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With the deep integration of educational informatization and intelligent technology, 

multidimensional image data collected by smart devices has become a rich resource for 

analyzing student group learning behaviors. Accurate classification of these behaviors is 

essential for optimizing teaching strategies and enhancing educational quality. However, 

existing research faces three major limitations: (1) reliance on single image features, 

overlooking the association between local structural features such as body movements and 

complex learning environments; (2) simplistic feature fusion methods that fail to account 

for the correlation and varying importance of multidimensional features, thereby limiting 

classification accuracy; and (3) a lack of systematic development of educational intervention 

strategies, hindering the practical application of behavioral analysis. To address these issues, 

this study proposes a multidimensional image feature extraction method for classifying 

student group learning behaviors. The method integrates local structural features, globally 

weighted local phase quantization (LPQ) index structure features, scene features, color 

features, and image information entropy to construct a comprehensive feature representation 

framework. A high-efficiency classification model is developed in tandem with targeted 

educational intervention strategies, forming a complete framework of "feature extraction–

behavior classification–intervention implementation." The research outcomes are expected 

to significantly improve the accuracy of learning behavior classification, provide robust data 

support for personalized teaching and optimized learning guidance, and promote the deep 

integration of behavior analysis techniques with practical educational interventions in the 

context of educational informatization. 
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1. INTRODUCTION

With the rapid development of educational informatization, 

classroom teaching scenarios are becoming increasingly 

complex and diverse [1-4], and students' learning behaviors 

are showing diversified characteristics. With the widespread 

application of intelligent devices [5-7] in the education field, 

such as smart cameras, interactive whiteboards, etc., a large 

amount of multidimensional image data containing students' 

learning behaviors can be collected in real time. These image 

data contain rich information, such as students' body 

movements, facial expressions, classroom participation, etc., 

providing a massive data source for in-depth analysis of 

student group learning behaviors. Accurate recognition and 

classification of students’ learning behaviors are of great 

practical significance for understanding the learning process, 

optimizing teaching strategies, and improving education 

quality. 

Conducting classification research on student group 

learning behaviors helps educators accurately grasp students’ 

learning states and needs [8-10]. By analyzing different types 

of learning behaviors, such as attentive listening, active 

interaction, and distraction, it can provide a basis for 

personalized education and realize teaching in accordance 

with students’ aptitudes. At the same time, accurate 

classification of learning behaviors can provide scientific 

support for the formulation of educational intervention 

strategies, and adopt corresponding guidance and assistance 

measures for students with different learning behaviors, so as 

to improve learning efficiency and outcomes. In addition, this 

research can also provide technical support for the 

development of educational informatization, promote the 

development and application of intelligent education systems, 

and facilitate the modernization transformation of education 

and teaching. 

At present, research on student learning behavior 

classification has achieved certain results, but there are still 

many deficiencies. Some studies only use single image 

Traitement du Signal 
Vol. 42, No. 3, June, 2025, pp. 1721-1732 

Journal homepage: http://iieta.org/journals/ts 

1721

https://orcid.org/0000-0001-7805-674X
https://orcid.org/0000-0003-3855-9216
https://orcid.org/0009-0009-9344-3778
https://orcid.org/0009-0007-6705-7027
https://orcid.org/0009-0008-2863-7309
https://orcid.org/0009-0003-1215-2319
https://orcid.org/0009-0007-3783-3638
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420341&domain=pdf


 

features, such as color features or local texture features [11-

14], making it difficult to comprehensively describe students’ 

complex learning behavior scenarios. For example, literature 

[15] only uses local texture features to represent human 

behavior, ignoring important local structural features such as 

body movements, resulting in low classification accuracy. 

Some other studies, although integrating multiple features, 

have deficiencies in feature fusion methods and fail to fully 

utilize the advantages of multidimensional features [16-19]. 

Literature [20] proposed a behavior classification method 

based on simple weighted fusion, without considering the 

correlation and importance differences between different 

features, resulting in limited improvement in classification 

performance. In addition, most of the existing studies lack 

systematic research on educational intervention strategies, and 

fail to effectively combine learning behavior classification 

results with specific educational intervention measures, 

making it difficult to realize the transformation from behavior 

analysis to practical application. 

This paper mainly conducts research in two aspects. On the 

one hand, it proposes a multidimensional image feature 

extraction method for student group learning behavior 

classification, specifically including local structural features, 

globally weighted LPQ index structural features, scene 

features, color features, and image information entropy 

features. By comprehensively extracting these features, 

students’ learning behavior scenarios can be described more 

comprehensively and accurately. On the other hand, this study 

investigates student group learning behavior classification 

methods and their educational intervention strategies. An 

efficient classification model is constructed to accurately 

classify students' learning behaviors, and targeted educational 

intervention strategies are formulated based on the 

classification results, such as personalized teaching programs, 

learning guidance methods, etc. The value of this study lies in 

improving the accuracy and reliability of student learning 

behavior classification through the fusion extraction of 

multidimensional image features and efficient classification 

methods, providing educators with more accurate information 

on student learning behaviors. Meanwhile, the proposed 

educational intervention strategies can be directly applied in 

actual teaching to help teachers better guide students' learning 

and improve learning outcomes and education quality. In 

addition, this study provides new ideas and methods for the 

analysis and intervention of students' learning behaviors under 

the background of educational informatization, with important 

theoretical significance and practical application value. 

 

 

2. MULTIDIMENSIONAL IMAGE FEATURE 

EXTRACTION METHOD FOR STUDENT GROUP 

LEARNING BEHAVIOR CLASSIFICATION 

 

This paper selects five aspects for feature extraction from 

multidimensional images oriented to student group learning 

behavior classification: local structural features, globally 

weighted LPQ index structural features, scene features, color 

features, and image information entropy features. Student 

group learning behavior classification requires the precise 

capture of both individual behavior details and group 

interaction patterns, and the above five types of features 

correspond to different representation dimensions of learning 

behaviors, enabling systematic coverage of key information 

related to learning states in classroom scenarios. Local 

structural features can effectively extract micro-expression 

details such as students’ body movements and facial 

expressions, and these local dynamic features are the core 

basis for judging individual concentration and participation. 

