
YOLO-Based Helmet Detection and Intelligent Parking System: A Case Study at

Diponegoro University

Agustinus Adven Christo , M. Bintang Prayoga Utama , Yosia Aser Camme , Dania Eridani* , Patricia Evericho

Mountaines

Department of Computer Engineering, Faculty of Engineering, Diponegoro University, Semarang 50275, Indonesia

Corresponding Author Email: dania@ce.undip.ac.id

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ijsse.150520 ABSTRACT

Received: 16 April 2025

Revised: 17 May 2025

Accepted: 25 May 2025

Available online: 31 May 2025

Ensuring helmet compliance in motorcycle parking areas remains a challenge due to the

ineffectiveness of the manual checking system. While substantial research has been

undertaken on smart parking systems, their integration with driving safety compliance

remains limited. This work presents a novel intelligent barrier gate control system that

uses deep learning-based object detection to automate helmet compliance verification.

The system uniquely combines several advanced technologies. An Arduino Uno operates

the physical barrier gate, while a Raspberry Pi 5 processes real-time video input to detect

helmet usage using a YOLO based deep learning model. Hailo-8L AI accelerator is

utilized to enhance efficiency. A custom dataset of 3,146 labeled images (2,202 for

training, 630 for samples, and 314 for testing) was used to train the model. Performance

evaluation shows that the system achieves a mean Average Precision (mAP) of 0.9825,

indicating high detection accuracy. Real-world testing in the Diponegoro University

campus parking lot demonstrates consistent barrier gate operation, with response times

ranging from 6 to 7.8 seconds and an average of 7.11 seconds. The system also shows

optimized low power consumption of only 2.3W. This system addresses manual checks

at Diponegoro University and supports automated safety enforcement and intelligent

access control.

Keywords:

helmet detection, intelligent parking system,

embedded system, YOLO, deep learning,

raspberry Pi 5, Arduino uno, Hailo-8L

1. INTRODUCTION

Many segments of Indonesian society, especially university

students, now consider motorcycles an essential transportation

requirement. Badan Pusat Statistik (BPS) statistics show

Indonesia recorded 125.305.332 motorcycles in 2022. Based

on the same statistic, there were 139.258 road accidents in

Indonesia, a considerable rise of 35.613 instances over the year

before [1]. This indicates that the large number of motorcycle

riders does not translate into a commensurate level of

compliance with traffic laws, such as helmet usage [2].

Non-compliance with helmet use is one of the main factors

contributing to the high number of fatal accidents, since

helmets are crucial in protecting riders from fatal head injuries

[3]. In Indonesia, the automated surveillance system for

driving safety compliance has been implemented on highways

to detect and take action against traffic violations through the

implementation of Electronic Traffic Law Enforcement

(ETLE) [4]. However, a similar system has yet to be

implemented in campus areas that also experience high traffic

density, such as Diponegoro University. At the campus,

driving compliance inspections, including helmet use, are

conducted manually by security staff at the entrances of each

faculty parking area before riders are allowed to enter.

While helmet compliance enforcement is feasible, it poses

obstacles in Diponegoro University parking spaces due to the

lack of an automated barrier gate system. Without a system to

control which riders are permitted entry, motorcycles can pass

through unchecked, making it challenging to enforce helmet

regulations effectively. The dependence on manual

inspections by security personnel is inefficient and prone to

human mistakes, particularly during busy periods when many

vehicles enter simultaneously.

Automated parking systems have been extensively

researched to improve efficiency and security in vehicle access

control. A comprehensive review emphasizes various research

on smart parking solutions, including methodologies, sensor

technologies, networking strategies, and computational

approaches. These systems generally use sensors, camera-

based images, or a mix of the two to assess whether a parking

space is occupied [5]. However, these studies are primarily

concerned with parking space management to detect the

availability of parking slots for motorcycle riders.

While considerable research has focused on parking

availability, applying comparable technology to monitor

compliance with safety regulations, such as helmet use,

remains limited. With the growing number of two-wheeled

vehicles and the related risk of accidents, a YOLO-based

helmet detection system might provide a solution to improve

road safety. Our work explores the development of a parking

system that integrates helmet compliance monitoring with an

automatic barrier gate within a parking area.

International Journal of Safety and Security Engineering
Vol. 15, No. 5, May, 2025, pp. 1075-1088

Journal homepage: http://iieta.org/journals/ijsse

1075

https://orcid.org/0009-0009-3155-363X
https://orcid.org/0009-0006-4940-9298
https://orcid.org/0009-0003-5084-5300
https://orcid.org/0000-0001-9337-3487
https://orcid.org/0000-0002-6193-6203
https://crossmark.crossref.org/dialog/?doi=10.18280/ijsse.150520&domain=pdf

Machine learning with object detection is frequently used to

automate driving safety compliance inspections, such as

helmet detection. One popular approach is YOLO (You Only

Look Once), which detects things in real time. YOLO is a

Deep Learning Algorithm that can determine whether

motorcycle riders are wearing helmets using a trained dataset

[6].

Helmet detection for traffic violation monitoring has

become a notable application of the YOLO algorithm. By

leveraging YOLOv8, a system could detect motorcycles,

riders, and helmets from real-time video footage. This method

enables automatic recognition of helmet compliance without

needing direct human involvement, making it an achievable

option for increasing road safety enforcement. The model

works by first identifying motorbikes and their riders inside a

given frame, then performing a classification step to assess the

existence of a helmet. By training on a diversified dataset,

YOLOv8 improves detection accuracy over various

environmental conditions, assuring reliability even in complex

environments. The capacity to evaluate video data in real time

makes this technique ideal for high-traffic locations where

human monitoring may be ineffective [7].

Multiple research studies have demonstrated that automated

barrier gate systems based on embedded devices such as

Raspberry Pi and Arduino improve efficiency by replacing

manual procedures with intelligent access control methods,

thereby enhancing security and parking management [8-10].

These solutions enhance access control efficiency and provide

a foundation for integrating machine learning-based

compliance monitoring. A smart parking system might be

developed by combining Raspberry Pi's computing capacity

with YOLO for real-time helmet identification and Arduino

for automated barrier gate control, allowing for the

enforcement of helmet regulations while improving overall

parking management on campus.

An AI accelerator such as the Hailo-8L can speed up real-

time detection to increase the system's efficiency. The Hailo-

8L AI processor is designed to run deep learning models

quickly and efficiently [11]. This technique is especially well-

suited for campus traffic monitoring systems because it allows

local data processing without relying on significant

computational resources. Hailo-8L enables the system to

detect helmets with high accuracy and fast reaction times. This

allows the automated barrier gate to make real-time decisions,

such as denying entry to riders who violate helmet regulations.

