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Pap smears, also known as pap tests, can identify abnormal cells early that develop cervical 

cancer, allowing for timely intervention and treatment. Even though the incidence rate is 

reduced in this modern era, it poses a significant risk to human life and should be taken very 

seriously. An accurate and rapid system for classifying pap smear images is necessary to 

provide appropriate therapy. Deep Neural Networks (DNNs) have garnered much interest 

in recent years and have shown outstanding categorization results in computer vision. An 

efficient Pap Smear Image Classification (PSIC) system with Efficient Weight 

Regularization (EWR) in DNN is presented in this study. The main problem with neural 

networks is that they have large weights that overfit the training data. To overcome this 

difficulty, the EWR approach is employed to penalize the large weights using grid search. 

The proposed non-invasive support system detects pap-smear images with cancerous cells. 

The HERLEV dataset comprises 675 digitized abnormal images, and 242 normal images are 

utilized for the classification task. When using the capabilities of the EWR-DNN 

combination, the proposed PSIC system can work at its absolute best. The concepts 

described in this study also provide a possible path to increase the categorization accuracy 

of all medical diagnoses. Results show that the PSIC system, which employs EWR approach 

achieves 98.9% classification accuracy, 99.3% specificity and 98.5% sensitivity using a 

regularization parameter of 10-3. The comparison study with other deep learning models 

such as VGG, ResNet, AlexNet and GoogleNet also shows the superior performance of the 

PSIC system. 

Keywords: 

deep learning, pap-smear images, cervical 

cancer, weight regularization, computer 

aided diagnosis 

1. INTRODUCTION

Cervical cancer is a serious health concern affecting 

millions of women worldwide. The Human Papilloma Virus 

(HPV) is the primary cause of this condition, which, if left 

untreated, may result in considerable morbidity and death [1]. 

Different techniques, such as Pap Smear (Pap test), 

colposcopy, endocervical curettage, biopsy, HPV testing, 

imaging tests (MRI, CT scan, or ultrasound), liquid-based 

cytology, and molecular testing are available to detect specific 

genetic or molecular abnormalities associated with cervical 

cancer. The early identification, diagnosis, and management 

of cervical cancer are all significantly aided by these 

diagnostic approaches, which eventually lead to improved 

patient outcomes via prompt intervention and treatment. 

In the medical domain, incorporating image-based 

reasoning and perception requires radiologists to acquire 

considerable knowledge. To minimize interpretation errors, it 

is essential to use a well-designed Computer Aided Diagnosis 

(CAD) system, since radiologists have distinct analytical 

abilities. CAD systems can potentially raise therapeutic 

efficacy while lowering treatment costs and morbidity. The 

significant improvements that have been made in the process 

of acquiring medical images have resulted in the availability 

of more public databases. Because of this, there is renewed 

optimism that the researchers will be able to develop a pattern 

recognition system that is more accurate when identifying a 

variety of illnesses. The outcomes of the GLOBOCAN 2022 

survey [1] about cervical cancer are shown in Figure 1. 

Figure 1 reveals that Africa has the largest incidence and 

death rate, as well as more than fifty percent of all cases. In 

comparison to other kinds of cancer, cervical cancer is 

notoriously difficult to cure since it is intimately connected to 

a great number of fundamental bodily processes. 

Despite significant progress in automated cervical cancer 

detection using pap smear images, existing methods often 

struggle with challenges such as high false-positive rates, poor 

generalization, difficulty in handling variations in cell shapes, 

and the need for extensive preprocessing. The proposed 

method addresses these limitations by utilizing a novel deep 

learning architecture that incorporates both multi-scale feature 

extraction and EWR approach, resulting in improved 

classification accuracy. 
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Figure 1. Cervical cancer statistics- 2022 

 

Compared to conventional DNN, the proposed PSIC system 

gives more accurate results, demonstrating its effectiveness in 

providing more reliable diagnoses. 

The organization of this paper is as follows: In Section 2, 

existing methods for diagnosing cervical cancer using more 

contemporary methods that include deep learning are 

discussed. Section 3 presents an efficient PSIC system with 

EWR approach in deep learning. Section 4 evaluates the 

developed system’s performances on a publicly available pap-

smear image database. The last section summarizes the work, 

findings and suggestions for further research. 

 

 

2. RELATED WORKS 

 

The interpretation of pap-smear images, particularly the use 

of image processing methods, is experiencing rapid growth. 