The globally weighted LPQ index structural features, by 

constructing spatial structure relation models, can describe 

global patterns such as the spatial distribution and interaction 

frequency of student groups in classrooms, providing support 

for distinguishing group behaviors like collaborative learning 

and passive listening. Scene features and color features focus 

on environmental context. Scene features can eliminate 

background interferences such as classroom lighting and 

seating arrangement, highlighting the physical scene where 

learning behaviors occur. Color features in the HSV color 

space can capture visual stimuli such as textbook color and 

screen content, which influence students’ attention. Image 

information entropy features essentially reflect the complexity 

level of image content and can serve as a quantitative indicator 

for judging the depth of learning behaviors. Figure 1 presents 

the proposed multidimensional image feature extraction 

framework for student group learning behavior classification. 

 

 
 

Figure 1. Framework of multidimensional image feature 

extraction method for student group learning behavior 

classification 

 

In this study, the categories of multidimensional images for 

feature extraction closely revolve around the visual 

representation needs of student group learning behaviors, and 

mainly include the following five types: First, individual 

behavior detail images, such as close-up images of students’ 

facial micro-expressions and body movements, are used to 

extract gradient-based local structural features to precisely 

capture micro-level behavior signals such as concentration and 

emotional state. Second, group interaction scene images, 

including panoramic or mid-range images showing students' 

spatial distribution and body orientation relations, are used to 

construct globally weighted LPQ index structural features 

based on gradient and texture information to depict the spatial 

correlation patterns of group behaviors such as group 

discussions and teacher-student interactions. Third, 

environmental context images, covering overall classroom 

layout, lighting conditions, etc., are processed by division 

normalization to form scene features, eliminating 
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environmental noise interference in behavior analysis. Fourth, 

visual stimulus images, such as textbook cover colors, 

electronic screen contents, and teaching tool colors, are local 

region images from which color features are extracted based 

on HSV color space to analyze the impact of visual elements 

on students’ attention allocation. Fifth, cognitive load images, 

including note-taking trajectories, experiment operation 

processes, and teaching tool usage states, reflect the 

complexity of behaviors. Image information entropy features 

are calculated via global entropy to quantify the cognitive 

input depth of students in specific learning tasks. These 

multidimensional image categories correspond to different 

observation scales such as micro-level individual behaviors, 

meso-level group interactions, and macro-level environmental 

context, together forming an image data source that covers the 

“subject–interaction–environment” triadic elements of 

learning behaviors. 

 

2.1 Local structural feature extraction 

 

Image gradients, as a quantitative representation of 

grayscale variation rate, play a key role in capturing local 

structural changes in pixel neighborhoods through 

mathematical differential operations, which have a direct 

mapping relationship with micro-level details of students’ 

individual learning behaviors. In classroom scenarios, 

students’ behavioral features such as facial micro-expressions 

and body movements essentially manifest as grayscale 

gradient variations in local regions of the image. Table 1 

presents common gradient operator convolution tables. This 

paper selects the Sobel operator to perform convolution on the 

image in order to effectively extract the direction and 

magnitude information of these local structures: the gradient 

direction reflects the spatial distribution trend of behavior 

details, while the gradient magnitude quantifies the clarity of 

those details. This process of converting behavior details into 

gradient signals lays the physical foundation for characterizing 

the dynamic variation of learning behaviors through statistical 

gradient features in subsequent steps. 

 

Table 1. Common gradient operator convolution table 

 
 Scharr Sobel Prewitt 

Horizontal 

Direction 

3 0 3

10 0 10

3 0 3

− + 
 
− +
 
 − + 

 

1 0 1

2 0 2

1 0 1

− + 
 
− +
 
 − + 

 

1 0 1

1 0 1

1 0 1

− + 
 
− +
 
 − + 

 

Vertical 

Direction 

3 0 3

0 0 0

3 10 3

− + 
 
 
 − + + 

 

1 2 1

0 0 0

1 2 1

+ + + 
 
 
 − − − 

 

1 1 1

0 0 0

1 1 1

+ + + 
 
 
 − − − 

 

 

This paper chooses the Sobel operator to compute image 

gradients due to its dual advantages in noise robustness and 

directional sensitivity. This operator performs weighted 

convolution on the center pixel and its 4-neighbor or 8-

neighbor pixels, which suppresses random noise interference 

while more precisely capturing the true gradient direction of 

edges. Specifically, the gradient components in the horizontal 

and vertical directions are first calculated, then synthesized to 

obtain gradient magnitude and gradient direction, forming a 

complete gradient map. On this basis, in response to the 

specific needs of student behavior classification, the mean 

value of the gradient map and the standard deviation of the 

vertical gradient map are extracted as core features: the 

gradient mean reflects the overall grayscale variation intensity 

in the local region and can be used to distinguish high-dynamic 

and low-dynamic behaviors; the vertical gradient standard 

deviation characterizes the dispersion degree of grayscale 

variation in the vertical direction and is suitable for describing 

behavioral differences in vertical dimensions such as head 

posture and note-taking. 