Therefore, the design of a Barrier Gate Control Technology

for Parking Systems that incorporates deep learning into

automated barrier gates and an AI accelerator like Hailo-8L

offers a novel integration of multiple subsystems into a unified,

intelligent solution. Unlike previous researches that address

helmet detection or access control separately, this research

unifies real-time safety regulation enforcement with physical

access control. This strategy enables direct processing on edge

devices using YOLO-based helmet detection models

optimized by Hailo-8L, ensuring fast and accurate inference

directly. Combined with automated barrier gate control and a

hardware-efficient setup using Raspberry Pi and Arduino, this

solution offers a practical approach for campus-scale

deployment. The novelty lies in the end-to-end integration of

computer vision, edge AI acceleration, and physical gate

control, enabling automatic access control in real time. This

approach offers a scalable and practical solution for improving

traffic safety, while accelerating the campus's transformation

into a smarter and automated environment.

2. LITERATURE REVIEW

2.1 Hardware technologies in barrier gate control

Previous research has implemented various hardware

components to automate barrier gate systems. The system in

the study [8] shows how an Arduino-based controller may

control a gate mechanism by utilizing an Arduino Mega, a DC

motor, RFID, and ultrasonic sensors. Likewise, the study [9]

offers an Arduino Uno-based smart parking system.

Meanwhile, this research [10] presents a more advanced setup

by integrating a Raspberry Pi 3 as the primary processing unit

in an automated parking system. The system utilizes an

ultrasonic sensor, a wired camera, and a DC motor to perform

license plate recognition using the YOLO algorithm. The

Raspberry Pi operates as a standalone computing device,

responsible for processing image data from the camera, and

controlling the stepper motor to open or close the barrier gate

based on the recognized license plate, demonstrates that the

combination of YOLO and Raspberry Pi can be effectively

applied to improve the efficiency of automated barrier gate.

These implementations show that Arduino and Raspberry

Pi are commonly used in automated barrier gates, with each

component playing a distinct role, such as motor control,

object detection, and real-time decision-making. These

findings form a foundation for the proposed system.

This research utilizes various available microcontrollers and

single-board computers, specifically the Arduino Uno and

Raspberry Pi 5. The Arduino Uno is selected due to its

simplicity, broad community support, and sufficient I/O

capabilities [12] to control actuators and sensors in automated

barrier gates. The Raspberry Pi 5, the latest generation in the

Raspberry Pi family [13] offers significant processing power

and memory bandwidth improvements, making it suitable for

executing deep learning models such as YOLOv8. These

choices balance performance and integration flexibility for the

proposed system.

A linear actuator is a component that can extend and retract

linearly. For centuries, such actuators have relied on hydraulic

power [14]. Linear actuators play an essential role in creating

accurate linear motion. These devices have been widely used

in various applications, including automated vehicle steering

systems, soft robotic actuators, prosthetics and rehabilitation,

and automotive technologies [15]. Based on this research, we

can use a linear actuator as a driving mechanism in an

automated barrier gate.

A loop detector is an inductive sensor embedded in the

ground that operates by detecting changes in the magnetic field

caused by the presence of a vehicle. This sensor consists of a

coil of wire installed in the ground and is connected to a

control system capable of recognizing magnetic field

disturbances when a vehicle passes or stops in a designated

area [16]. According to the research, loop detectors are utilized

in automated barrier gates to detect the presence of a vehicle.

2.2 Object detection in parking systems

Deep learning has emerged as a vital technique for

generating accurate and efficient helmet detection systems.

Unlike traditional rule-based methods, deep learning does not

require manually constructed features, allowing models to

generalize across various datasets and complicated urban

traffic situations. Deep learning-based helmet detection

systems, notably those based on CNNs and transformer

1076

topologies, have been shown in research to improve detection

accuracy and robustness considerably. Even when helmets are

tiny, partially concealed, or visually similar to other headgear,

the deep-learning approach detects helmets accurately and

reliably [17]. These improvements have transformed deep

learning into a vital tool for road safety enforcement, allowing

for real-time, automated monitoring of helmet compliance to

assist law enforcement and traffic management.

Convolutional Neural Networks (CNN) are a key deep

learning approach in helmet identification, with architectures

such as Faster R-CNN, SSD, and specifically YOLO capable

of detecting helmet presence in various lighting conditions,

angles, and backgrounds unds [18]. Deep learning models can

automatically learn visual helmet characteristics through non-

linear transformation layers without requiring complex

manual feature engineering. Adapting to complex data allows

helmet detection systems to operate with high accuracy,

making them highly effective solutions for monitoring

personal protective equipment compliance in industrial,

construction, and transportation environments [17, 19].

Helmet detection for traffic violation monitoring has

become a prominent application of the YOLO algorithm,

allowing for automatic enforcement of helmet-wearing

requirements among motorcycle riders. YOLOv8 enables a

system to efficiently recognize motorcycles, riders, and

helmets in real-time video footage, providing rapid and precise

identification without human interaction. The detection

process involves a two-step approach, where YOLOv8 first

recognizes motorcycles and riders within a video frame and

then classifies whether the detected rider is wearing a helmet.

Training on a broad dataset increases the model's robustness,

allowing it to adapt to changing lighting conditions, helmet

designs, and angles. Compared to prior YOLO versions,

YOLOv8 has higher accuracy, shorter inference, and better

object tracking, making it especially effective in high-traffic

areas where manual monitoring is unfeasible. Research has

demonstrated that YOLOv8-based helmet detection systems

reliably improve traffic safety enforcement and reduce

accident risks. With its real-time processing abilities, this

technique is suited for high-traffic areas where manual

surveillance is impractical [7].

YOLOv8 has achieved strong performance metrics in

motorcycle helmet detection tasks, confirming its suitability

for real-time traffic monitoring. In one study, YOLOv8

attained a mean Average Precision (mAP@0.5:0.95) of

0.42675 for helmet detection, with class-specific mAP values

of 0.914 for "with helmet" and 0.865 for "without helmet"

categories [20]. In another investigation, YOLOv8 reached an

overall mAP@0.5 of 0.85, with precision and recall values of

0.838 and 0.782 [21]. This level of accuracy ensures reliable

identification of non-compliant riders even in complex urban

settings characterized by high vehicle density and variable

lighting. Compared to earlier YOLO versions, YOLOv8 not

only reduces false detections but also accelerates inference,

which is essential for real-time enforcement systems.

YOLOv8n, the nano variant of YOLOv8, is chosen in this

system due to its suitability for edge processing in real-time

environments. While newer versions may deliver slightly

higher accuracy in general object detection tasks, research

such as Vaikunth et al. [22] indicates that in specific

applications like helmet detection, the performance gap

between YOLOv8 and its successors is minimal or even

reversed in specific scenarios. This trade-off makes YOLOv8n

a practical and efficient choice for applications like helmet

detection in proposed systems, where speed and hardware

performance are crucial.

The impact of helmet detection technology goes beyond

traffic surveillance and law enforcement, finding applications

in access control and transportation safety systems. Helmet

detection in parking systems can be used with automated

access control devices, such as barrier gates, to ensure safety

compliance. This technology improves parking facility

security and regulatory compliance by permitting only fully

equipped riders to gain entry. Combining YOLO-based object

detection with an automated barrier gate significantly

advances intelligent transportation systems, improving safety

enforcement in real-world applications.

