions) and 

different camera angles (frontal, side, top-down) and distances 

(1-3 meters). 

All image samples in this dataset were manually annotated 

using Roboflow. The annotation process involved identifying 

and labeling key objects in each image with bounding boxes 

and corresponding class labels. To ensure consistency and 

accuracy, every annotation was subsequently reviewed by a 

second annotator. A standardized labeling guideline was 

applied throughout the process: the "helmet" class includes 

various types of helmets worn by riders, excluding 

construction helmets, which are not part of the dataset. The 

"head" label is used to annotate individuals who are not 

wearing helmets, including those whose heads are covered by 

non-helmet items or accessories. The "motorcycle" class 

encompasses different types of two-wheeled motorcycles 

commonly used in the campus area. Lastly, the "person" class 

is reserved exclusively for pedestrians—motorcycle riders are 

not included in this category. Once the annotations were 

completed and verified, the dataset was exported in a 

YOLOv8-compatible format. 

To facilitate analysis, the collected images were then 

structured and classified into four distinct categories: helmet, 

head, motorcycle, and person. The label distribution for each 

of these categories can be seen in Table 1. The number of 

images in each classification is part of the total number of 

images collected. 

 

Table 1. Label distribution 

 
ID Class Amount 

0 

1 

2 

3 

Helmet 

Head 

Motorcycle 

Person  

1.598 

1.866 

1.916 

1.231 

 

The collected dataset was partitioned into training, 

validation, and testing. A total of 2.202 images, representing 

70% of the entire dataset, were allocated for the training phase. 

Concurrently, 630 images, equivalent to 20% of the total 

samples, were designated for the validation process to 

optimize model parameters. The remaining 314 images, 

constituting 10% of the comprehensive dataset, were prepared 

for the testing stage to evaluate the model's performance 

objectively. Examples of the dataset can be seen in Figure 2. 

 

 
 

Figure 2. Example of a dataset 

 

All image samples in this dataset were captured with careful 

consideration of varied shooting angles and diverse capture 

distances. This approach was implemented to ensure the 

dataset encompasses a broad diversity that authentically 

represents the dynamic and multifaceted situations 

encountered in the parking area environment. By integrating 

such comprehensive variability, the research aimed to develop 

a robust and adaptable helmet detection model capable of 

performing effectively across different real-world scenarios. 

 

3.3 Object detection using YOLOv8 

 

YOLOv8 implements an advanced neural network 
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architecture for high-precision real-time object detection [25]. 

The model integrates an efficient feature extraction process 

with a single-stage detection system, enabling rapid and 

accurate identification of objects such as vehicles and 

pedestrians [26]. 

YOLOv8 comprises an architecture consisting of three 

primary components, as shown in Figure 3 [27] that operate 

synergistically to generate accurate and efficient object 

detection: the Backbone serves as a feature extractor for input 

images through ConvModule and CSP-A, complemented by 

SPPF to capture multi-scale information [27]; the Neck is 

tasked with reinforcing extracted features using VoVGSCSP 

modules, Concat operations to combine features from various 

layers, Upsample processes to enhance feature resolution, and 

GSConv to optimize processing efficiency [27]; and the Head, 

responsible for object detection predictions, employs 

additional ConvModule and a final Conv2d layer to generate 

precise bounding box, classification, and confidence score 

predictions, with the integration of these three components 

enabling YOLOv8 to detect objects in real-time with high 

performance [27]. 

Utilizing the YOLOv8n model with the Ultralytics 

framework, this research leverages object detection 

architecture for a custom dataset. Implementation was 

conducted with training parameters including 50 epochs, a 

batch size of 16, and an input image resolution of 640×640 

pixels. These parameters represent standard configurations 

commonly used in YOLOv8n model training, with 

adjustments to the epoch count to enable comprehensive 

learning from the custom dataset. While no advanced data 

augmentation techniques (e.g., flipping, rotation, or brightness 

adjustments) were applied, basic preprocessing steps such as 

Auto-Orient and Resize (Stretch to 640×640) were performed 

within Roboflow to standardize image orientation and 

conform to the input dimensions required by YOLOv8n. 