This surge in interest has led to the proposal of several CAD 

systems, which serve as potential solutions for the automatic 

classification of pap-smear images. Deep learning models for 

cervical cancer diagnosis are discussed by Tan et al. [2]. 

Thirteen pre-trained deep Convolutional Neural Network 

(CNN) models are evaluated and compared extensively. 

Among the models, the top-performing model is DenseNet-

201, which stands out for its exceptional accuracy and 

performance. A cervical image classification model suggested 

by Li et al. [3] is based on multilayer hidden conditional 

random fields. It does not depend on segmentation techniques 

or unique features. To identify cervical cancer stages into well-

differentiated or moderately differentiated, a weakly 

supervised learning approach is employed. 

Zhang et al. [4] describe a strategy for direct deep feature-

based classification of cervical cells using CNN, which 

bypasses the need for segmentation. CNN is first trained on a 

collection of real-world images. An adaptively re-sampled 

image patch set with the nuclei roughly in the center is used to 

fine-tune it on a cervical cell dataset. During testing, a group 

of comparable image patches are averaged to get their 

prediction scores. The image data are first pre-processed using 

ROI extraction and data augmentation [5]. Using pre-trained 

densely connected neural networks, a CAD approach is 

employed to categorize cervical pre-cancerous automatically. 

The extracted ROIs with data augmentation are used to 

identify higher-level abnormalities in cervical images. 

Li et al. [6] developed a faster RCNN-FPN architecture for 

abnormal cervical cell classification from cytological images. 

This architecture includes a global contextual aware module 

alongside the Region Proposal Network (RPN) to enhance 

spatial correlation. Zhao et al. [7] describe a computer-assisted 

analytical method for detecting potentially harmful cells in 

whole slide cervical cell images. Unlike traditional algorithms 

that rely on segmentation, this method divides the images into 

blocks of a given size. An ensemble-based model trained on 

the pap-stained whole slide and single-cell images is described 

by Manna et al. [8]. The model comprises DenseNet-169, 

Xception, and Inception v3 models. 

Bora et al. [9] study a cervical cancer categorization system 

that relies on characteristics such as color and texture. It 

follows the well-established Bethesda classification system, 

creating two level categories for normal and abnormal cervical 

dysplasia. Zhang and Liu [10] describe a feature screening 

method that utilizes the decision boundary of support vector 

machines. Unlike classic screening techniques such as 

augmented variance ratio and information gain, it eliminates 

the “independence” assumption while maintaining high 

computational efficiency. A bottom-up approach is employed 

to automatically detect cervical cancer in thin pap smear 

images. Cervical cell images are classified using a Levenberg-

Marquardt MLP neural network [11]. Image preprocessing 

and the feedforward MLP neural network comprise the system 

as a semiautomated diagnostic method. Sato et al. [12] 

examine the viability of deep learning for colposcopy image 

categorization. 

Alquran et al. [13] discuss a combination of feature fusion 

with Shuffle Net structural characteristics. The extracted 

attributes are given as input into five separate machine 

learning algorithms. Win et al. [14] investigate pap-smear 

images using image processing techniques for cervical cancer 

classification. A shape-based iterative technique finds the 

nuclei, and a marker-control watershed method separates the 

cytoplasm in cell segmentation. Dong et al. [15] study a CNN-

based categorization that combines Inception v3 and artificial 

features to increase classification accuracy and overcome the 

limitations of existing classification methods. 

Zhao et al. [16] add multi-residual blocks to the encoder 

framework for cervical cancer classification. In the feed 
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forward network, the normalization layer standardizes data for 

non-linear processing (ReLU function). SMOTE-Tomek 

Links balances the source dataset by modifying image weights 

and samples. Transfer learning and Tokens-to-Token Vision 

Transformers improve categorization accuracy. Machine 

learning and deep learning-based CAD systems are intensively 

studied to categorize cervical pap cells [17]. Shi et al. [18] 

discuss a hybrid deep feature fusion approach, where CNNs 

use deep features to classify cervical cells, whereas traditional 

approaches rely on handcrafted features. 

3. METHODS AND MATERIALS

The human brain has a network of neural circuits that allows 

it to process information quickly and effectively. These neural 

circuits include a very large number of neurons. Compared 

with programmed computing, computation in the human brain 

differs in two key respects: i) the computation is distributed 

and parallel; ii) learning replaces a priori software design. 