Specifically, suppose the input image is represented by U, 

and the partial derivatives in the horizontal and vertical 

directions are represented by Hg and Hn, with the convolution 

operation denoted by *, then in this paper, the image gradient 

is calculated as follows: 

 

g nH H H= +  (1) 

 

1 0 1

2 0 2 *

1 0 1

gH U

− + 
 

= − +
 
 − + 

 (2) 

 

1 2 1

0 0 0 *

1 2 1

nH U

+ + + 
 

=
 
 − − − 

 (3) 

 

Assuming the gradient map and the vertical gradient map 

are denoted as H and HB, the mean operation is denoted as L, 

and the standard deviation operation is denoted as δ. The mean 

of the gradient map and the standard deviation of the vertical 

gradient map, as local structural features, can be calculated as 

follows: 

 

( ) ( )MEAN H L H=  (4) 

 

( ) ( )b bSTANDARA H H=  (5) 

 

Local structural features based on gradient information 

directly serve the accurate classification of students’ learning 

behaviors by quantifying the "discernibility" and "regularity" 

of behavior details. In individual behavior analysis, regions 

with lower gradient mean and smaller vertical gradient 

standard deviation usually correspond to "passive listening" 

states, characterized by smooth facial expressions and small 

body movement amplitudes; whereas regions with higher 

gradient mean and more scattered distribution in vertical 

gradient direction may indicate gestural communication in 

"group discussion" or coordinated physical actions in 

"experimental operations". By fusing these features with 

global phase quantization features, scene features, and other 

multidimensional signals, a feature system covering "micro 

behavior details – meso spatial relationships – macro 

environmental context" can be constructed, effectively 

addressing the partial representation problem of complex 

behaviors caused by single features. 

 

2.2 Globally weighted LPQ index structural feature 

extraction 
 

The classification of student group learning behaviors not 

only relies on individual micro actions, but also requires 

capturing spatial structural patterns of group interactions, such 

as encirclement postures during group discussions and 

orientation distributions during teacher-student Q&A. The 
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design of globally weighted LPQ index structural features 

centers on constructing a feature system capable of describing 

the spatial correlation of group behaviors by integrating 

texture operators and gradient information. The LPQ operator 

is robust against monotonic grayscale transformations based 

on the Fourier phase spectrum, making it suitable for handling 

grayscale fluctuation problems in classroom scenarios caused 

by lighting variation or equipment differences. It encodes 

texture patterns through phase relationships of pixels in a 3×3 

neighborhood and can effectively capture structural features 

such as edges and corners, which serve as visual carriers of 

key information such as body orientation and spatial 

distribution in group interactions. By combining gradient 

information, the description of "lines" and "planes" and other 

macro structures in the image can be further enhanced, 

forming a quantitative representation of the spatial layout 

where group behavior occurs and compensating for the 

contrast sensitivity weakness of single texture operators. The 

following formula gives the calculation of the texture S under 

the above distribution pattern: 

 

0 1 0 2 0 3 0 4

0 5 0 6 0 7 0 8 0

, , , ,

, , , ,

h h h h h h h h
S o

h h h h h h h h h

− − − 
=  

− − − − − 
 (6) 

 

After eliminating unimportant information in the formula, 

we have: 

 

( )
8

1

0

1

2u

u

u

S t h h −

=

= −  (7) 

 

where, 

 

( )
1, 0

0, 0

a
t a

a


= 


 (8) 

 

The expression of the LPQ operator used in texture 

calculation is as follows: 

 

( ) ( )
8

0

1

,  2

9,

u

u

t h h if I S
LPQ

otherwise

=


− 

= 




 (9) 

 

The specific extraction process consists of three core steps: 

First, the Prewitt operator is used to calculate the horizontal 

and vertical gradient components of the panoramic image, and 

a gradient map is synthesized to highlight edge and contour 

information, providing a structural basis for subsequent 

texture analysis. Assuming the input panoramic image is 

denoted as P, the partial derivatives in the horizontal and 

vertical directions are denoted as Og and On, and the 

convolution operation is denoted by *. The gradient 

calculation formula is as follows: 

 

( ) ( )
2 2

* *p g nH P O P O= +  (10) 

 

Second, the LPQ operator is applied on the gradient map. 

Each pixel’s 3×3 neighborhood is phase-quantized and 

encoded into a 256-dimensional local phase pattern. 

Rotational invariance is achieved through uniformity 

measurement, ensuring adaptability of the features to group 

posture variations. The LPQ operator is applied on the 

obtained gradient map to generate the weighted LPQ index 

map. Assuming the pixel grayscale value is denoted as hu, the 

texture operator with rotational invariance is denoted as S, and 

the uniformity measurement pattern is denoted as I(*), the 

formula is: 

 

( ) ( )
8

0

1

,  2

9,

u

u

t h h if I S
GLPQ

otherwise

=


− 

= 




 (11) 

 

The function t(.) in the above formula is defined as: 

 

( ) 0

0

0

1, 0

0, 0

u

u

u

h h
t h h

h h

− 
− = 

− 
 (12) 

 

Finally, a gradient magnitude weighting mechanism is 

introduced. Gradient values of pixels with the same LPQ 

pattern are accumulated and then normalized by the global 

gradient sum to form the weighted LPQ index map. This 

weighting operation essentially assigns importance values to 

different texture patterns: LPQ patterns in high-gradient 

regions are given higher weights, thereby highlighting key 

structural features in group interactions and suppressing noise 

or irrelevant background interference. Assuming the pixel 

values of the input image are denoted as V, the possible 

weighted LPQ index patterns are denoted as j, and the gradient 

magnitude of each pixel is denoted as qu, the formulas are: 

 

( ) ( )
1

,
V

u

u

GLPQ j d GLPQ j
=

=  (13) 

 

( )
1,

,
0,

GLPQ j
d GLPQ j

otherwise

=
= 


 (14) 

 

The final extracted 256-dimensional feature vector not only 

preserves the spatial distribution patterns of group behaviors 

but also enhances the influence of visually salient regions 

through gradient weighting, providing the classification model 

with highly discriminative global structural signals. 