 

3.4 Inference model in Hailo-8L 

 

The Hailo-8L accelerator represents a significant 

advancement in edge computing technology for artificial 

intelligence applications. This low-power neural processing 

unit (NPU) is specifically designed to execute deep learning 

algorithms on edge devices and is compatible with various 

frameworks, including TensorFlow, PyTorch, Keras, and 

ONNX [23]. Hailo-8L offers computational performance up to 

13 TOPS with a typical power consumption of only 1.5 watts, 

achieving an impressive efficiency of 8.7 TOPS/W [23]. 

Deploying the YOLOv8n model on Hailo-8L hardware 

requires a systematic conversion process, as illustrated in 

Figure 4 [28]. Initially, the trained PyTorch model undergoes 

ONNX conversion to establish a standardized intermediate 

representation. This ONNX model is subsequently processed 

through the Hailo Model Zoo and Dataflow Compiler, which 

optimizes the neural network architecture for the Hailo-8L's 

specialized hardware architecture. The optimization includes 

quantizing model weights and activation functions to 8-bit 

precision, restructuring memory layout, and operation fusion 

to maximize computational efficiency [29]. This conversion 

process preserves the model's detection accuracy while 

significantly reducing computational requirements, enabling 

real-time inference capabilities on the edge device. 

 

 
 

Figure 3. YOLOv8 architecture [27] 
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3.5 System integration 

 

The block diagram in Figure 5 provides an overview of the 

system architecture for the automated barrier gate. It illustrates 

the interaction between various hardware components, 

including the Raspberry Pi 5 as the central processing unit, and 

the Arduino Uno for controlling multiple peripheral devices. 

The communication media used in Figure 5 is explained 

further in Table 2. The system incorporates a loop vehicle 

detector for vehicle presence detection, a USB camera for 

object recognition, and a linear actuator controlled via an 

L298N motor driver to operate the barrier gate. Additionally, 

power distribution is managed through a dual-source system: 

220V AC and 12V DC. This structured integration enables 

efficient and reliable automation of the parking portal. 

This system utilizes two power sources, 220V AC and 12V 

DC, to ensure that all components operate according to their 

respective requirements. The 220V AC power source supplies 

electricity to the Raspberry Pi 5, monitor, cooling fan, and 

Hailo-8L, while the 12V DC power source is used for the 

linear actuator through the L298N motor driver. 

As the central processing unit, the Raspberry Pi 5 processes 

data obtained from the USB camera, which detects rider 

compliance. The Raspberry Pi 5 is equipped with a cooling fan 

to prevent overheating, while the Hailo-8L module accelerates 

machine learning-based computations. 

 

 
 

Figure 4. Model optimization and evaluation workflow [28] 

 

 
 

Figure 5. System block diagram 
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Table 2. System block diagram details 

 
Code Sender Components Receiver Components Communication Media 

C1 Power source 220V AC DC Adapter 5.1V/5A Power cable 

C2 Power source 220V AC Loop vehicle detector Power cable 

C3 Power source 220V AC Power source 12V DC Power cable 

C4 Power source 220V AC DC Adapter 12V/2A Power cable 

C5 DC Adapter 5.1V/5A Raspberry Pi 5 USB Type-C cable 

C6 Raspberry Pi 5 Arduino Uno Serial cable 

Arduino Uno Raspberry Pi 5 

C7 Arduino Uno L298N motor driver Jumper cable 

C8 DC Adapter 12V/2A Monitor DC jack male-female 

C9 Loop vehicle detector Arduino Uno Jumper cable 

C10 Power source 12V DC L298N motor driver Power cable 

C11 L298N motor driver Linear actuator Power motor cable 

C12 Linear actuator Barrier gate Bolts & nuts 

C13 USB camera Raspberry Pi 5 USB Type-A cable 

C14 Raspberry Pi 5 Monitor HDMI cable 

C15 Cooling fan Raspberry Pi 5 Jumper cable 

C16 Hailo-8L Raspberry Pi 5 PCIe protocol 

 