2.3 AI accelerator hardware

The Hailo-8 AI accelerator offers a significant leap in edge

AI processing for object detection, providing more accuracy

and less latency than traditional hardware such as the Jetson

Orin Nano. The Hailo-8 improves accuracy by over 12% while

reducing latency by 20 milliseconds, making it ideal for

security and automation applications. This efficiency is due to

its particular neural processing architecture, which allows for

real-time inference with low power consumption. Unlike

GPUs, which are frequently power-intensive and have higher

processing times, the Hailo-8 is intended for low-power edge

AI deployment, making it ideal for intelligent surveillance,

transportation safety, and industrial automation [11].

The Hailo-8L, when paired with a Raspberry Pi 5, achieves

low-latency inference (~53 ms) with higher frame rates (up to

42 FPS) and lower power consumption (10.4–10.6 W),

compared to desktop GPU setups that require 45–50 W power

while delivering lower frame rates (~16 FPS) and higher

latency [23].

Previous research [24] showed that the use of the HEF

(Hailo Executable Format) format optimized for the Hailo-8L

accelerator significantly provides better performance than

running the model using ONNX on the Raspberry Pi CPU.

Tests show that processing using HEF with Hailo-8L can

achieve speeds up to 15 times higher than execution on the

Raspberry Pi CPU with ONNX, with a maximum frame rate

of around 45 FPS versus only 3 FPS. In addition, the

processing latency with HEF is also much lower, reducing the

processing time from around 300 ms to less than 20 ms, which

greatly supports real-time applications and rapid decision

making. The use of HEF also shows efficiency in resource

utilization and system stability in direct operations at the edge,

without the need to rely on communication to the server or

cloud.

YOLOv8 excels in real-time helmet detection, adapting to

shifting conditions with remarkable speed and accuracy.

Hailo-8, an AI accelerator, improves processing efficiency

even further. Using YOLO-based detection, hardware

selection, and Raspberry Pi processing results in a robust smart

parking system that improves safety and comfort at

Diponegoro University.

1077

3. PROPOSED WORKS

3.1 System architecture

Figure 1 shows the proposed system architecture. It ensures

automated helmet compliance enforcement while maintaining

safe gate operation for motorcycle riders.

Figure 1. System architecture

The process starts with a camera capturing a video stream

input sent to the Raspberry Pi 5. The Raspberry Pi 5 runs a

YOLO-based helmet compliance model, which analyzes the

video feed to identify whether or not the motorcycle rider is

wearing a helmet. If compliance is identified, the Raspberry Pi

5 sends an accept signal to the Arduino Uno, which controls

the gate. The gate is opened by the linear actuator, which is

controlled by the Arduino Uno, upon receiving an acceptable

signal. Meanwhile, a loop vehicle detector constantly detects

vehicle presence and sends a signal to the Arduino Uno. This

signal keeps the gate open when the motorcycle rider hasn't

completely passed through it, preventing it from closing

prematurely. Once the vehicle has completely passed and the

loop detector no longer detects its presence, the Arduino Uno

sends a close signal to the linear actuator, closing the gate. This

method improves safety by allowing only helmet-wearing

motorcycle riders to pass through and preventing the gate from

shutting on a moving vehicle.

3.2 Datasets

This research acquired the dataset through primary data

collection via manual photography using smartphone cameras.

The entire data collection process was systematically

conducted at the research location, specifically the parking

area of the Department of Computer Engineering, Faculty of

Engineering, Diponegoro University. A total of 3.146 sample

images were collected, ensuring a diverse representation of

various conditions in the parking area, including lighting

variations (morning, noon, cloudy, and shaded conditions) and

different camera angles (frontal, side, top-down) and distances

(1-3 meters).

All image samples in this dataset were manually annotated

using Roboflow. The annotation process involved identifying

and labeling key objects in each image with bounding boxes

and corresponding class labels. To ensure consistency and

accuracy, every annotation was subsequently reviewed by a

second annotator. A standardized labeling guideline was

applied throughout the process: the "helmet" class includes

various types of helmets worn by riders, excluding

construction helmets, which are not part of the dataset. The

"head" label is used to annotate individuals who are not

wearing helmets, including those whose heads are covered by

non-helmet items or accessories. The "motorcycle" class

encompasses different types of two-wheeled motorcycles

commonly used in the campus area. Lastly, the "person" class

is reserved exclusively for pedestrians—motorcycle riders are

not included in this category. Once the annotations were

completed and verified, the dataset was exported in a

YOLOv8-compatible format.

To facilitate analysis, the collected images were then

structured and classified into four distinct categories: helmet,

head, motorcycle, and person. The label distribution for each

of these categories can be seen in Table 1. The number of

images in each classification is part of the total number of

images collected.

Table 1. Label distribution

ID Class Amount

0

1

2

3

Helmet

Head

Motorcycle

Person

1.598

1.866

1.916

1.231

The collected dataset was partitioned into training,

validation, and testing. A total of 2.202 images, representing

70% of the entire dataset, were allocated for the training phase.

Concurrently, 630 images, equivalent to 20% of the total

samples, were designated for the validation process to

optimize model parameters. The remaining 314 images,

constituting 10% of the comprehensive dataset, were prepared

for the testing stage to evaluate the model's performance

objectively. Examples of the dataset can be seen in Figure 2.

Figure 2. Example of a dataset

All image samples in this dataset were captured with careful

consideration of varied shooting angles and diverse capture

distances. This approach was implemented to ensure the

dataset encompasses a broad diversity that authentically

represents the dynamic and multifaceted situations

encountered in the parking area environment. By integrating

such comprehensive variability, the research aimed to develop

a robust and adaptable helmet detection model capable of

performing effectively across different real-world scenarios.

3.3 Object detection using YOLOv8

YOLOv8 implements an advanced neural network

1078

architecture for high-precision real-time object detection [25].

The model integrates an efficient feature extraction process

with a single-stage detection system, enabling rapid and

accurate identification of objects such as vehicles and

pedestrians [26].

YOLOv8 comprises an architecture consisting of three

primary components, as shown in Figure 3 [27] that operate

synergistically to generate accurate and efficient object

detection: the Backbone serves as a feature extractor for input

images through ConvModule and CSP-A, complemented by

SPPF to capture multi-scale information [27]; the Neck is

tasked with reinforcing extracted features using VoVGSCSP

modules, Concat operations to combine features from various

layers, Upsample processes to enhance feature resolution, and

GSConv to optimize processing efficiency [27]; and the Head,

responsible for object detection predictions, employs

additional ConvModule and a final Conv2d layer to generate

precise bounding box, classification, and confidence score

predictions, with the integration of these three components

enabling YOLOv8 to detect objects in real-time with high

performance [27].