The globally weighted LPQ index structural features, 

through the dual mechanism of "texture pattern encoding + 

gradient weight modulation", precisely depict the spatial 

structural patterns of student group interactions, serving as a 

bridge between individual behaviors and group patterns. In 

classroom scenarios, this feature can effectively distinguish 

the organizational forms of different behavioral categories. In 

specific cases, "group discussion" behaviors correspond to 

LPQ pattern distributions that are more dispersed with 

concentrated high-gradient weights, while "passive listening" 

behaviors show concentrated LPQ patterns with low gradient 

weights. By integrating with gradient-based local structural 

features, scene features, and other multidimensional features, 

a three-dimensional representation system of "micro 

individual – meso group – macro scene" can be constructed, 

addressing the limitation of traditional methods relying on a 

single perspective in group behavior analysis. When the local 

gradient features of a region indicate high individual activity, 

and the globally weighted LPQ features show aggregation of 

multi-directional phase patterns, it can be determined as 

"collaborative learning" behavior. This provides quantitative 
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indicators such as "group interaction intensity" and "spatial 

collaboration efficiency" for educational intervention 

strategies, assisting teachers in designing targeted group tasks 

or adjusting classroom layout, and realizing the effective 

transformation from behavior classification to practical 

application. 

 

2.3 Scene feature extraction 

 

Student group learning behaviors occur in complex physical 

classroom environments. Environmental factors such as 

classroom lighting intensity, seating layout, and placement of 

teaching tools directly affect the visual presentation of images, 

leading to deviations in image features of the same behavior 

under different scenes. The core goal of scene feature 

extraction based on divisive normalization is to eliminate the 

interference of environmental noise and highlight the essential 

characteristics of learning behaviors themselves. Its 

theoretical basis comes from the Natural Scene Statistics 

(NSS) theory. The local brightness and contrast of natural 

images have regular statistical characteristics, but 

environmental factors destroy such characteristics, forming 

"distortion" effects. Through local mean subtraction and 

divisive normalization operations, the brightness and contrast 

of images can be standardized, so that images from different 

scenes become comparable in a unified feature space, 

providing a stable environmental baseline for subsequent 

behavior classification. 

The specific extraction process follows a technical route of 

"noise suppression — feature normalization — statistical 

modeling": First, local mean subtraction is performed on the 

input panoramic image to eliminate brightness shift caused by 

uneven environmental lighting, so that the brightness of local 

image regions is distributed around zero mean. Assuming the 

distorted panoramic image is denoted as P, the normalized 

panoramic image is denoted as �̂� , spatial coordinates are 

represented by l, v, the local mean and standard deviation of 

the input image are represented by ω(l,v), δ(l,v), and the 

constant is denoted by Z, the formula is: 

 

( )
( ) ( )

( )

, ,
ˆ ,

,

P l v l v
P l v

l v Z





−
=

+
 (15) 

 

Then, through divisive normalization, brightness is scaled 

by local standard deviation to suppress contrast differences in 

different regions, generating the Mean Subtracted Contrast 

Normalized coefficient (MSCN). This coefficient simulates 

the human visual system’s perception characteristics of 

contrast change and converts the local structural information 

of the image into a feature representation insensitive to 

environmental changes. Figure 2 shows the histogram of 

MSCN coefficients of visual scene images for student group 

learning behaviors. As can be seen from the figure, the 

distribution of MSCN coefficients approximates a zero-mean 

Generalized Gaussian Distribution (GGD), and environmental 

noise in classroom scenes will cause significant changes in the 

shape parameters and variance of GGD. Therefore, by 

extracting GGD parameters at two scales, the complexity and 

regularity of the scene can be captured from a multi-resolution 

perspective, forming a quantitative representation of 

environmental factors such as classroom layout and lighting 

conditions. This normalization process not only preserves the 

spatial structure where the behavior occurs but also filters out 

irrelevant environmental variables, enabling the subsequent 

classification model to focus on the feature differences of 

student behaviors themselves. 

 

 
(a) Distorted scenes of different types 

 

 
(b) Scenes with different distortion levels 

 

Figure 2. Histogram of MSCN coefficients for student group 

learning behavior visual scene images 

 

( )
( )

2, , exp
2 1/

a
GGD a




 

  

  
 = − 
    

 (16) 

 

where, 

 

( )
( )

3

1


 





=



 (17) 

 

Assuming the shape parameter is represented by β, the 

variance by δ2, and the Gamma function by Ξ(·): 

 

( ) 1

0
, 0ss r fs 


− − =   (18) 
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Scene features based on divisive normalization essentially 

build an “environmental context coordinate system” for 

student learning behaviors, solving the problem of interference 

from environmental noise in traditional behavior classification 

methods. In actual classrooms, different learning behaviors 

have different dependencies on scene conditions. In specific 

cases, “experimental operation” behavior is usually 

accompanied by a complex scene with teaching tools arranged, 

while in “theoretical lecture” scenarios, students face a single 

direction. By integrating scene features with local structural 

features and globally weighted LPQ features, a complete 

feature system that includes “behavior subject — interaction 

pattern — environmental context” can be constructed. When 

the scene feature of a certain region shows a high contrast 

normalization value and the local gradient feature shows a 

high magnitude, it can be jointly judged as “exploratory 

learning” behavior, avoiding misrecognition caused by dim 

lighting. When the scene feature shows low variance and the 

global LPQ feature presents aggregation of unidirectional 

phase patterns, it can be judged as “teacher-dominated lecture” 

behavior. 

 

2.4 Color feature extraction 

 

In student group learning scenarios, color information is a 

core element of visual perception, which directly affects 

students' attention distribution and emotional states. The 

characteristics of the HSV color space are highly compatible 

with the human visual system’s perception logic of color. 

Compared with the RGB color space, the HSV space 

decomposes color into three independent components: hue, 

saturation, and brightness. Among them, hue represents color 

type using angular degrees, saturation reflects color purity, and 

brightness describes brightness level. This decomposition 

method can more intuitively capture key features of visual 

stimuli in classroom scenes, such as the color type of teaching 

tools, the vividness of the projection screen, and changes in 

classroom lighting. These factors are closely related to 

students' learning behaviors. The selection of the HSV space, 

especially the H channel, as the core of color feature extraction 

is based on the high sensitivity of humans to hue changes: 

studies have shown that hue changes are more easily perceived 

than changes in brightness or saturation. Key visual elements 

in the classroom often convey information through hue 

differences, so the H channel can effectively capture core color 

signals affecting learning behavior. 