 
 

Figure 6. Schematic diagram 

 

 

Additionally, the system includes a loop vehicle detector, 

which is connected to the Arduino Uno and functions to detect 

the presence of a vehicle beneath the barrier gate. The Arduino 

Uno receives signals from the Raspberry Pi 5 and the loop 

vehicle detector and transmits them to the L298N motor 

driver, which controls the linear actuator to automatically open 

and close the barrier gate. 

The schematic diagram in Figure 6 provides a more detailed 

representation of the hardware architecture previously 

outlined in the block diagram. It visually clarifies the 

interconnections between components within the proposed 

systems. 

The flowchart diagram in Figure 7 illustrates the operational 

workflow of the proposed helmet compliance enforcement 

system. The process begins when the system is powered on, 

initializing essential components through an autostart 
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configuration. This ensures that the system is immediately 

functional without requiring manual activation. The USB 

camera activates once the system is ready, serving as the 

primary input device for detecting approaching vehicles and 

riders. 

At this stage, the deep learning model, which utilizes 

YOLO-based object detection, processes the real-time video 

feed to identify key elements: motorcycles, riders, and 

helmets. If a bike is detected but the rider is not wearing a 

helmet, access is denied, and the barrier gate remains closed to 

enforce compliance. On the other hand, if the system confirms 

that the rider meets the safety requirements, the barrier gate 

automatically opens, allowing entry. 

Following this, a loop vehicle detector sensor monitors 

whether an object remains under the barrier gate. This is 

crucial for preventing accidental closures while a vehicle is 

still passing through. If the sensor detects an object, the gate 

remains open until the area is clear. Once the motorcycle has 

completely passed through, the gate closes automatically, and 

the system resets to detect the next approaching vehicle. 

The design from Figure 8 illustrated physical representation 

when the barrier gate control container is placed on its frame. 

This design describes the physical rear shape of the barrier 

gate control container. The container is depicted in a 

horizontal position and has 2 holes for button access and air 

circulation. Then, the physical rear shape of the barrier gate 

control container is depicted in a vertical position. This 

container is a place to accommodate components. This 

container has mounting holes for linear actuator access and 

bolt retaining holes for barrier gate supports. This design 

describes the physical frame shape of the barrier gate control 

container. The frame functions as a physical support for the 

barrier gate control container when it is operated. This frame 

has a length of 1.35 meters. This height is used based on the 

measurement of the height of the motorcyclist when riding a 

motorbike; the result is an average height of 1.5 meters. 

 

 
 

Figure 7. Flowchart diagram 
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Barrier gate container 

 
Frame container 

 

 
Barrier gate control 

 

Figure 8. Hardware design 

 

In the context of uniform motion, the relationship between 

displacement, speed, and time. Where s is the displacement or 

stroke length, v is the constant speed of the linear actuator, and 

t is the time taken. This fundamental concept of motion with 

constant speed is described in [30]. 

 

𝑡 =
𝑠

𝑣
 (1) 

 

Analyzing the linear actuator's movement characteristics is 

essential to determining its maximum lifting time. The 

relationship between these parameters can be expressed 

mathematically, as shown in Eq. (1) [30]. 

 

𝑡 =
𝑆𝑡𝑟𝑜𝑘𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑙𝑖𝑛𝑒𝑎𝑟 𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟

𝑆𝑝𝑒𝑒𝑑 𝑙𝑖𝑛𝑒𝑎𝑟 𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟
  

 

Then, 

 

𝑡 =
0.2

0.03
≈ 6.67 𝑠𝑒𝑐𝑜𝑛𝑑𝑠  

 

Therefore, when supplied with an operational voltage of 

12V DC, the linear actuator reaches its maximum extension in 

approximately 6.67 seconds. Meanwhile, the power supply 

was also increased to 18V to compare the speed. The results 

show that the time for the linear actuator to reach the 

maximum position is reduced to 5 seconds. However, because 

the size of the 18V power supply is too large to be placed in 

the barrier gate control container, the 12V DC is still used. 