Utilizing the YOLOv8n model with the Ultralytics

framework, this research leverages object detection

architecture for a custom dataset. Implementation was

conducted with training parameters including 50 epochs, a

batch size of 16, and an input image resolution of 640×640

pixels. These parameters represent standard configurations

commonly used in YOLOv8n model training, with

adjustments to the epoch count to enable comprehensive

learning from the custom dataset. While no advanced data

augmentation techniques (e.g., flipping, rotation, or brightness

adjustments) were applied, basic preprocessing steps such as

Auto-Orient and Resize (Stretch to 640×640) were performed

within Roboflow to standardize image orientation and

conform to the input dimensions required by YOLOv8n.

3.4 Inference model in Hailo-8L

The Hailo-8L accelerator represents a significant

advancement in edge computing technology for artificial

intelligence applications. This low-power neural processing

unit (NPU) is specifically designed to execute deep learning

algorithms on edge devices and is compatible with various

frameworks, including TensorFlow, PyTorch, Keras, and

ONNX [23]. Hailo-8L offers computational performance up to

13 TOPS with a typical power consumption of only 1.5 watts,

achieving an impressive efficiency of 8.7 TOPS/W [23].

Deploying the YOLOv8n model on Hailo-8L hardware

requires a systematic conversion process, as illustrated in

Figure 4 [28]. Initially, the trained PyTorch model undergoes

ONNX conversion to establish a standardized intermediate

representation. This ONNX model is subsequently processed

through the Hailo Model Zoo and Dataflow Compiler, which

optimizes the neural network architecture for the Hailo-8L's

specialized hardware architecture. The optimization includes

quantizing model weights and activation functions to 8-bit

precision, restructuring memory layout, and operation fusion

to maximize computational efficiency [29]. This conversion

process preserves the model's detection accuracy while

significantly reducing computational requirements, enabling

real-time inference capabilities on the edge device.

Figure 3. YOLOv8 architecture [27]

1079

3.5 System integration

The block diagram in Figure 5 provides an overview of the

system architecture for the automated barrier gate. It illustrates

the interaction between various hardware components,

including the Raspberry Pi 5 as the central processing unit, and

the Arduino Uno for controlling multiple peripheral devices.

The communication media used in Figure 5 is explained

further in Table 2. The system incorporates a loop vehicle

detector for vehicle presence detection, a USB camera for

object recognition, and a linear actuator controlled via an

L298N motor driver to operate the barrier gate. Additionally,

power distribution is managed through a dual-source system:

220V AC and 12V DC. This structured integration enables

efficient and reliable automation of the parking portal.

This system utilizes two power sources, 220V AC and 12V

DC, to ensure that all components operate according to their

respective requirements. The 220V AC power source supplies

electricity to the Raspberry Pi 5, monitor, cooling fan, and

Hailo-8L, while the 12V DC power source is used for the

linear actuator through the L298N motor driver.

As the central processing unit, the Raspberry Pi 5 processes

data obtained from the USB camera, which detects rider

compliance. The Raspberry Pi 5 is equipped with a cooling fan

to prevent overheating, while the Hailo-8L module accelerates

machine learning-based computations.

Figure 4. Model optimization and evaluation workflow [28]

Figure 5. System block diagram

1080

Table 2. System block diagram details

Code Sender Components Receiver Components Communication Media

C1 Power source 220V AC DC Adapter 5.1V/5A Power cable

C2 Power source 220V AC Loop vehicle detector Power cable

C3 Power source 220V AC Power source 12V DC Power cable

C4 Power source 220V AC DC Adapter 12V/2A Power cable

C5 DC Adapter 5.1V/5A Raspberry Pi 5 USB Type-C cable

C6 Raspberry Pi 5 Arduino Uno Serial cable

Arduino Uno Raspberry Pi 5

C7 Arduino Uno L298N motor driver Jumper cable

C8 DC Adapter 12V/2A Monitor DC jack male-female

C9 Loop vehicle detector Arduino Uno Jumper cable

C10 Power source 12V DC L298N motor driver Power cable

C11 L298N motor driver Linear actuator Power motor cable

C12 Linear actuator Barrier gate Bolts & nuts

C13 USB camera Raspberry Pi 5 USB Type-A cable

C14 Raspberry Pi 5 Monitor HDMI cable

C15 Cooling fan Raspberry Pi 5 Jumper cable

C16 Hailo-8L Raspberry Pi 5 PCIe protocol

Figure 6. Schematic diagram

Additionally, the system includes a loop vehicle detector,

which is connected to the Arduino Uno and functions to detect

the presence of a vehicle beneath the barrier gate. The Arduino

Uno receives signals from the Raspberry Pi 5 and the loop

vehicle detector and transmits them to the L298N motor

driver, which controls the linear actuator to automatically open

and close the barrier gate.

The schematic diagram in Figure 6 provides a more detailed

representation of the hardware architecture previously

outlined in the block diagram. It visually clarifies the

interconnections between components within the proposed

systems.

The flowchart diagram in Figure 7 illustrates the operational

workflow of the proposed helmet compliance enforcement

system. The process begins when the system is powered on,

initializing essential components through an autostart

1081

configuration. This ensures that the system is immediately

functional without requiring manual activation. The USB

camera activates once the system is ready, serving as the

primary input device for detecting approaching vehicles and

riders.

At this stage, the deep learning model, which utilizes

YOLO-based object detection, processes the real-time video

feed to identify key elements: motorcycles, riders, and

helmets. If a bike is detected but the rider is not wearing a

helmet, access is denied, and the barrier gate remains closed to

enforce compliance. On the other hand, if the system confirms

that the rider meets the safety requirements, the barrier gate

automatically opens, allowing entry.

Following this, a loop vehicle detector sensor monitors

whether an object remains under the barrier gate. This is

crucial for preventing accidental closures while a vehicle is

still passing through. If the sensor detects an object, the gate

remains open until the area is clear. Once the motorcycle has

completely passed through, the gate closes automatically, and

the system resets to detect the next approaching vehicle.

The design from Figure 8 illustrated physical representation

when the barrier gate control container is placed on its frame.

This design describes the physical rear shape of the barrier

gate control container. The container is depicted in a

horizontal position and has 2 holes for button access and air

circulation. Then, the physical rear shape of the barrier gate

control container is depicted in a vertical position. This

container is a place to accommodate components. This

container has mounting holes for linear actuator access and

bolt retaining holes for barrier gate supports. This design

describes the physical frame shape of the barrier gate control

container. The frame functions as a physical support for the

barrier gate control container when it is operated. This frame

has a length of 1.35 meters. This height is used based on the

measurement of the height of the motorcyclist when riding a

motorbike; the result is an average height of 1.5 meters.

Figure 7. Flowchart diagram

1082

Barrier gate container

Frame container

Barrier gate control

Figure 8. Hardware design

In the context of uniform motion, the relationship between

displacement, speed, and time. Where s is the displacement or

stroke length, v is the constant speed of the linear actuator, and

t is the time taken. This fundamental concept of motion with

constant speed is described in [30].