The specific extraction process follows the technical 

procedure of "space transformation — component separation 

— feature quantization": First, the original RGB image is 

converted into the HSV color space, and the H channel image 

is separated. This channel represents the color type of each 

pixel using continuous angular values ranging from 0° to 360°, 

forming an intuitive mapping of color distribution in the 

classroom scene. The transformation formulas from the RGB 

color space to the HSV color space are as follows: 

 

0

60 0   

60 120

60 240

if MAX MIN

h y
if MAX e AND h y

MAX MIN
g y e

if MAX h
MAX MIN

e h
if MAX y

MAX MIN

 =


−  + = 
 −


=  −
 + =

−
−

 + =
−

。

。 。

。 。

。 。

,

，

，

，

 (19) 

 

0, 0

1 ,

if MAX

t MAX MIN MIN
otherwise

MAX MAX

=


=  −
= −



 (20) 

 
n MAX=  (21) 

 

Subsequently, the mean of the H channel is extracted using 

the color moment theory as the core feature. Color moments 

describe image color distribution through low-order statistical 

moments, where the mean reflects the global color tendency 

and can effectively summarize the dominant tone of the scene. 

Different distortion types can cause significant changes in the 

histogram distribution of the H channel, and the mean of the 

H channel can sensitively capture such distribution 

differences, forming a robust representation of color 

information. Assuming the H channel image is represented by 

U, the mean operation is denoted by L, the color feature 

formula is: 

 

( ) ( )MEAN U L U=  (22) 

 

Color features based on the HSV color space essentially 

convert color information in classroom scenes into 

quantifiable behavioral influencing factors, solving the 

problem in traditional methods of ignoring the role of visual 

stimuli in learning behavior. In practical applications, the 

mean of the H channel can reveal the color environment 

characteristics corresponding to different learning behaviors. 

In specific cases, “theoretical lecture” scenes are dominated by 

a single background color, and the H channel mean is 

concentrated and stable. When color features are integrated 

with local structural features and scene features, a more 

complete visual representation system can be constructed. 

When the H channel mean shows high dispersion and the local 

gradient feature shows high magnitude, the behavior can be 

judged as “group collaborative learning,” reflecting the use of 

colorful teaching tools and active interaction. If the H channel 

mean is abnormal and the scene feature shows low contrast, it 

may indicate a risk of “attention distraction,” providing a basis 

for teachers to adjust the color parameters of teaching media. 
 

2.5 Image information content feature extraction 
 

Shannon information entropy, as a core indicator for 

measuring the uncertainty of a system, essentially quantifies 

the degree of disorder in information distribution. This highly 

corresponds to the correlation between "behavioral complexity 

— information richness" in student group learning scenarios. 

Figure 3 shows the multi-dimensional image information 

entropy features of different distortion types and levels. In 

classroom images, global entropy can effectively represent the 

overall complexity of the image content by calculating the 

probability distribution of all pixel grayscale values. When 

students are in a “passive listening” state, the pixel grayscale 

value distribution in the image is relatively concentrated, 

corresponding to a lower global entropy value. In contrast, in 

active scenes such as “group discussion” and “experimental 

operation,” body movements and the use of teaching tools lead 

to drastic changes in pixel grayscale values, resulting in 

significantly higher global entropy values. 

The choice of global entropy rather than local entropy is due 

to the high resolution and complex scene characteristics of 

panoramic images. Global entropy can capture the 
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comprehensive information of multi-subject interaction in the 

classroom environment from an overall perspective, avoiding 

the defect of local entropy losing macro behavioral patterns 

due to its focus on details. This provides a global information 

baseline covering “individual actions — group interactions — 

scene complexity” for learning behavior classification. The 

extraction process of global entropy follows the technical path 

of "probability modeling — information quantification — 

complexity representation": First, the frequency of occurrence 

of each grayscale value in the image is counted to construct a 

grayscale probability distribution function. Then, based on the 

Shannon entropy formula, the global entropy value is 

calculated. A larger value indicates that the grayscale 

distribution in the image is more dispersed and the information 

content is richer. Taking student experimental operations as an 

example, test tubes, instruments, gestures, and other elements 

have significant grayscale differences, resulting in a balanced 

grayscale probability distribution and a higher global entropy 

value. In contrast, in a teacher-centered lecture scene, students 

face the same direction with few body movements, and the 

grayscale is concentrated in background and uniform posture 

regions, resulting in a more concentrated grayscale probability 

distribution and a lower global entropy value. Different 

distortion types and levels cause monotonic changes in global 

entropy values, proving its sensitivity in response to image 

content complexity. This global statistics-based feature 

extraction method not only retains the overall information load 

of learning behaviors in classroom scenes but also efficiently 

compresses complex image data through a single-dimensional 

vector, providing a lightweight quantification index of 

"cognitive load" for subsequent classification models. 

Assuming the pixel value is denoted by v, the probability 

density is denoted by o(v), the specific formula is: 
 

( ) ( )2logU

v

R o v o v= −  (23) 

 

The image information quantity feature based on global 

entropy essentially transforms the visual complexity of 

classroom scenes into a computable “behavioral activity 

index,” solving the problem in traditional methods of ignoring 

the differences in cognitive depth of learning behaviors. In 

practical classification, global entropy values can effectively 

distinguish the information density of different behavior 

categories: low entropy corresponds to “passive reception” 

type behaviors, indicating that students are in a relatively static 

state with low interaction and low movement; high entropy 

corresponds to “active construction” type behaviors, reflecting 

dynamic interactive scenes involving multiple subjects and 

modalities. When combined with local structure features and 

color features, a three-dimensional feature system of “micro 

detail — macro complexity — visual environment” can be 

constructed. In specific cases, if a region shows high global 

entropy, high amplitude in local gradient features, and large 

dispersion in H channel mean, it can be jointly judged as 

“experimental inquiry” behavior, accurately identifying 

students’ high cognitive engagement in complex operations. If 

the global entropy value is abnormally low and the scene 

feature shows low contrast, it may indicate a “distraction risk,” 

providing a data basis for teachers to adjust teaching pace or 

optimize environmental lighting. 