The linear actuator is connected at a point 0.12 meters from 

the left end of the portal. Therefore, the height change at that 

point can be calculated. When the linear actuator reaches its 

full stroke length of 0.2 meters, the crossbar connection point 

will be lifted by 0.2 meters. The relationship between the 

vertical and horizontal components in determining the 

inclination angle is a fundamental application of trigonometric 

functions, specifically the tangent function, as introduced in 

[31].  

 

𝜃 = 𝑡𝑎𝑛−1 (
𝑦

𝑥
) (2) 

 

Accordingly, the final angle of the crossbar can be 

calculated using the trigonometric equation as shown in Eq. (2) 

[31]. 

 

𝜃 = 𝑡𝑎𝑛−1 (
𝐿𝑖𝑛𝑒𝑎𝑟 𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟 ℎ𝑒𝑖𝑔ℎ𝑡 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒

𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
)  

 

The horizontal distance between the retaining bolt (0.2 

meters from the end) and the actuator connection (0.12 meters 

from the end) is: 

 

𝜃 = 𝑡𝑎𝑛−1 (
0.2

0.1
)  

 

Then, 

 

𝜃 = 𝑡𝑎𝑛−1(2) ≈ 63.43°  

 

So, when the linear actuator reaches its highest point, the 

bar will form an angle of about 63.43° from its initial position. 

 

 

4. RESULTS AND ANALYSIS 

 

The components contained in the barrier gate control 

container, such as Raspberry Pi 5 along with USB camera and 

monitor connections, Arduino Uno, linear actuator, L298N 

motor driver, loop vehicle detector, and power supply, work 

together to enable the automatic operation of the barrier gate. 

Figure 9 shows the detailed arrangement and wiring of these 

components. 

 

 
 

Figure 9. Barrier gate control components 

 

Figure 10 shows the result of implementing the barrier gate 

control design for the automated barrier gate system. We used 

a 0.37-meter-long bar as a barrier gate and a 0.50-meter-long 

bar as a place to put the USB camera. In addition, we installed 

a monitor in front of the barrier gate container, which functions 

to display a preview of the helmet detection to the 

motorcyclist. 

 

 
 

Figure 10. Barrier gate control 

 

System response time testing is conducted to ensure the 

proposed system's reliability in detecting driving 
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completeness. This process consists of multiple sequential 

stages, starting with driver detection using a USB camera, data 

processing to assess driving completeness, and detection 

preview, culminating in the activation of the barrier gate to 

allow drivers a smooth passage. The test results are presented 

in Table 3. 

 

Table 3. System response time 

 
Iteration System Response Time(s) 

1 6,58 

2 7,55 

3 7,50 

4 7,37 

5 7 

6 7,22 

7 6 

8 6,10 

9 7,80 

10 7 

 

Based on the system response time test results, which have 

been carried out 10 iterations, the response time obtained 

ranges from 6 to 7.80 seconds with an average of 7.11 seconds. 

Furthermore, the evaluation process was carried out using a 

test folder dataset containing 314 images specifically used for 

assessment. In object detection model testing, evaluation 

determines how well the model can classify objects correctly. 

This evaluation uses accuracy, precision, recall, and F1-score 

metrics. Additionally, a confusion matrix is used to analyze 

the model's performance in detecting each class in more detail, 

such as helmets, heads, motorcycles, and persons. 

