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This study investigates the efficacy of You Only Look Once (YOLO) algorithms in detecting 

coronary artery stenosis from angiographic images. The dataset utilized comprises 8,325 

grayscale images sourced from publicly available databases, featuring patients diagnosed 

with single-vessel coronary artery disease. An expert cardiologist annotated the images to 

precisely mark areas of vascular occlusion, providing reliable training data. Four distinct 

datasets were constructed and divided into training (80%) and testing (20%) subsets. YOLO 

v5, v7, and v8 models were trained over 100 epochs to evaluate their performance in 

identifying stenotic regions. The study emphasizes the advantages of YOLO algorithms, 

particularly their ability to detect multiple objects in real-time with high accuracy, due to 

their single-stage detection architecture. Performance metrics such as Mean Average 

Precision (MAP), precision, recall, and F1-score were computed to assess model 

effectiveness. The results demonstrate that YOLO v5 and YOLO v8 provide robust detection 

capabilities, outperforming YOLO v7, especially in complex image scenarios. This research 

highlights the potential integration of YOLO models in clinical workflows, offering a rapid 

and accurate tool for automated analysis of coronary artery stenosis. 
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1. INTRODUCTION

Cardiovascular disorders (CVD) encompass a wide range of 

diseases affecting the heart and blood vessels, primarily 

caused by factors such as physical inactivity, poor diet, 

hypertension, smoking, or excessive alcohol consumption [1]. 

A key consequence of these factors is the buildup of plaque 

inside the arteries, leading to a condition known as 

atherosclerosis, where the arterial walls harden and narrow. 

This narrowing restricts blood flow, often resulting in vascular 

blockages within the coronary arteries. If left untreated, it can 

cause serious complications, ranging from chest discomfort to 

life-threatening heart attacks [2]. 

Globally, CVDs are among the leading causes of death, 

responsible for approximately 32% of all fatalities annually, 

according to the World Health Organization [3]. While CVD-

related deaths are lower in high-income countries, the number 

of fatalities continues to rise in low- and middle-income 

nations, with predictions indicating that CVD deaths will 

increase to 22.2 million by 2030 [4]. This trend underscores 

the critical importance of early diagnosis and timely treatment 

to reduce mortality rates and improve patient outcomes [5]. 

A variety of diagnostic methods exist to assess 

cardiovascular health and identify underlying causes of CVD. 

These methods range from non-invasive techniques like 

echocardiography and stress tests to more advanced imaging 

modalities such as coronary computed tomography (CT), 

cardiac magnetic resonance imaging (MRI), myocardial 

perfusion scintigraphy (MPS), radionuclide ventriculography 

(MUGA), and positron emission tomography (PET) [6]. 

Among these, x-ray coronary angiography (XCA) has gained 

popularity due to its precision in visualizing coronary artery 

health [7]. 

XCA is particularly beneficial in diagnosing coronary artery 

stenosis (CAS), a condition characterized by the narrowing of 

the coronary arteries due to plaque buildup [8]. The procedure 

involves inserting a catheter through the femoral artery into 

the heart, followed by the injection of contrast material to 

visualize the coronary vessels. Meanwhile, the pressures 

inside the heart are monitored, and its contractile function is 

tested by introducing contrast material into the left ventricle. 

Following the examination, 4-6 hours of bed rest are usually 

recommended. Typically, XCA provides high-resolution 

images, like the ones shown in Figure 1 [9], that allow 

physicians to detect stenotic areas in coronary arteries and 

evaluate their severity. 

Studying CAS is vital for understanding disease 

mechanisms, preventing serious cardiac events, enhancing 

patient care, and improving diagnostic methods. Despite its 

effectiveness, the manual interpretation of angiography 

images by experts is often subject to human error, variability, 

and limitations in time and data processing [10]. As a result, 

artificial intelligence (AI) has emerged as a powerful tool for 

enhancing diagnostic accuracy and efficiency. Particularly AI-
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based techniques employing convolutional neural networks 

(CNNs) and deep learning (DL) algorithms have demonstrated 

superior performance over traditional machine learning (ML) 

approaches in the detection, segmentation, and classification 

of CAS [11-13]. 