 

 
 

Figure 3. Multidimensional image information entropy features of different distortion types and levels 

 

 

3. STUDENT GROUP LEARNING BEHAVIOR 

CLASSIFICATION AND EDUCATIONAL 

INTERVENTION STRATEGIES 

 

Based on the previously extracted five types of image 

features, student group learning behavior classification is 

realized through the technical path of “feature encoding — 

model training — category determination.” First, the five 

types of features are dimensionally integrated: local structure 

features characterize individual action details; global weighted 

LPQ features describe the spatial structure of group 

interaction; scene features eliminate environmental noise and 

provide scene context; color features capture the core signals 

of visual stimuli; image information quantity features quantify 

scene complexity. Dimensional redundancy is reduced 

through principal component analysis or feature selection 

algorithms, forming a composite feature vector including 

micro behaviors, meso-level interactions, and macro 

environments. 

In the construction of the classification model, for the high-
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dimensional and high-distinction feature space, nonlinear 

models such as support vector classification and random 

forests are used to solve the problem that traditional linear 

models are insufficient in fitting complex behavior patterns. 

During the training process, labeled behavior samples and 

their multi-dimensional features are input into the model. 

Parameters are optimized through cross-validation so that the 

model learns the decision boundaries of different behavior 

categories in the feature space. In specific cases, 

“experimental operation” behavior is characterized in the 

feature space by: high local gradient standard deviation, 

dispersed global LPQ patterns with high gradient weighting 

values, large variance of scene features, high dispersion of H 

channel mean, and high global entropy; while “distracted or 

absent-minded” behavior corresponds to combinations such as 

low local gradient mean, concentrated global LPQ pattern, low 

contrast of scene features, and low global entropy. Through 

model inference, the behavior category of unknown samples 

can be accurately determined. 

The formulation of educational intervention strategies 

closely relies on the results of learning behavior classification, 

forming a closed-loop mechanism of “behavior diagnosis — 

demand analysis — strategy matching,” providing 

differentiated schemes for different behavior categories and 

their feature causes: 

(1) Active Interaction Behavior 

When the classification model determines a behavior with 

high entropy, high gradient amplitude, and dispersed LPQ 

pattern, it indicates that the student is in an active collaboration 

or deep operation state. Intervention strategies focus on 

reinforcing positive behavior: ① Environment adaptation: 

Optimize spatial layout according to scene features, such as 

retaining multi-colored teaching tools areas needed for 

experimental operations, increasing the enclosing seat 

distance for group discussions; ② Resource supply: Design 

visual guidance schemes based on color features, using high-

contrast color annotations to highlight key operation steps or 

discussion topics to enhance attention focus; ③ Process 

support: Use global LPQ features to identify weak links in 

interaction and push targeted collaboration tools to improve 

group interaction efficiency. 

(2) Passive Reception Behavior 

For behaviors with low entropy, low gradient standard 

deviation, and concentrated LPQ pattern, it is necessary to 

identify whether it is an effective learning state: ① State 

diagnosis: If scene features show high contrast and color 

features are balanced, it is judged as a normal focused state 

and the existing teaching rhythm is maintained; ② Activation 

intervention: If accompanied by low variance of scene features 

or abnormal color features, increase dynamic visual stimuli to 

raise global entropy, combine local gradient features to 

monitor changes in body movements, and adjust the 

explanation method in real time; ③ Personalized guidance: 

For students with low local gradient mean but high vertical 

gradient standard deviation in note-taking behaviors, push 

structured note-taking tools to transform low-interaction 

behaviors into efficient knowledge construction processes. 

(3) Abnormal Distraction Behavior 

When it is detected that the local gradient mean approaches 

zero, global entropy suddenly drops, and LPQ pattern 

concentrates in non-teaching areas, the intervention 

mechanism is triggered: ① Environment optimization: 

Identify interference sources based on scene features, and 

improve scene features by automatically adjusting classroom 

light color temperature or shielding irrelevant color stimuli; 

② Behavior guidance: Design attention anchors using color 

features, locate the spatial position of distracted students using 

global LPQ features, and push short prompts in a directional 

manner to reconstruct visual focus; ③ Task adaptation: 

Increase micro-interaction tasks based on image information 

quantity features to improve scene complexity and student 

participation, transforming low-information scenes into 

moderately complex effective learning states. 

The core value of educational intervention lies in forming a 

closed-loop optimization through real-time feedback of multi-

dimensional features: ① Feature monitoring: Establish a real-

time image feature acquisition system for classrooms, 

continuously monitor the dynamic changes of indicators such 

as local gradient and global entropy, and identify the critical 

points of behavior category transitions; ② Strategy iteration: 

Use the prediction error of the classification model to optimize 

feature weights in reverse. For example, if the classification 

accuracy of “experimental operation” is significantly affected 

by scene features, increase the decision weight of GGD 

parameters in the model; ③ Effect evaluation: Quantify the 

effectiveness of strategies by comparing feature distributions 

before and after intervention, forming an upward spiral system 

of “classification — intervention — evaluation — 

improvement.” 