𝑡 =
𝑠

𝑣
 (1)

Analyzing the linear actuator's movement characteristics is

essential to determining its maximum lifting time. The

relationship between these parameters can be expressed

mathematically, as shown in Eq. (1) [30].

𝑡 =
𝑆𝑡𝑟𝑜𝑘𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑙𝑖𝑛𝑒𝑎𝑟 𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟

𝑆𝑝𝑒𝑒𝑑 𝑙𝑖𝑛𝑒𝑎𝑟 𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟

Then,

𝑡 =
0.2

0.03
≈ 6.67 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

Therefore, when supplied with an operational voltage of

12V DC, the linear actuator reaches its maximum extension in

approximately 6.67 seconds. Meanwhile, the power supply

was also increased to 18V to compare the speed. The results

show that the time for the linear actuator to reach the

maximum position is reduced to 5 seconds. However, because

the size of the 18V power supply is too large to be placed in

the barrier gate control container, the 12V DC is still used.

The linear actuator is connected at a point 0.12 meters from

the left end of the portal. Therefore, the height change at that

point can be calculated. When the linear actuator reaches its

full stroke length of 0.2 meters, the crossbar connection point

will be lifted by 0.2 meters. The relationship between the

vertical and horizontal components in determining the

inclination angle is a fundamental application of trigonometric

functions, specifically the tangent function, as introduced in

[31].

𝜃 = 𝑡𝑎𝑛−1 (
𝑦

𝑥
) (2)

Accordingly, the final angle of the crossbar can be

calculated using the trigonometric equation as shown in Eq. (2)

[31].

𝜃 = 𝑡𝑎𝑛−1 (
𝐿𝑖𝑛𝑒𝑎𝑟 𝑎𝑐𝑡𝑢𝑎𝑡𝑜𝑟 ℎ𝑒𝑖𝑔ℎ𝑡 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒

𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
)

The horizontal distance between the retaining bolt (0.2

meters from the end) and the actuator connection (0.12 meters

from the end) is:

𝜃 = 𝑡𝑎𝑛−1 (
0.2

0.1
)

Then,

𝜃 = 𝑡𝑎𝑛−1(2) ≈ 63.43°

So, when the linear actuator reaches its highest point, the

bar will form an angle of about 63.43° from its initial position.

4. RESULTS AND ANALYSIS

The components contained in the barrier gate control

container, such as Raspberry Pi 5 along with USB camera and

monitor connections, Arduino Uno, linear actuator, L298N

motor driver, loop vehicle detector, and power supply, work

together to enable the automatic operation of the barrier gate.

Figure 9 shows the detailed arrangement and wiring of these

components.

Figure 9. Barrier gate control components

Figure 10 shows the result of implementing the barrier gate

control design for the automated barrier gate system. We used

a 0.37-meter-long bar as a barrier gate and a 0.50-meter-long

bar as a place to put the USB camera. In addition, we installed

a monitor in front of the barrier gate container, which functions

to display a preview of the helmet detection to the

motorcyclist.

Figure 10. Barrier gate control

System response time testing is conducted to ensure the

proposed system's reliability in detecting driving

1083

completeness. This process consists of multiple sequential

stages, starting with driver detection using a USB camera, data

processing to assess driving completeness, and detection

preview, culminating in the activation of the barrier gate to

allow drivers a smooth passage. The test results are presented

in Table 3.

Table 3. System response time

Iteration System Response Time(s)

1 6,58

2 7,55

3 7,50

4 7,37

5 7

6 7,22

7 6

8 6,10

9 7,80

10 7

Based on the system response time test results, which have

been carried out 10 iterations, the response time obtained

ranges from 6 to 7.80 seconds with an average of 7.11 seconds.

Furthermore, the evaluation process was carried out using a

test folder dataset containing 314 images specifically used for

assessment. In object detection model testing, evaluation

determines how well the model can classify objects correctly.

This evaluation uses accuracy, precision, recall, and F1-score

metrics. Additionally, a confusion matrix is used to analyze

the model's performance in detecting each class in more detail,

such as helmets, heads, motorcycles, and persons.

Accuracy measures how well a model makes correct

predictions overall by comparing the number of correct

predictions to the total predictions made. This research uses a

confusion matrix to evaluate how effectively the system

identifies aggressive and non-aggressive actions, as shown in

Eq. (3) [32].

𝐴𝑐𝑐𝑢𝑟𝑎𝑟𝑦 =
(𝑇𝑁 + 𝑇𝑃)

(𝑇𝑁 + 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)
 (3)

Precision represents the proportion of correctly identified

positive instances among all predicted positives, reflecting the

model's accuracy in classifying positive samples, as defined in

Eq. (4) [33].

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
 (4)

Recall, also known as the check-all rate, measures the

model's ability to identify all actual positive instances

correctly. It assesses how well the model captures true

positives, as shown in Eq. (5) [33].

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5)

The F1-Score is the harmonic mean of precision and recall,

offering a balanced evaluation of both metrics. A higher F1

score indicates better overall performance in maintaining a

trade-off between precision and recall, as defined in Eq. (6)

[33].

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
 (6)

The mean Average Precision (mAP) represents the average

of the Average Precision (AP) across all object classes,

providing a comprehensive measure of detection accuracy. A

higher mAP indicates better performance in detecting objects

across multiple courses, as defined in Eq. (7) [34].

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑁

𝑖=1

 (7)

Based on Figure 11, the confusion matrix shows that while

the model performs well in detecting head, helmet,

motorcycle, and person classes, a significant number of

instances were misclassified as “none”, meaning no object was

detected. This issue occurred most frequently in the

motorcycle class (48 cases), followed by head (30), helmet

(21), and person (22). These misclassifications are caused by

visual ambiguity, poor lighting conditions, and complex

backgrounds that resemble the target objects [17].

Figure 11. Confusion matrix visualization

1084

To address this issue, several improvements are proposed.

Applying data augmentation techniques such as brightness

variation, rotation, and flipping can help the model adapt to

diverse real-world conditions. Enhancing the dataset,

particularly by adding more samples for the helmet and head

classes in varied environments, is expected to improve model

robustness. Adjusting the inference threshold from 0.7 to a

slightly lower value, such as 0.6 or 0.5, can reduce false

negatives by allowing more flexible detections. In addition,

fine-tuning the YOLOv8n model or switching to a more

capable variant like YOLOv8s, as well as exploring hybrid

detection approaches [22], can further enhance feature

extraction and overall detection accuracy. These optimizations

aim to reduce “none” classifications and improve the system’s

reliability in real-world applications.

Based on the confusion matrix in Figure 11, the model's

accuracy can be calculated by dividing the number of correct

predictions by the total number of predictions, as shown in Eq.

(3). The correct predictions are located on the main diagonal

of the confusion matrix, which are 165 (head), 98 (helmet),

194 (motorcycle), and 48 (person), resulting in a total of 505

correct predictions. Meanwhile, the total number of

predictions made by the model is 635.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
165 + 98 + 194 + 48

635

Then,

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
505

635
≈ 0.7952

The accuracy value of 0.7952 was obtained by calculating

the ratio of correct predictions to the total number of

predictions made. This value shows the model's ability to

classify the test data correctly.