 

  
 

  
 

Figure 1. Coronary angiography images and areas of stenosis 

for a CAS patient [9] 

 
Research efforts targeting the detection of coronary artery 

stenosis (CAS) from XCA images have employed various 

machine learning and deep learning techniques, each 

presenting unique strengths and limitations. Early approaches 

like the work of Sameh et al. [14] utilized traditional machine 

learning methods such as the K-Nearest Neighbor classifier to 

categorize arterial lumen diameters as normal or pathological, 

achieving a notable accuracy of 94.6%. Similarly, Wan et al. 

[15] used an automated Hessian-based method to detect CAS 

from XCA images and 267 vascular segment sets, reporting a 

balanced performance with 93.93% accuracy, 91.03% 

sensitivity, and 93.83% specificity. These foundational works 

highlighted the utility of machine learning in CAS detection, 

particularly in assessing lumen diameter and vascular 

segments, but were limited by their reliance on traditional 

classifiers. 

Deep learning techniques have since dominated the field, 

providing more robust and automated solutions for CAS 

detection, segmentation, and classification. Antczak and 

Liberadzki [16] introduced a Very Deep Convolutional Neural 

Network (VGG) with five convolutional layers for stenosis 

detection, supplemented by a Bezier-based generative model 

that boosted the model’s performance to 90% accuracy. This 

approach demonstrated the potential of deep neural networks 

in the task, although it remained constrained by the need for 

pre-training and synthetic data. More recent work by Wu et al. 

[17] proposed a two-stage deep learning system combining a 

UNet model for segmentation and a VGG network for 

classification of XCA images, which outperformed previous 

methods with a sensitivity of 87.2% and a positive predictive 

value of 79.5%. Such studies have shown the efficacy of 

convolutional neural networks (CNNs) in overcoming the 

limitations of manual feature extraction, but they often require 

complex architectures and long training times. 

Recent advancements have focused on refining deep 

learning architectures and improving model efficiency. 

Danilov et al. [18] explored the use of Faster-RCNN models 

with various backbone networks, reporting significant results 

in both prediction time and accuracy. They used three distinct 

AI models (SSD MobileNet V1, Faster-RCNN ResNet-50 V1, 

and Faster-RCNN NASNet) to classify and locate stenosis 

from XCA images. The study found that Faster-RCNN 

NASNet had the shortest prediction time, with an average 

processing time of 880 ms, whereas Faster-RCNN ResNet-50 

V1 had the largest prediction accuracy. In a similar study, 

Danilov et al. [9] analyzed clinical angiography data of 100 

patients using MobileNet, ResNet-50, ResNet-101, Inception 

ResNet, and NASNet architectures. They stated that SSD 

MobileNet V2, despite its lesser accuracy value, was the 

fastest model. The study by Pang et al. [19] used DetNet to 

detect CAS, yielding an accuracy of 94.87% and highlighting 

the growing trend toward model optimization for faster, more 

accurate detection. 

In another study, Ovalle-Magallanes et al. [20] developed a 

novel Hierarchical Bezier-based Generative Model (HBGM) 

to generate realistic synthetic XCA patches and enhance 

training of a convolutional neural network (CNN) for 

identifying CAS. The study employed an artificial data set of 

10,000 images, half with stenosis and half without. The 

findings indicated an accuracy, precision, and F1 score of 

0.8934, 0.9031, 0.8746, 0.8880, and 0.9111, respectively, that 

were superior than those achieved using pre-trained models. 

They also classified stenosis on XCA images using the 

Lightweight Residual Squeeze-and-Excitation Network 

(LRSE-Net) model [21] by training the model with the Deep 

Stenosis Detection Dataset and the Angiographic Dataset 

which resulted in the highest accuracy rate of 0.9549, 

sensitivity of 0.8792, precision of 0.8944, and F1 score of 

0.6103. Meanwhile, hybrid models, like the CNN-

Transformer approach developed by Han et al. [22], further 

enhanced detection accuracy with an F1 score of 90.88%. 