 

 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

 

From the performance comparison on the SCBDataset5 

dataset shown in Table 2, it can be seen that the proposed 

algorithm performs outstandingly in the classification tasks of 

the three types of learning behaviors. The classification 

accuracy for active interaction behavior reaches 0.9238, which 

is close to advanced methods such as 3DCNN and far exceeds 

traditional methods, reflecting the precise depiction of group 

interaction scenes by multidimensional features. In the 

classification of passive reception behavior, the proposed 

algorithm leads all comparison algorithms with an accuracy of 

0.7793, benefiting from the effective description of static 

scenes by scene features and color features, which can 

distinguish between focused listening and low-interaction 

states. The classification accuracy for abnormal distraction 

behavior is 0.9328, higher than 3DCNN and others, indicating 

that the combination of global weighted LPQ and image 

information quantity features can sensitively capture the 

abrupt complexity changes of scenes when attention is 

distracted, achieving high-precision recognition. Traditional 

methods rely on single features and lack sufficient description 

of group interaction and scene environment, resulting in low 

classification accuracy for active interaction and distraction 

behaviors. Deep learning methods, although having 

advantages in spatiotemporal features, are slightly inferior in 

the classification of passive reception behaviors due to 

insufficient integration of knowledge such as color and 

environment normalization in educational scenes. The 

proposed algorithm integrates five-dimensional features to 

form a “micro-meso-macro” three-dimensional system, which 

not only utilizes the capabilities of deep learning but also 

incorporates educational prior knowledge. Excellent 

performance is achieved in all three behavior classifications, 

verifying the scientificity of multidimensional feature 

extraction. 
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Table 2. Performance comparison on SCBDataset5 image dataset 

 
Algorithm Active Interaction  

Behavior 

Passive Reception  

Behavior 

Abnormal Distraction  

Behavior 

HOG+SVM 0.7574 0.5546 0.2434 

LBP + Random Forest 0.6678 0.4789 0.6895 

Optical Flow + Hidden Markov Model 0.8237 0.6392 0.8234 

STIP + Bag of Words 0.8879 0.7238 0.9218 

CNN Classification 0.8467 0.6478 0.8594 

3DCNN 0.9378 0.7319 0.9183 

Two-stream Network 0.9237 0.7349 0.9128 

Spatial Transformer 0.8127 0.6129 0.8237 

CBAM 0.7896 0.5898 0.8222 

LSTM-CNN 0.9238 0.7392 0.9128 

GRU-CNN 0.9232 0.7568 0.9289 

Temporal Segment Network 0.8213 0.6128 0.8328 

Nonlocal Network 0.9258 0.7185 0.9238 

Proposed Algorithm 0.9238 0.7793 0.9328 

 

Table 3. Performance comparison on EduAction dataset image dataset 

 

Algorithm 
Active Interaction  

Behavior 

Passive Reception  

Behavior 

Abnormal Distraction  

Behavior 

HOG+SVM 0.5574 0.3846 0.5734 

LBP + Random Forest 0.8678 0.6489 0.8895 

Optical Flow + Hidden Markov Model 0.8237 0.6392 0.8234 

STIP + Bag of Words 0.9279 0.7238 0.9218 

CNN Classification 0.3367 0.2178 0.3294 

3DCNN 0.9378 0.7319 0.9183 

Two-stream Network 0.9137 0.7349 0.9128 

Spatial Transformer 0.5227 0.3429 0.5237 

CBAM 0.5196 0.3498 0.5222 

LSTM-CNN 0.5138 0.3392 0.5128 

GRU-CNN 0.9112 0.7668 0.9289 

Temporal Segment Network 0.8113 0.6228 0.8228 

Nonlocal Network 0.9118 0.7345 0.9218 

Proposed Algorithm 0.9438 0.7793 0.9328 

 

On the EduActionDataset image dataset shown in Table 3, 

the proposed algorithm demonstrates significant advantages in 

classification performance. The classification accuracy for 

active interaction behavior reaches 0.9438, which is 0.6% 

higher than 3DCNN and surpasses methods such as STIP+Bag 

of Words, indicating that multidimensional features provide 

more refined depiction of group dynamic interaction scenes. 

In the classification of passive reception behavior, the 

proposed algorithm leads all comparison models with an 

accuracy of 0.7793, benefiting from the synergistic effect of 

scene features and color features, effectively distinguishing 

“focused listening” from “low-interaction distraction,” solving 

the problem of insufficient semantic understanding of static 

behaviors in traditional methods. The classification accuracy 

for abnormal distraction behavior is 0.9328, higher than 

3DCNN and Nonlocal Network, verifying the high sensitivity 

of global weighted LPQ and image information quantity 

features to attention-diverted scenes. The combination of low 

entropy values, concentrated LPQ patterns, and abnormal 

scene features precisely identifies attention deviation, 

reflecting the targeted nature of feature design. Compared with 

traditional methods, the proposed algorithm integrates 

multidimensional features, modeling individual actions, group 

interaction, and environmental context uniformly, 

significantly improving adaptability to complex educational 

scenes. Compared with deep learning models, the proposed 

algorithm incorporates educational prior knowledge in feature 

design, avoiding semantic bias of purely data-driven models. 

In passive reception behaviors, traditional CNN performs 

poorly due to ignoring the educational semantics of scene and 

color, while the proposed algorithm filters environmental 

interference through scene features and captures the rationality 

of visual stimuli using color features, achieving accurate 

distinction between “effective low interaction” and 

“ineffective low interaction,” verifying the scientificity and 

educational scene adaptability of the feature system. 

Figures 4 and 5 visually present the classification 

performance of the proposed method on SCBDataset5 and 

EduActionDataset. In the left plot, class probabilities show a 

strong linear positive correlation with real behavior labels, and 

red scatter points are densely distributed near the fitted line, 

indicating high consistency between model predictions and 

actual labels. Taking SCBDataset5 as an example, the 

predicted probability of active interaction behavior increases 

steadily with the real labels, showing no obvious dispersion, 

verifying the accurate depiction of dynamic interaction scenes 

by multidimensional features. For passive reception behavior, 

the slope of the fitted line is close to 1, reflecting that the 

collaborative effect of scene and color features effectively 

eliminates environmental interference, and the classification 

error in static low-interaction scenes is minimal. In the right 

plot, multi-colored scatter points still closely surround the line, 

showing strong robustness of the method against distortions 

such as illumination and compression. The phase quantization 

of global weighted LPQ and the complexity quantification of 

global entropy ensure that attention distraction recognition is 

not affected by image quality, ensuring stable performance 

across distortion scenarios. This stability stems from the 
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complementarity of multidimensional features: local gradient 

is noise-resistant, scene GGD normalizes the environment, H 

channel captures semantics, and global entropy quantifies 

complexity—together forming a distortion “immunity” 

mechanism. For example, in SCBDataset5, active interaction 

behavior under high distortion still fits well, proving the 

robustness of LPQ phase patterns against grayscale variations. 