Artificial neural networks (ANNs) are a biologically inspired 

computer paradigm. Its emergence was driven by the 

development of contemporary elemental based technology and 

the need to handle problems quicker and more economically. 

Since the 1950s, neural computing has mostly been driven by 

the development of threshold logic, in contrast to the 

traditional development of AND, OR, and NOT. 

ANNs learn by changing their internal representation in 

response to external inputs so they can complete a task. 

Learning an ANN requires slowly altering the weights. The 

network repeatedly shows training instances, like how 

individuals learn through experience. Then the ANN may 

generalize about unknown instances. Figure 2 shows the 

neural network representation. 

The neural network may represent the linear regression. In 

this case, each input is multiplied by an arbitrary weight, and 

then the products of that multiplication are added to a constant 

value, C, to produce the output. The hidden node is where the 

summing up takes place. Because the constant C and weights 

are randomly selected to begin with, the output does not 

typically correspond to the experimental data. As a result, the 

weights are trained by undergoing systematic adjustments 

until a description of the output obtained as a function of the 

inputs that provides the best possible fit. Though many 

networks have been built recently, backpropagation networks 

are utilized most often [19, 20]. In Backpropagation networks, 

the data are only sent into the network in one way, without any 

feedback; this means that the neurons in the same layer do not 

have any connections, and all the interconnections are 

unidirectional. Figure 3 shows the PSIC system architecture 

for pap-smear image classification. 

Figure 2. Neural network representation 

3.1 Weight regularization 

ANNs are designed to develop a set of weights that provide 

the most accurate mapping of inputs to outputs. A network 

with large network weights may indicate an unstable network, 

one in which even little shifts in the input might result in very 

different values for the output. This may indicate that the 

network has overfitted the training dataset, and thus has poor 

performance when generating predictions based on fresh data. 

One potential solution to address overfitting is to update the 

learning algorithm to direct the network to keep each weight 

at a low value. Weight regularization is a technique used to 

improve the generalization of a model and reduce overfitting 

by decreasing the instances of the dataset utilized for training. 

Figure 3. Overall architecture of the PSIC system 

1505



A stochastic gradient descent approach is used to train the 

model’s weights. Increasing the duration of network training 

leads to the weights being increasingly tailored to the training 

data, resulting in overfitting. The size of the weights will 

increase so that they can adequately handle the particulars of 

the instances presented in the training data. The presence of 

large weights makes the network unstable. Even though the 

weights will be tailored to the training dataset, a little deviation 

from the predicted inputs or any statistical noise might result 

in significant shifts in the output. Thus, the ANN model has a 

wide variance and a modest bias. This means that the model is 

sensitive to the cases, as well as the statistical noise, in the 

dataset that it was trained on. A model with substantial weights 

is more difficult to understand than one with more manageable 

weights. 

3.2 EWR approach 

Two aspects must be considered when penalizing the model 

based on the magnitude of the weights. The first step is to 

determine the appropriate magnitude of the weights, and the 

second step is to determine how much consideration the 

optimization procedure needs to give to the penalty. 

3.2.1 Computation of weight size 

Because the weights of a neural network are actual numbers 

and hence may take on either a positive or negative value, it is 

not sufficient to add all the weights together. Calculating the 

size of the weights may be done using one of two primary 

methods: L1 norm and L2 norm. L1 strongly recommends that 

weights be set to 0.0 wherever practicable leading to fewer 

weights. L2 provides more subtlety by simultaneously 

punishing higher weights more harshly and resulting in fewer 

sparse weights because of this change. Ridge regression is 

often used to utilize L2 in linear and logistic regression. 

Based on linear algebra, the weights might be regarded as a 

vector, and the linear algebra term for the magnitude of a 

vector is termed its norm. Because of this, the act of punishing 

the model depending on the magnitude of the weights is also 

known as a weight or parameter norm penalty. When 

computing the magnitude of the weights to be used as the 

penalty, including both the L1 and L2 methods is feasible. This 

is analogous to how the elastic net approach for linear and 

logistic regression makes advantage of both penalties available. 

The L2 method, also known as weight decay in more technical 

contexts, is most frequently used in neural networks. In 

statistics, this phenomenon is referred to as shrinkage, a term 

that prompts one to consider that the penalty influences the 

model weights as part of the learning process. 