Accuracy measures how well a model makes correct 

predictions overall by comparing the number of correct 

predictions to the total predictions made. This research uses a 

confusion matrix to evaluate how effectively the system 

identifies aggressive and non-aggressive actions, as shown in 

Eq. (3) [32]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑟𝑦 =
(𝑇𝑁 + 𝑇𝑃)

(𝑇𝑁 + 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)
 (3) 

 

Precision represents the proportion of correctly identified 

positive instances among all predicted positives, reflecting the 

model's accuracy in classifying positive samples, as defined in 

Eq. (4) [33]. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (4) 

 

Recall, also known as the check-all rate, measures the 

model's ability to identify all actual positive instances 

correctly. It assesses how well the model captures true 

positives, as shown in Eq. (5) [33]. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5) 

 

The F1-Score is the harmonic mean of precision and recall, 

offering a balanced evaluation of both metrics. A higher F1 

score indicates better overall performance in maintaining a 

trade-off between precision and recall, as defined in Eq. (6) 

[33]. 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (6) 

 

The mean Average Precision (mAP) represents the average 

of the Average Precision (AP) across all object classes, 

providing a comprehensive measure of detection accuracy. A 

higher mAP indicates better performance in detecting objects 

across multiple courses, as defined in Eq. (7) [34]. 

 

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑁

𝑖=1

 (7) 

 

Based on Figure 11, the confusion matrix shows that while 

the model performs well in detecting head, helmet, 

motorcycle, and person classes, a significant number of 

instances were misclassified as “none”, meaning no object was 

detected. This issue occurred most frequently in the 

motorcycle class (48 cases), followed by head (30), helmet 

(21), and person (22). These misclassifications are caused by 

visual ambiguity, poor lighting conditions, and complex 

backgrounds that resemble the target objects [17]. 

 

 
 

Figure 11. Confusion matrix visualization 
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To address this issue, several improvements are proposed. 

Applying data augmentation techniques such as brightness 

variation, rotation, and flipping can help the model adapt to 

diverse real-world conditions. Enhancing the dataset, 

particularly by adding more samples for the helmet and head 

classes in varied environments, is expected to improve model 

robustness. Adjusting the inference threshold from 0.7 to a 

slightly lower value, such as 0.6 or 0.5, can reduce false 

negatives by allowing more flexible detections. In addition, 

fine-tuning the YOLOv8n model or switching to a more 

capable variant like YOLOv8s, as well as exploring hybrid 

detection approaches [22], can further enhance feature 

extraction and overall detection accuracy. These optimizations 

aim to reduce “none” classifications and improve the system’s 

reliability in real-world applications. 

Based on the confusion matrix in Figure 11, the model's 

accuracy can be calculated by dividing the number of correct 

predictions by the total number of predictions, as shown in Eq. 

(3). The correct predictions are located on the main diagonal 

of the confusion matrix, which are 165 (head), 98 (helmet), 

194 (motorcycle), and 48 (person), resulting in a total of 505 

correct predictions. Meanwhile, the total number of 

predictions made by the model is 635. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
165 + 98 + 194 + 48

635
 

 

Then, 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
505

635
≈ 0.7952 

 

The accuracy value of 0.7952 was obtained by calculating 

the ratio of correct predictions to the total number of 

predictions made. This value shows the model's ability to 

classify the test data correctly. 

 

Table 4. Model performance metrics for each category 

 
Performance 

Metrics 
Helmet Head Motorcycle Person 

Precision 

Recall 

F1-Score 

1.00 

0.78 

0.88 

0.96 

0.84 

0.90 

0.99 

0.80 

0.89 

0.98 

0.69 

0.81 

 

Based on Table 4, the confusion matrix analysis shows the 

system's reliable detection performance. The system achieves 

high precision across all categories: 1.00 for helmet, 0.96 for 

head, 0.99 for motorcycle, and 0.98 for person. The recall 

values indicate good detection performance, with 0.78 for 

helmet, 0.84 for head, 0.80 for motorcycle, and 0.69 for 

person. Furthermore, the F1-scores support the model’s 

reliability, reaching 0.88 for helmet, 0.90 for head, 0.89 for 

motorcycle, and 0.81 for person. 