Table 4. Model performance metrics for each category

Performance

Metrics
Helmet Head Motorcycle Person

Precision

Recall

F1-Score

1.00

0.78

0.88

0.96

0.84

0.90

0.99

0.80

0.89

0.98

0.69

0.81

Based on Table 4, the confusion matrix analysis shows the

system's reliable detection performance. The system achieves

high precision across all categories: 1.00 for helmet, 0.96 for

head, 0.99 for motorcycle, and 0.98 for person. The recall

values indicate good detection performance, with 0.78 for

helmet, 0.84 for head, 0.80 for motorcycle, and 0.69 for

person. Furthermore, the F1-scores support the model’s

reliability, reaching 0.88 for helmet, 0.90 for head, 0.89 for

motorcycle, and 0.81 for person.

Based on Table 4, which presents the Precision, Recall, and

F1-Score values for each class, the mean Average Precision

(mAP) is calculated by averaging the Precision values of each

class: Helmet (1.00), Head (0.96), Motorcycle (0.99), and

Person (0.98). These Precision values are used directly

because the evaluation used a single confidence threshold, set

at 0.7. With only one threshold, generating a complete

Precision-Recall curve to compute the area under the curve is

impossible. Therefore, the Precision at this specific threshold

serves as a representation of the model’s detection

performance. This approach is commonly used when

evaluation is performed at a single threshold point. The mAP

is then calculated using Eq. (7), representing the average of the

Precision values across all classes.

𝑚𝐴𝑃 =
1

4
(1.00 + 0.96 + 0.99 + 0.98)

Then,

𝑚𝐴𝑃 = 0.9825

Based on the calculated average of the Precision values for

each class, the mean Average Precision (mAP) obtained is

0.9825. This value indicates that the model demonstrates a

strong detection performance in identifying objects within the

test data.

The results can be seen in Figure 12. The following is the

implementation of the model presented to users in the

detection application. In this display, detected objects such as

helmets, heads, motorcycles, and people are enclosed within

bounding boxes to indicate the model's prediction results.

These bounding boxes allow users to observe how the model

identifies and classifies each object in the image in real time.

Rider without helmet

Rider with helmet

Pedestrian

Figure 12. Sample detection results from the model

The graph presented in Figure 13 compares CPU usage

between two configurations: with and without the Hailo-8L AI

accelerator. The y-axis represents memory usage in

percentage, while the x-axis denotes measurement time in

seconds. The results indicate that without the Hailo-8L, the

CPU utilization remains consistently high, averaging around

90%. In contrast, with the Hailo-8L, CPU usage is

significantly reduced to approximately 20%, demonstrating

the efficiency of the AI accelerator in offloading

computational workloads. This reduction in CPU usage

suggests improved processing efficiency when utilizing the

Hailo-8L.

The graph presented in Figure 14 compares memory usage

between two configurations: with and without the Hailo-8L AI

accelerator. The y-axis represents memory usage in

1085

percentage, while the x-axis denotes measurement time in

seconds. The results show that without the Hailo-8L, memory

usage remains slightly higher, averaging around 21%. In

contrast, with the Hailo-8L, memory usage is reduced to

approximately 18%. This indicates that utilizing the Hailo-8L

reduces CPU load and optimizes memory consumption,

contributing to overall system efficiency.

Figure 13. CPU usage comparison

Figure 14. Memory usage comparison

Figure 15. CPU temperature comparison

The graph presented in Figure 15 compares CPU

temperature between two configurations: with and without the

Hailo-8L AI accelerator. The y-axis represents CPU

temperature in degrees Celsius, while the x-axis indicates

measurement time in seconds. The results show that without

the Hailo-8L, CPU temperature remains higher, stabilizing

around 80°C. In contrast, when using the Hailo-8L, CPU

temperature is noticeably lower, averaging around 65°C. This

indicates that the Hailo-8L offloads computational tasks,

reducing CPU workload and consequently lowering its

operating temperature, which contributes to improved thermal

efficiency and system stability.

Assuming the Raspberry Pi 5's CPU consumes

approximately 5W at full load, the actual power consumption

at a given moment can be estimated by multiplying this value

by the average CPU utilization percentage, which is then

calculated using Eq. (8).

𝑃𝐶𝑃𝑈 = 5𝑊 ×
𝐴𝑣𝑒𝑟𝑎𝑔𝑒

100
 (8)

CPU power without Hailo-8L:

𝑃𝐶𝑃𝑈 = 5𝑊 ×
90.35

100
= 4.5𝑊

CPU power with Hailo-8L:

𝑃𝐶𝑃𝑈 = 5𝑊 ×
16.19

100
= 0.80𝑊

Meanwhile, Hailo-8L typically consumes only 1.5 watts

[23]. Thus, the total power when using Hailo is:

𝑃𝑇𝑜𝑡𝑎𝑙 = 𝑃𝐶𝑃𝑈 + 𝑃𝐻𝑎𝑖𝑙𝑜 = 0.80𝑊 + 1.5𝑊 = 2.3𝑊

Hailo-8L on the Raspberry Pi 5 significantly reduces CPU

and memory workload, power consumption, and system

temperature. Hailo-8L handles machine learning tasks

efficiently with a more optimized architecture than CPUs,

which are not specifically designed for intensive machine

learning. As a result, the system becomes more efficient,

allowing use in deep learning applications without the risk of

overheating that can significantly reduce throughput during

long-term continuous inference, with further reductions if the

ambient temperature is high [35]. Compared to the total power

without Hailo-8L (around 4.5W), using Hailo-8L provides a

power saving of 48.89%.

5. CONCLUSION

This research successfully demonstrates the implementation

of an automated barrier gate by integrating several

technologies, including Arduino for the barrier gate control

system [8, 9], the Raspberry Pi as the processing unit for

machine learning tasks [7, 10], YOLO as the object detection

model [7], and the Hailo-8 AI accelerator to enhance inference

efficiency [11].

The confusion matrix analysis results indicate that the

system demonstrates good detection performance, as reflected

by a mean Average Precision (mAP) of approximately 0.9825

for all classes (helmet, head, motorcycle, and person).