3.2.2 Impact of the penalty 

During the training of the network, the loss objective 

function will have the determined size of the weights added to 

it. They may be weighted using a new hyperparameter named 

alpha or lambda (occasionally), rather than explicitly adding 

each weight to the penalty. This will save time. This 

determines how much focus the learning process should put on 

the consequence of failing to meet the requirement or the 

amount by which the model is penalized by the magnitude of 

the weights. The value of the alpha hyperparameter may range 

anywhere from 0.0 (indicating no penalty) to 1.0. (Full 

penalty). This hyperparameter determines the bias in the 

model, with values ranging from 0.0, which represents 

minimal bias (large variance), to 1.0, which represents severe 

bias (low variance). 

If the penalty is too high, the model will fail to account for 

all the weights and will not be accurate enough to solve the 

issue. The model can inappropriately fit the training data if the 

penalty is insufficient. Instead of calculating the vector norm 

of the weights for the whole network, it is more common 

practice to do it for each layer. This provides additional 

freedom in the choice of the applied regularization type (for 

example, L1 for inputs and L2 elsewhere) and flexibility in the 

alpha value, even if it is customary practice to apply the same 

alpha value on each layer by default. 

3.3 System parameters 

During training, the cross-entropy loss at each spatial point 

is added together to get the total loss, and the weights are 

minimized by using stochastic gradient descent with the EWR 

approach. The cross-entropy loss is as follows: 

( )
1

Loss log
c

j j

j

t p
=

= − (1) 

where, the probability for the jth class is pj and truth label is tj. 

The proposed PSIC system uses batch normalization to 

normalize the inputs and speed the learning process to improve 

categorization. The batch size that is used in the proposed 

system is 32. The hidden layers use the rectified linear 

activation function. Other activation functions, including 

softmax, sigmoid, and linear, may be utilized at the output 

layer. The sigmoid function has been chosen for this study 

since it uses probability distributions when classifying the data. 

The definition of softmax function for N output layer with the 

output value of ith layer (Xi) is, 

i

j

X

N
X

1

e
soft max(i)

e
j=

=


(2) 

The softmax function is shown in Figure 4. 

Figure 5 summarizes the steps of the proposed PSIC system 

with weight regularization. 

Figure 4. Softmax function 
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Figure 5. Workflow of the proposed PSIC system with weight regularization 

4. RESULTS AND DISCUSSIONS

4.1 Herlev database images 

The HERLEV dataset is an invaluable resource for those 

working in cytology and medical image processing [21], 

which includes images of single cells from the cervical region. 

There are 675 digitized abnormal images, and 242 normal 

images are included in this collection. They are typically 

obtained via pap smear examinations, and the dataset has been 

annotated and tagged to identify various cellular properties. 

These qualities include cell shape, nucleus features, and the 

presence of abnormalities such as precancerous or cancerous 

cells respectively. Frequently, researchers make use of this 

dataset for activities such as cell categorization and 

segmentation. Cell categorization refers to categorize cervical 

cells into many groups based on their visual characteristics. 

These categories include normal, abnormal, and possibly 

malignant cells. Segmentation is the process of isolating and 

analyzing the properties of individual cells within an image 

based on their characteristics, such as the size and shape of the 

nucleus. The process of constructing models that can 

automatically identify abnormalities inside cervical cells, 

which may be of assistance in the early diagnosis and 

treatment of cervical cancer, was referred to as abnormality 

detection. Pap smear images taken from the HERLEV 

database are shown in Figure 6. 

Class imbalance occurs when the distribution of classes in a 

dataset (number of images in each class) is not equal in a 

classification issue. The instances of the dominant class may 

greatly outnumber the instances of the minority class. Machine 

learning algorithms often struggle with class imbalance since 

they favor the dominant class, resulting in worse performance 

for the minority class. Data augmentation methods [22] may 

artificially increase the number of samples in the minority 

class. This can be achieved by performing rotation, scaling, or 

introducing noises. In this work, the samples of normal images 

increased from 242 to 675 to avoid the class imbalance 

problem by rotating the original images. 

The proposed system uses random split approach to split the 

dataset into training and testing. In deep learning, 60-20-20 

Split (60% training, 20% validation, 20% testing) is 

commonly used when a decent amount of data is available. It 

balances the need for sufficient training data while retaining 

enough validation and test data for reliable evaluation. The 

proposed PSIC system uses the same split ratio for training and 

testing. 
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Figure 6. Pap smear images: Normal (top row) and abnormal (bottom row) 

 

4.2 Evaluation criteria 

 

Classification accuracy is the proposed system's capacity to 

label all pap-smear images. Sensitivity and specificity quantify 

the system’s capacity to distinguish abnormal cervical cells 

from normal cells. To evaluate the effectiveness of the 

proposed PSIC system, it is necessary to calculate four crucial 

parameters using the results produced by the system. Using 

these values, a confusion matrix [23] like the one shown in 

Table 1 is constructed. 