The literature demonstrates that XCA imaging plays a 

crucial role in diagnosing CAS, with accurate identification of 

stenotic patterns being essential for early intervention. Despite 

the widespread use of XCA images in classification and 

segmentation tasks, existing deep learning and machine 

learning models often face challenges due to the intricate 

structures of the vascular system. Moreover, achieving high 

accuracy using single-frame images or snapshots is 

particularly difficult, as these models struggle to fully capture 

the complexities of the arterial network. This limitation 

restricts their overall performance and highlights the need for 

more effective real-time detection approaches. 

In recent years, various deep learning models, including 

Faster-RCNN, UNet, and VGG networks, have been widely 

used for detecting CAS from medical images. However, these 

models often require multiple stages of processing, including 

region proposal and feature extraction, which can significantly 

increase computation time and reduce real-time applicability 

[17, 18]. In contrast, the You Only Look Once (YOLO) 

algorithm, particularly in its recent versions (v5, v7, and v8), 

offers significant advantages in terms of speed and efficiency. 

Unlike traditional models that perform detection in multiple 

stages, YOLO's architecture allows it to simultaneously 

predict bounding boxes and classify objects in a single pass 

through the neural network, which significantly reduces 

inference time [23, 24]. This capability makes YOLO 

particularly well-suited for real-time applications in clinical 

settings, where rapid and accurate decision-making is crucial. 

Additionally, the recent versions of YOLO have incorporated 
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advanced techniques like CSPNet and the C2f module, which 

enhance feature extraction and detection accuracy, making it a 

powerful tool for complex medical image analysis tasks [25]. 

Existing models often prioritize either accuracy or speed, 

but not both simultaneously. This trade-off highlights a critical 

gap in the literature, paving the way for the application of 

algorithms like YOLO, which is known for its real-time object 

detection capabilities. In this context, the application of YOLO 

represents a promising path for addressing the need for rapid 

and accurate CAS detection from XCA images [23]. YOLO’s 

ability to detect multiple objects in a single pass and its balance 

between detection speed and accuracy make it a candidate for 

analyzing XCA images in real-time, potentially enhancing the 

diagnostic workflow for CAS [26]. 

This study addresses these gaps by focusing on the detection 

of stenotic lesions from both real-time streaming and single-

frame angiography images. In contrast to many previous 

models that primarily rely on static snapshots, we emphasize 

on the advanced capabilities of the YOLO architecture, which 

is specifically designed for real-time object detection. By 

evaluating different versions of YOLO, this study contributes 

to the literature by exploring its potential for faster, more 

accurate CAS detection, offering a promising solution to the 

challenges identified in prior research. 

 

 

2. MATERIALS AND METHODS 

 

In this study, we employed the YOLO algorithm for 

detecting coronary artery stenosis (CAS) from X-ray coronary 

angiography (XCA) images. YOLO was chosen for its ability 

to simultaneously detect and classify stenotic regions in XCA 

images. 

The image dataset utilized in this study was sourced from a 

publicly available repository provided by Danilov et al. [9]. 

The images, similar to those given in Figure 2, were captured 

using high-end imaging systems, namely the Coroscope 

(Siemens) and Innova (GE Healthcare), which are widely used 

in clinical practice for precise visualization of coronary 

arteries. 

The dataset comprised angiographic scans from 100 

patients, each of whom had been clinically diagnosed with 

single-vessel coronary artery disease, either through 

functional assessments or direct angiographic evaluation. The 

dataset featured a total of 8,325 grayscale images, with 

resolutions ranging from 512×512 to 1000×1000 pixels, 

ensuring detailed visualization of the vascular structures. 

These high-quality images provided an excellent basis for 

training and evaluating deep learning models, particularly for 

detecting stenotic regions. Details of each step employed for 

detecting CAS from XCA images are provided below and are 

depicted in Figure 3. 