However, some improvements are still needed. The current

system has limitations, such as its reliance on good lighting

conditions for accurate image processing. Using a higher-

quality camera module or integrating IR-assisted imaging

could improve robustness under poor lighting. Additionally,

during peak traffic hours, detection time slightly increases due

to hardware processing limits. Increasing the motor driver

voltage to 18V was found to reduce the average response time

to 5 seconds. Another critical limitation is weather

sensitivity—the system is currently not rainproof, making it

unsuitable for operation during heavy rain. This can be

0
25
50
75
100

5 10 15 20 25 30 35 40 45 50 55 60

C
P

U
 U

sa
g
e

(%
)

Measurement Time (minute)

CPU Usage Comparison

Without Hailo-8L With Hailo-8L

0

10

20

30

5 10 15 20 25 30 35 40 45 50 55 60

M
em

o
ry

 U
sa

g
e

(%
)

Measurement Time (minute)

Memory Usage Comparison

Without Hailo-8L With Hailo-8L

0
25
50
75
100

5 10 15 20 25 30 35 40 45 50 55 60

C
P

U
 T

em
p

er
at

u
re

 (
°)

Measurement Time (minute)

CPU Temperature Comparison

Without Hailo-8L With Hailo-8L

1086

addressed by using waterproof enclosures and conducting tests

under various weather conditions. Future developments

should also explore optimizing detection algorithms,

enhancing hardware integration, and expanding the system for

broader smart environment applications. Improving model

training with more varied datasets.

The proposed system presents a novel integration of deep

learning processing using the Raspberry Pi 5 and automated

hardware control via the Arduino Uno to detect motorcyclist

compliance. It builds upon and enhances previously

independent systems by combining them into a unified

architecture. The system employs the YOLOv8n object

detection algorithm, which offers fast and accurate real-time

recognition of vehicles and riders with a lightweight design

optimized for edge computing. Integrated with the Hailo-8L

AI accelerator, YOLOv8n enables more efficient inference by

reducing the computational workload on the Raspberry Pi 5.

Experimental results demonstrate that the Hailo-8L

significantly reduces CPU usage, memory consumption, and

operating temperature. It also lowers power consumption,

achieving a power saving of up to 48.89%.

AUTHOR CONTRIBUTION

Agustinus Adven Christo is the Hardware Developer of this

research and also contributed as the author of this manuscript.

M. Bintang Prayoga Utama and Yosia Aser Camme are the

Artificial Intelligence Developers of this research and

contributed as the authors of this manuscript. Dania Eridani,

the research supervisor, contributed as the author of this

manuscript and the corresponding author. Patricia Evericho

Mountaines, the research supervisor, contributed as the author

of this manuscript.

REFERENCES

[1] Badan Pusat Statistik. Development of the Number of

Motor Vehicles by Type (Unit), 2021-2022. Badan Pusat

Statistik. https://www.bps.go.id/id/statistics-

table/2/NTcjMg==/perkembangan-jumlah-kendaraan-

bermotor-menurut-jenis--unit-.html, accessed on Apr. 09,

2025.

[2] Badan Pusat Statistik. Number of Accidents, Fatalities,

Serious Injuries, Minor Injuries, and Material Losses,

2022. Badan Pusat Statistik.

https://www.bps.go.id/id/statistics-

table/2/NTEzIzI=/jumlah-kecelakaan--korban-mati--

luka-berat--luka-ringan--dan-kerugian-materi.html,

accesed on Apr. 09, 2025.

[3] Mercado Reyna, J., Luna-Garcia, H., Espino-Salinas,

C.H., Celaya-Padilla, J.M., Gamboa-Rosales, H.,

Galván-Tejada, J.I., Solís Robles, R., Rondon, D.,

Villalba-Condori, K.O. (2023). Detection of helmet use

in motorcycle drivers using convolutional neural network.

Applied Sciences, 13(10): 5882.

https://doi.org/10.3390/app13105882

[4] Utami, P.V. (2024). The application of technology and

information development in electronic traffic law

enforcement (ETLE) to shape public awareness.

Edusight International Journal of Multidisciplinary

Studies, 1(1). https://doi.org/10.69726/eijoms.v1i1.9

[5] Fahim, A., Hasan, M., Chowdhury, M.A. (2021). Smart

parking systems: Comprehensive review based on

various aspects. Heliyon, 7(5): e07050.

https://doi.org/10.1016/j.heliyon.2021.e07050

[6] Malik, I., Verma, S., Sachan, S. (2024). YOLOv7-based

helmet detection system for traffic safety. In 2024 Sixth

International Conference on Computational Intelligence

and Communication Technologies (CCICT), Sonepat,

India, pp. 493-497.

https://doi.org/10.1109/CCICT62777.2024.00082

[7] Charef, A., Jarir, Z., Quafafou, M. (2024). Enhancing

road safety: Automated traffic violation detection and

counting system using YOLO algorithm. In 2024

Mediterranean Smart Cities Conference (MSCC), Martil

- Tetuan, Morocco, pp. 1-6.

https://doi.org/10.1109/MSCC62288.2024.10697076

[8] Widodo, S., Amin, M.M., Sutrisman, A., Cofriyanti, E.,

Puji, R.M. (2020). Implementation of parking portal door

security system using RFID and password based on

microcontrollers in Sriwijaya state polytechnic. Journal

of Physics: Conference Series, 1500(1): 012114.

https://doi.org/10.1088/1742-6596/1500/1/012114

[9] Dixit, M., Priya, A., Haldiya, G., Priya, A., Kumar, B.

(2023). Smart car parking system using Arduino. In 2023

IEEE International Students' Conference on Electrical,

Electronics and Computer Science (SCEECS), Bhopal,

India, pp. 1-6.

https://doi.org/10.1109/SCEECS57921.2023.10063121

[10] Mala, S., Vidyashree, H.R., Chanda, K. (2024). Yolo

model-based license plate extraction and toll generation

for smart parking systems. In 2024 2nd International

Conference on Networking, Embedded and Wireless

Systems (ICNEWS), Bangalore, India, pp. 1-7.

https://doi.org/10.1109/ICNEWS60873.2024.10730931

[11] Achmadiah, M.N., Setyawan, N., Bryantono, A.A., Sun,

C.C., Kuo, W.K. (2024). Fast person detection using

YOLOX with AI accelerator for train station safety. In

2024 International Electronics Symposium (IES),

Denpasar, Indonesia, pp. 504-509.

https://doi.org/10.1109/IES63037.2024.10665874

[12] Kondaveeti, H.K., Kumaravelu, N.K., Vanambathina,

S.D., Mathe, S.E., Vappangi, S. (2021). A systematic

literature review on prototyping with Arduino:

Applications, challenges, advantages, and limitations.

Computer Science Review, 40: 100364.

https://doi.org/10.1016/j.cosrev.2021.100364

[13] Mathe, S.E., Kondaveeti, H.K., Vappangi, S.,

Vanambathina, S.D., Kumaravelu, N.K. (2024). A

comprehensive review on applications of Raspberry Pi.

Computer Science Review, 52: 100636.

https://doi.org/10.1016/j.cosrev.2024.100636

[14] Hermawan, S., Rochardjo, H.S. (2022). Preliminary

design of electric linear actuator for hospital bed

domestic product. Journal of Mechanical Design and

Testing, 4(1): 25-31.

https://doi.org/10.22146/jmdt.63146

[15] Nava-Pintor, J.A., Carlos-Mancilla, M.A., Guerrero-

Osuna, H.A., Luque-Vega, L.F., Carrasco-Navarro, R.,

Castro-Tapia, S., Mata-Romero, M.E., González-

Jiménez, L.E., Solís-Sánchez, L.O. (2023). Design,

implementation, and control of a linear electric actuator

for educational mechatronics. Machines, 11(9): 894.

https://doi.org/10.3390/machines11090894

[16] Kumar, K., Singh, V., Raja, L., Bhagirath, S.N. (2023).