 

Table 1. Confusion matrix [23] 
 

Predicted Class 
Actual Class 

Abnormal Normal 

Abnormal TP FP 

Normal FN TN 

 

In Table 1, the accurate classification of positive samples is 

represented by 'True Positive', and the accurate classification 

of negative samples is represented by 'True Negative'. Also, 

the incorrect classification of positive samples is represented 

by 'False Negative', and the incorrect classification of negative 

samples is represented by 'False Positive'. The evaluation 

indices for the proposed system are given below: The measure, 

Sensitivity (SN) shows the system's capability of 

distinguishing positive samples from negative ones. It is 

defined by: 

 

TP
SN

TP FN
=

+
 (3) 

 

The measure, Specificity (SP) shows the system's capability 

of distinguishing negative samples from positive ones. It is 

defined by: 

 

TN
SP

TN FP
=

+
 (4) 

 

The measure, Accuracy (ACC) shows the system's capacity 

to categorize MRI scans. It is defined by: 

 

TP TN
ACC

TP FN TN FP

+
=

+ + +
 (5) 

 

4.3 Experimental results and analysis 

 

In the EWR approach, the best parameter is identified using 

the grid search method. When doing a grid search, searching 

through certain orders of magnitude between 0.0 and 0.1 is the 

best practice. Once a level has been identified, it is best 

practice to conduct a grid search on that level. By identifying 

the values to test, looping over each one, and documenting the 

performance of both the train and the test, grid search is 

executed across the orders of magnitude. Table 2 shows the 

performance of the EWR-DNN system for the first stage 

classification, and random split (60:20:20) is used to select 

images to train and test the PSIC system.  

 

Table 2. Performance of the PSIC system for cervical cancer 

classification (normal/abnormal) 

 

S. 

No. 

EWR 

parameter 

Confusion Matrix 

Parameters 

Performance 

Measures 

TP FN TN FP SN SP ACC 

1 10-1 116 19 117 18 85.9 86.7 86.3 

2 10-2 120 15 121 14 88.9 89.6 89.3 

3 10-3 133 2 134 1 98.5 99.3 98.9 

4 10-4 131 4 129 6 97.0 95.6 96.3 

5 10-5 130 5 129 6 96.3 95.6 95.9 

6 10-6 130 5 129 6 96.3 95.6 95.9 

Table 3. Comparative analysis between the PSIC system and deep learning architectures 

 

S. No. Models 
Confusion Matrix Parameters Performance Measures 

TP FN TN FP SN SP ACC 

1 VGG-16 119 16 120 15 88.1 88.9 88.5 

2 VGG-19 121 14 123 12 89.6 91.1 90.4 

3 AlexNet 125 10 125 10 92.6 92.6 92.6 

4 ResNet-18 125 10 126 9 92.6 93.3 93.0 

5 ResNet-50 127 8 127 8 94.1 94.1 94.1 

6 GoogleNet 129 6 130 5 95.6 96.3 95.9 

7 PSIC without EWR approach 130 5 130 5 96.3 96.3 96.3 

8 EWR-DNN 133 2 134 1 98.5 99.3 98.9 
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Figure 7. Accuracy of the PSIC system with different EWR parameters 

Figure 8. Performance comparison of the PSIC system with different deep learning architectures 

It can be seen from Table 2 that the EWR-DNN system can 

achieve an accuracy of ~99% (EWR of 0.001) for the first-

stage classification when it comes to classifying pap-smear 

images as normal or abnormal. It also provides a specificity of 

99.3% by properly categorizing all normal images and a 

sensitivity of 98.5% by accurately diagnosing all abnormal 

images. Figure 7 shows the accuracy of the PSIC system 

obtained for different EWR parameters. 

Table 3 shows the PSIC system’s performance with state-

of-the-art CNN models. Different deep CNN models, such as 

VGG architectures [24], AlexNet [25], ResNet [26] with 18 

and 50 layers and GoogleNet [27] are used to compare 

performance with the PSIC system that uses EWR approach in 

DNN. 