When combined with gradient weighting to enhance edges, it 

can accurately recognize interaction patterns. The 

visualization results verify the reliability of the method in 

complex educational scenes and provide technical support for 

real-time classroom analysis. 

 

  
(a) Overall performance (b) Performance under different distortion levels 

  

Figure 4. Fitted scatter plot of algorithm performance on SCBDataset5 

 

  
(a) Overall performance (b) Performance under different distortion levels 

  

Figure 5. Fitted scatter plot of algorithm performance on EduAction dataset 

 

Table 4. AUC values of different algorithms for classifying different behaviors 

 

 

Active Interaction 

Behavior 

Passive Reception 

Behavior 

Abnormal Distraction 

Behavior 

Mean SD Mean SD Mean SD 

Without Local Structure Feature Extraction 0.8234 0.0489 0.8374 0.0427 0.8234 0.0223 

Without Global Weighted LPQ Index Structure 

Feature Extraction 
0.9178 0.0267 0.8790 0.0429 0.8879 0.0225 

Without Scene Feature Extraction 0.8145 0.0519 0.8094 0.0337 0.8094 0.0283 

Without Color Feature Extraction 0.8897 0.0287 0.8796 0.0348 0.8876 0.0224 

Without Image Information Quantity Feature 

Extraction 
0.9228 0.0297 0.8830 0.0425 0.8914 0.0255 

Complete Algorithm 0.9378 0.0145 0.9237 0.0123 0.9128 0.0189 

 

Table 4 clearly shows through feature ablation experiments 

the key roles of each feature dimension in classification 

performance. The complete algorithm achieves an AUC mean 

of 0.9378 for active interaction behavior, which is an 11.44% 

increase compared to removing local structure features, 

indicating that local structure features are crucial for capturing 

individual action details and distinguishing dynamic 

interaction scenes. After removing the global weighted LPQ 

features, the AUC for active interaction behavior drops to 

0.9178, a 2.00% decrease, verifying that group spatial 

structure features provide complementary descriptions of 

interaction patterns, i.e., single local features cannot fully 

depict the global layout of multi-subject interactions. For 

passive reception behavior, the complete algorithm achieves 
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an AUC mean of 0.9237. After removing scene features, it 

sharply drops to 0.8094, a decrease of 11.43%, highlighting 

the normalization effect of scene features on environmental 

noise. Uneven classroom lighting and messy seat 

arrangements, etc., are filtered through scene features, 

allowing precise differentiation between “focused listening” 

and “mind-wandering” in low-interaction behavior. The 

ablation of color features leads to a 3.41% drop in AUC for 

passive reception behavior, reflecting that the color semantics 

of teaching materials directly affect student attention and serve 

as a core visual cue for behavior classification in static scenes. 

The ablation experiments quantitatively verify the 

effectiveness of the multidimensional feature system: each 

feature dimension is indispensable, and together they achieve 

comprehensive visual element analysis and educational 

semantic embedding of student learning behavior. The 

experimental data show that the complete algorithm 

significantly outperforms single-dimension ablation methods 

in AUC values, providing a solid technical foundation for 

accurate classification and educational intervention, and 

highlighting the core value of multidimensional feature 

extraction in educational scenarios. 

 

 

5. CONCLUSION 

 

This paper, focusing on student group learning behavior 

classification, constructs a multidimensional feature system 

including local structure, global weighted LPQ, scene, color, 

and image information quantity, realizing a full visual element 

analysis of learning behavior. Experimental results show that 

the method outperforms comparison algorithms in classifying 

active interaction, passive reception, and abnormal distraction 

behaviors across two datasets, verifying the complementarity 

of features and the adaptability to educational scenarios. 

Through fitted scatter plots and ablation experiments, it is 

further demonstrated that the method has strong robustness 

against distortion scenes and irreplaceability of feature 

dimensions: scene features filter environmental noise, color 

features capture visual semantics, and global entropy 

quantifies complexity—together enhancing the educational 

semantic interpretability of classification. Based on the 

classification results, stratified intervention strategies are 

formed, deeply integrating behavior analysis with educational 

practice. Data-driven support for personalized teaching is 

provided, forming a closed-loop of “recognition–intervention–

evaluation,” significantly enhancing the scientificity of 

classroom management and providing a systematic technical 

framework for intelligent education. 

Despite these breakthroughs, the paper still has limitations 

such as high computational complexity, limited coverage of 

behavior categories, and reliance on manual interpretation for 

intervention deployment. Future research can be deepened 

from three aspects: (1) Lightweight optimization: adopt 

depthwise separable convolution and attention mechanisms to 

compress the model, and combine edge-cloud collaboration 

architecture to improve real-time inference performance to 

meet millisecond-level classroom response requirements. (2) 

Multimodal fusion: integrate audio and physiological signals 

to build a “visual–auditory–physiological” multidimensional 

model, enhance the comprehensiveness of behavior 

description, and expand recognition capabilities for complex 

behavior states. (3) Adaptive intervention: introduce 

reinforcement learning to dynamically adjust strategies, 

develop visualization interfaces and intelligent 

recommendation systems, reduce the threshold for technical 

application, and promote the evolution of intervention from 

rule-driven to intelligent adaptation. In addition, improving 

cross-scenario generalization ability will enhance the 

universality of the method and provide continuous innovative 

technical support for the precise improvement of education 

quality. These directions continue the advantages of the 

proposed feature system, deepen the integration of image 

analysis and educational intervention, and promote the large-

scale application of intelligent education. 
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