Based on Table 4, which presents the Precision, Recall, and 

F1-Score values for each class, the mean Average Precision 

(mAP) is calculated by averaging the Precision values of each 

class: Helmet (1.00), Head (0.96), Motorcycle (0.99), and 

Person (0.98). These Precision values are used directly 

because the evaluation used a single confidence threshold, set 

at 0.7. With only one threshold, generating a complete 

Precision-Recall curve to compute the area under the curve is 

impossible. Therefore, the Precision at this specific threshold 

serves as a representation of the model’s detection 

performance. This approach is commonly used when 

evaluation is performed at a single threshold point. The mAP 

is then calculated using Eq. (7), representing the average of the 

Precision values across all classes. 

 

𝑚𝐴𝑃 =
1

4
(1.00 + 0.96 + 0.99 + 0.98) 

 

Then, 

 

𝑚𝐴𝑃 = 0.9825 

 

Based on the calculated average of the Precision values for 

each class, the mean Average Precision (mAP) obtained is 

0.9825. This value indicates that the model demonstrates a 

strong detection performance in identifying objects within the 

test data. 

The results can be seen in Figure 12. The following is the 

implementation of the model presented to users in the 

detection application. In this display, detected objects such as 

helmets, heads, motorcycles, and people are enclosed within 

bounding boxes to indicate the model's prediction results. 

These bounding boxes allow users to observe how the model 

identifies and classifies each object in the image in real time. 

 

 
Rider without helmet 

 
Rider with helmet 

 

 
Pedestrian 

 

Figure 12. Sample detection results from the model 

 

The graph presented in Figure 13 compares CPU usage 

between two configurations: with and without the Hailo-8L AI 

accelerator. The y-axis represents memory usage in 

percentage, while the x-axis denotes measurement time in 

seconds. The results indicate that without the Hailo-8L, the 

CPU utilization remains consistently high, averaging around 

90%. In contrast, with the Hailo-8L, CPU usage is 

significantly reduced to approximately 20%, demonstrating 

the efficiency of the AI accelerator in offloading 

computational workloads. This reduction in CPU usage 

suggests improved processing efficiency when utilizing the 

Hailo-8L. 

The graph presented in Figure 14 compares memory usage 

between two configurations: with and without the Hailo-8L AI 

accelerator. The y-axis represents memory usage in 
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percentage, while the x-axis denotes measurement time in 

seconds. The results show that without the Hailo-8L, memory 

usage remains slightly higher, averaging around 21%. In 

contrast, with the Hailo-8L, memory usage is reduced to 

approximately 18%. This indicates that utilizing the Hailo-8L 

reduces CPU load and optimizes memory consumption, 

contributing to overall system efficiency. 

 

 
 

Figure 13. CPU usage comparison 

 

 
 

Figure 14. Memory usage comparison 

 

 
 

Figure 15. CPU temperature comparison 

 

The graph presented in Figure 15 compares CPU 

temperature between two configurations: with and without the 

Hailo-8L AI accelerator. The y-axis represents CPU 

temperature in degrees Celsius, while the x-axis indicates 

measurement time in seconds. The results show that without 

the Hailo-8L, CPU temperature remains higher, stabilizing 

around 80°C. In contrast, when using the Hailo-8L, CPU 

temperature is noticeably lower, averaging around 65°C. This 

indicates that the Hailo-8L offloads computational tasks, 

reducing CPU workload and consequently lowering its 

operating temperature, which contributes to improved thermal 

efficiency and system stability. 

Assuming the Raspberry Pi 5's CPU consumes 

approximately 5W at full load, the actual power consumption 

at a given moment can be estimated by multiplying this value 

by the average CPU utilization percentage, which is then 

calculated using Eq. (8). 