A review of parking slot types and their detection

1087

https://www.bps.go.id/id/statistics-table/2/NTEzIzI=/jumlah-kecelakaan--korban-mati--luka-berat--luka-ringan--dan-kerugian-materi.html
https://www.bps.go.id/id/statistics-table/2/NTEzIzI=/jumlah-kecelakaan--korban-mati--luka-berat--luka-ringan--dan-kerugian-materi.html
https://www.bps.go.id/id/statistics-table/2/NTEzIzI=/jumlah-kecelakaan--korban-mati--luka-berat--luka-ringan--dan-kerugian-materi.html

techniques for smart cities. Smart Cities, 6(5): 2639-2660.

https://doi.org/10.3390/smartcities6050119

[17] Kim, B.I., Ko, B.C., Jang, I.S., Kim, K.J. (2024). Helmet

detection of motobike riders in real-world scenarios. In

2024 IEEE International Conference on Consumer

Electronics-Asia (ICCE-Asia), Danang, Vietnam, pp. 1-

4. https://doi.org/10.1109/ICCE-

Asia63397.2024.10773688

[18] Taye, M.M. (2023). Understanding of machine learning

with deep learning: Architectures, workflow,

applications and future directions. Computers, 12(5): 91.

https://doi.org/10.3390/computers12050091

[19] Gallo, G., Di Rienzo, F., Garzelli, F., Ducange, P.,

Vallati, C. (2022). A smart system for personal protective

equipment detection in industrial environments based on

deep learning at the edge. IEEE Access, 10: 110862-

110878.

https://doi.org/10.1109/ACCESS.2022.3215148

[20] Abirami, M.S., Jain, H.K., Kanwar, A.S. (2024).

Detection of two-wheelers traffic violations and

automated ticketing using YOLOv8. In 2024

International Conference on Advances in Computing

Research on Science Engineering and Technology

(ACROSET), Indore, India, pp. 1-6.

https://doi.org/10.1109/ACROSET62108.2024.1074329

8

[21] Chai, Z. (2024). Real-time automatic detection of

motorcycle helmet based on improved YOLOv8

algorithm. In 2024 6th International Conference on

Communications, Information System and Computer

Engineering (CISCE), Guangzhou, China, pp. 1239-

1243.

https://doi.org/10.1109/CISCE62493.2024.10652610

[22] Vaikunth, M., Dejey, D., Vishaal, C., Balamurali, S.

(2024). Optimizing helmet detection with hybrid YOLO

pipelines: A detailed analysis. In CS & IT Conference

Proceedings, pp. 83-93.

https://doi.org/10.5121/csit.2024.142406

[23] Bueno, G., Sanchez-Vargas, L., Diaz-Maroto, A., Ruiz-

Santaquiteria, J., Blanco, M., Salido, J., Cristobal, G.

(2025). Real-time edge computing vs. GPU-accelerated

pipelines for low-cost microscopy applications.

Electronics, 14(5): 930.

https://doi.org/10.3390/electronics14050930

[24] Luculescu, M.C., Cristea, L., Boer, A.L. (2025).

Artificial vision system for autonomous mobile platform

used in intelligent and flexible indoor environment

inspection. Technologies, 13(4): 161.

https://doi.org/10.3390/technologies13040161

[25] Zhou, Q., Wang, Z., Zhong, Y., Zhong, F., Wang, L.

(2024). Efficient optimized YOLOv8 model with

extended vision. Sensors, 24(20): 6506.

https://doi.org/10.3390/s24206506

[26] Liu, W., Qiao, X., Zhao, C., Deng, T., Yan, F. (2025).

VP-YOLO: A human visual perception-inspired robust

vehicle-pedestrian detection model for complex traffic

scenarios. Expert Systems with Applications, 274:

126837. https://doi.org/10.1016/j.eswa.2025.126837

[27] Chen, Z., Liu, B., Gao, X., Sun, S., Yao, B. (2024).

Safety helmet detection using improved YOLOv8. In

2024 5th International Conference on Big Data &

Artificial Intelligence & Software Engineering

(ICBASE), Wenzhou, China, pp. 677-682.

https://doi.org/10.1109/ICBASE63199.2024.10762189

[28] Hailo Technologies Ltd., hailo_model_zoo, GitHub.

https://github.com/hailo-ai/hailo_model_zoo, accessed

on Apr. 11, 2025.

[29] Pohl, D., Vogel-Heuser, I.B., Krüger, M., Echtler, M.

(2024). Quantization effects of deep neural networks on

a FPGA platform. In 2024 IEEE 7th International

Conference on Industrial Cyber-Physical Systems

(ICPS), St. Louis, MO, USA, pp. 1-8.

https://doi.org/10.1109/ICPS59941.2024.10640013

[30] Paul Peter Urone and Roger Hinrichs, Physics. Houston:

OpenStax, 2020.

https://openstax.org/books/physics/pages/1-introduction,

accessed on Apr. 12, 2025.

[31] Paul Peter Urone and Roger Hinrichs, College Physics 2e.

Houston: OpenStax, 2022.

https://openstax.org/books/college-physics-2e/pages/1-

introduction-to-science-and-the-realm-of-physics-

physical-quantities-and-units, accessed on Apr. 12, 2025.

[32] Wu, M.T. (2022). Confusion matrix and minimum cross-

entropy metrics based motion recognition system in the

classroom. Scientific Reports, 12(1): 3095.

https://doi.org/10.1038/s41598-022-07137-z

[33] Cheng, L. (2024). A highly robust helmet detection

algorithm based on YOLO V8 and Transformer. IEEE

Access. 12: 130693-130705.

https://doi.org/10.1109/ACCESS.2024.3459591

[34] Padilla, R., Netto, S.L., Da Silva, E.A. (2020). A survey

on performance metrics for object-detection algorithms.

In 2020 international conference on systems, signals and

image processing (IWSSIP), Niteroi, Brazil, pp. 237-242.

https://doi.org/10.1109/IWSSIP48289.2020.9145130

[35] Benoit-Cattin, T., Velasco-Montero, D., Fernández-

Berni, J. (2020). Impact of thermal throttling on long-

term visual inference in a CPU-based edge device.

Electronics, 9(12): 2106.

https://doi.org/10.3390/electronics9122106

NOMENCLATURE

t time, s

s distance, m

v speed, m/s

y vertical component, m

x horizontal component, m

P power, W

TP True Positive

TN True Negative

FP False Positive

FN False Negative

AP Average Precision

mAP Mean Average Precision

Greek symbols

θ angle, °

Subscripts

CPU Central Processing Unit

Hailo Hailo Accelerator Hardware

1088