The images were extracted from full angiographic video 

sequences recorded at 15 frames per second. Each 

angiographic acquisition followed standard imaging protocols 

involving contrast agent injection under fluoroscopic guidance. 

The primary imaging systems used were Coroscope (Siemens) 

and Innova (GE Healthcare), both of which are widely adopted 

in clinical settings for high-fidelity coronary imaging. 

Annotations were carried out by a board-certified 

interventional cardiologist using the open-source VIA tool, 

with lesions showing ≥50% diameter narrowing labeled as 

stenotic regions. Annotation standards were based on clinical 

angiographic interpretation guidelines, and all labels were 

saved in JSON format. This process ensured the clinical 

reliability and reproducibility of the dataset used in training 

and evaluation [9]. 

Before employing the images in the YOLO model, vascular 

occlusions in each XCA image were first identified, and the 

locations of stenosis were labeled by an expert cardiologist. 

This crucial step ensured that the dataset was accurate and 

aligned with clinical standards. For the labeling process, an 

online annotation tool called VIA (VGG Image Annotator) 

was utilized [27]. VIA allowed for precise annotation of the 

stenotic regions, using the existing data values in the supplied 

dataset to guide the labeling process while preserving the 

expert’s original decisions without alteration. Each labeled 

image was then saved in a JSON file format, containing 

detailed information about the occlusion locations and 

corresponding metadata. Figure 4 illustrates examples of the 

labeled images, demonstrating how the stenotic regions were 

highlighted for further processing. This thorough labeling 

process was essential for training the YOLO model to 

accurately detect and classify coronary artery stenosis. 

The labeled images were subsequently detected and 

classified using different versions of the YOLO approach. For 

the study, four distinct datasets were prepared, each containing 

all 8,325 images from the original dataset. To ensure robust 

training and validation, 80% of the images were reserved for 

training and 20% for testing in each dataset. In the first dataset, 

the images were randomly assigned, with 6,660 images used 

for training and 1,665 for testing. For the other datasets, the 

naming convention of the original dataset ("ID_xxx_x_xxxx") 

was utilized, where 'x' represents an integer number. In the 

second dataset, images were grouped based on the first part of 

the filename (“ID_xxx”), which corresponded to 214 distinct 

IDs. This resulted in 6,630 images in the training set and 1,695 

in the testing set. For the third dataset, the images were 

selected based on the “ID_xxx_x” element of the filename, 

representing a more granular grouping of 64 unique IDs. 

Lastly, the fourth dataset grouped images by the full filename 

structure ("ID_xxx_x_xxxx"), also corresponding to 64 unique 

IDs, ensuring a more precise division of the data. 

 

 
 

Figure 2. Sample angiography images included in the data 

set [9] 
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(a) XCA Images (b) Labeling 

  
(c) YOLO (v5, v7, v8) (d) Testing 

 

Figure 3. Process steps employed for detecting CAS of the study 

 

  
 

  
 

Figure 4. Sample labeled images 

 
These datasets, prepared through different grouping 

methodologies to explore their impact on model performance, 

were used to train and test YOLO v5, YOLO v7, and YOLO 

v8 models. The detailed preparation methodology and 

resulting dataset compositions are illustrated in Figure 5, 

showcasing the systematic approach to ensure balanced data 

distribution for evaluating the effectiveness of the YOLO 

models. 

YOLO architecture [23] employed in this study is a state-

of-the-art deep learning (DL) model, designed for real-time 

object detection and widely adopted in medical imaging tasks. 

Deep learning itself is a subset of machine learning (ML) that 

seeks to emulate human cognitive abilities by teaching 

computers to recognize patterns and execute tasks using data 

[28]. Unlike traditional ML algorithms, DL models require 

vast amounts of data and their complex structure necessitates 

powerful computational hardware [29]. This allows DL 

algorithms to autonomously identify unique characteristics (or 

features) from extensive datasets without needing predefined 

features. 