 

𝑃𝐶𝑃𝑈 = 5𝑊 ×
𝐴𝑣𝑒𝑟𝑎𝑔𝑒

100
 (8) 

 

CPU power without Hailo-8L: 

 

𝑃𝐶𝑃𝑈 = 5𝑊 ×
90.35

100
= 4.5𝑊  

 

CPU power with Hailo-8L: 

 

𝑃𝐶𝑃𝑈 = 5𝑊 ×
16.19

100
= 0.80𝑊  

 

Meanwhile, Hailo-8L typically consumes only 1.5 watts 

[23]. Thus, the total power when using Hailo is: 

 

𝑃𝑇𝑜𝑡𝑎𝑙 = 𝑃𝐶𝑃𝑈 + 𝑃𝐻𝑎𝑖𝑙𝑜 = 0.80𝑊 + 1.5𝑊 = 2.3𝑊  

 

Hailo-8L on the Raspberry Pi 5 significantly reduces CPU 

and memory workload, power consumption, and system 

temperature. Hailo-8L handles machine learning tasks 

efficiently with a more optimized architecture than CPUs, 

which are not specifically designed for intensive machine 

learning. As a result, the system becomes more efficient, 

allowing use in deep learning applications without the risk of 

overheating that can significantly reduce throughput during 

long-term continuous inference, with further reductions if the 

ambient temperature is high [35]. Compared to the total power 

without Hailo-8L (around 4.5W), using Hailo-8L provides a 

power saving of 48.89%. 

 

 

5. CONCLUSION 

 

This research successfully demonstrates the implementation 

of an automated barrier gate by integrating several 

technologies, including Arduino for the barrier gate control 

system [8, 9], the Raspberry Pi as the processing unit for 

machine learning tasks [7, 10], YOLO as the object detection 

model [7], and the Hailo-8 AI accelerator to enhance inference 

efficiency [11]. 

The confusion matrix analysis results indicate that the 

system demonstrates good detection performance, as reflected 

by a mean Average Precision (mAP) of approximately 0.9825 

for all classes (helmet, head, motorcycle, and person). 

However, some improvements are still needed. The current 

system has limitations, such as its reliance on good lighting 

conditions for accurate image processing. Using a higher-

quality camera module or integrating IR-assisted imaging 

could improve robustness under poor lighting. Additionally, 

during peak traffic hours, detection time slightly increases due 

to hardware processing limits. Increasing the motor driver 

voltage to 18V was found to reduce the average response time 

to 5 seconds. Another critical limitation is weather 

sensitivity—the system is currently not rainproof, making it 

unsuitable for operation during heavy rain. This can be 
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addressed by using waterproof enclosures and conducting tests 

under various weather conditions. Future developments 

should also explore optimizing detection algorithms, 

enhancing hardware integration, and expanding the system for 

broader smart environment applications. Improving model 

training with more varied datasets. 

The proposed system presents a novel integration of deep 

learning processing using the Raspberry Pi 5 and automated 

hardware control via the Arduino Uno to detect motorcyclist 

compliance. It builds upon and enhances previously 

independent systems by combining them into a unified 

architecture. The system employs the YOLOv8n object 

detection algorithm, which offers fast and accurate real-time 

recognition of vehicles and riders with a lightweight design 

optimized for edge computing. Integrated with the Hailo-8L 

AI accelerator, YOLOv8n enables more efficient inference by 

reducing the computational workload on the Raspberry Pi 5. 

Experimental results demonstrate that the Hailo-8L 

significantly reduces CPU usage, memory consumption, and 

operating temperature. It also lowers power consumption, 

achieving a power saving of up to 48.89%. 
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NOMENCLATURE 

 

t time, s 

s distance, m 

v speed, m/s 

y vertical component, m 

x horizontal component, m 

P power, W 

TP True Positive 

TN True Negative 

FP False Positive 

FN False Negative 

AP Average Precision 

mAP Mean Average Precision 

 

Greek symbols 

 

θ angle, ° 

 

Subscripts 

 

CPU Central Processing Unit 

Hailo Hailo Accelerator Hardware 
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