The comparison analysis of cervical cancer classification 

models in Table 3 reveals a spectrum of performance across 

various measures. VGG-19 emerges as a standout performer, 

exhibiting superior sensitivity, specificity, and accuracy 

compared to its VGG-16 counterpart. AlexNet demonstrates 

exceptional sensitivity, indicating its proficiency in detecting 

true positive cases, while ResNet-50 slightly outperforms 

ResNet-18, showcasing its robustness in classification tasks. 

GoogleNet demonstrates exceptional performance by using its 

cutting-edge architecture to extract features efficiently. PSIC 

system, when not using EWR and EWR-DNN, has high 

specificity. However, the latter is especially remarkable for its 

capability to reduce the occurrence of false positives. Each 

model has distinct advantages, addressing various needs in the 

detection of cervical cancer and emphasizing the need to select 

a model customized to the work’s goal. In summary, this 

research highlights various methods that may be used to 

classify cervical cancer. These methods have the potential to 

be combined to improve the accuracy of diagnosis and the 

patient outcomes. Figure 8 shows the PSIC system’s accuracy 

with other deep learning architectures. 

It can be seen from Figure 7 that the VGG architectures are 

the least performer for PSIC. The deep architectural design of 

VGG may lead to a higher risk of overfitting without careful 

regularization. AlexNet uses fewer filters than VGG and 

introduced dropout in the fully connected layers to reduce 

overfitting. It improves generalization performance of 

AlexNet compared to VGG architectures. Though AlexNet 

reduces the overfitting, it struggles with vanishing gradients 

problem. The residual connections in ResNet architectures 
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allow gradients to flow more easily during backpropagation, 

preventing the vanishing gradient problem. Deeper networks 

without overfitting can learn more complex representations, 

which allows ResNet to outperform AlexNet. The inception 

module in GoogleNet captures features of varying sizes, 

allowing for better multi-scale feature extraction in a single 

layer. The proposed PSIC system provides better results due 

to its architectural design with weight sharing to prevent 

overfitting and multi-scale feature extraction by varying filter 

size. 

The proposed PSIC system has the potential to revolutionize 

clinical workflows for cervical cancer diagnosis in numerous 

ways. By automating the diagnostic process, the PSIC system 

could significantly reduce the time required for pathologists to 

make a diagnosis. This could lead to earlier detection and 

treatment of cervical cancer. Moreover, the high accuracy 

demonstrated by the proposed system could assist clinicians in 

reducing misdiagnosis or human error, thereby providing more 

reliable results. Importantly, the implementation of the PSIC 

system in regions with limited access to trained medical 

professionals could be a game-changer, improving cervical 

cancer screening and potentially saving countless lives. 

The availability of pap smear images for research is often 

severely limited due to several challenges. These images, 

which contain sensitive patient information, are subject to 

strict regulations regarding privacy and data protection. The 

difficulty in sharing these images for research purposes 

without patient consent is a significant hurdle. These 

challenges can have a profound impact on the development 

and validation of machine learning models for cervical cancer 

diagnosis. Furthermore, pap smear image datasets often suffer 

from class imbalance, with a significantly higher number of 

normal (healthy) images compared to abnormal (cancerous) 

ones. The proposed PSIC system used data augmentation to 

avoid class imbalance problem. In the future, cost-sensitive 

learning can be utilized in which different weights are assigned 

to classes during training. Minority class instances are given 

higher weights, while majority class instances are given lower 

weights. A larger and more diverse dataset can be used to 

improve the robustness and generalizability of the model. The 

proposed system should be refined to handle lower-quality 

images and conditions that may occur in actual clinical settings. 

5. CONCLUSION

This study proposes a scientific technique for classifying 

different types of pap smear cells. The pap-smear images may 

reveal either low-level or high-level textures, either caused by 

disease processes or are impacted by them. The quantification 

of these different textures has the potential to provide helpful 

indicators of disease states; the creation of such markers is the 

focus of this work. Neural networks overfit training data due 

to larger weights. The EWR approach penalizes larger weights 

utilizing grid search to address this problem. The non-invasive 

diagnosis method has two stages. First, establish whether the 

image is abnormal and then categorize it into different 

abnormal cell types. The HERLEV database is used for 

performance evaluation. The findings lead to the conclusion 

that the assessment of global texture using pap-smear images 

might help the diagnosis of cervical cancer in its early stages. 

In addition, the proposed PSIC system presented in this work 

for detecting changes in tissue texture in pap-smear images has 

the potential to diagnose and treat various abnormalities. 
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