The process of feature learning in DL models is multi-

layered, where simple, lower-level features form the 

foundation for more abstract, higher-level features. To 

successfully learn these features, DL models must undergo 

extensive training across various levels [30]. What 

distinguishes DL from conventional ML is the elimination of 

the need for manually engineered features, allowing the model 

to extract and learn meaningful representations directly from 
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raw data [31]. This automated feature extraction is crucial for 

handling the complexity of medical images, where identifying 

fine-grained features like vascular stenosis can be particularly 

challenging. 

YOLO is a CNN-based (Convolutional Neural Network) 

object detection algorithm, specifically designed for rapid 

image classification and object tracking [32]. CNNs process 

images through several stages, including convolutional, 

pooling, and fully connected layers, enabling them to detect 

intricate patterns in the data, as shown in Figure 6 [33]. 

Compared to traditional image processing techniques, CNNs 

demand less manual feature engineering and can handle 

irregular input data more efficiently [34]. These advantages 

make YOLO an ideal approach for detecting stenosis in XCA 

images, where the need for high precision and real-time 

detection is paramount. 

 

 

 

 

 
 

Figure 5. Preparation stage of the data sets 
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Figure 6. Structure of a convolutional neural network [35] 

 

YOLO is one of the most widely used object detection 

algorithms [36]. The original YOLO version was introduced 

by Redmon et al. [24] in 2015, marking a significant 

advancement in the field of computer vision. A primary 

advantage of the YOLO architecture is its ability to process 

images significantly faster than many of its contemporaries. 

While Fast R-CNN and Faster R-CNN frameworks are 

effective for CNN-based object detection tasks, they tend to be 

operationally expensive and slower, which can hinder real-

time applications [23]. 

Subsequent versions of YOLO, including YOLO v2, YOLO 

v3, YOLO v4, YOLO v5, YOLO v6, YOLO v7, and the most 

recent YOLO v8, have continued to enhance the model's 

capabilities and performance. Each version has introduced 

improvements in accuracy, speed, and robustness, making 

YOLO increasingly suitable for a wide range of applications, 

including those in medical imaging. Initial versions, such as 

YOLO and YOLO v2, struggled with detecting small objects 

within images. This challenge was effectively mitigated in 

YOLO v3, which introduced multi-scale detection capabilities, 

enhancing its performance across different object sizes. 

YOLO v4 further advanced the model by systematically listing 

and testing various optimization strategies, achieving superior 

results in terms of both accuracy and speed. Notably, YOLO 

v4 demonstrated the ability to operate twice as quickly as 

EfficientDet [37] while improving YOLO v3’s average 

precision (AP) and frames per second (FPS) by 10% and 12%, 

respectively [38]. 

YOLO v5, on the other hand, produces extremely good 

results in tiny models due to the enhancements implemented. 

Although the main network techniques in YOLO v3 and 

YOLO v5 were similar, they both focused on recognizing 

objects of varying sizes at three different scales. YOLO v7 was 

quicker and more precise than V5 [23]. YOLO v8 was released 

in January 2023 by Ultralytics, the company that created 

YOLO v5. While it has a similar core structure to YOLO v5, 

there have been several changes to the CSPLayer (C2f 

module). This module improves detection accuracy by 

integrating high-level characteristics and contextual 

information [25]. It comes in five scale versions: YOLO v8n 

(nano), YOLO v8s (small), YOLOv8m (medium), YOLO v8l 

(large), and YOLO v8x (extra-large), all supporting several 

image processing tasks, including object identification, 

segmentation, posture estimation, tracking, and classification 

[39]. Figures 7-9 depict Yolo v5, v7 and v8 architectures 

employed in this study, respectively. 

In this study, YOLOv5, YOLOv7, and YOLOv8 were 

selected due to their widespread use, high accuracy, and 

proven real-time detection capabilities in recent medical 

imaging applications [40]. YOLOv5 is known for its stability 

and compatibility with a variety of deployment environments. 

YOLOv7 offers enhanced accuracy and model optimization, 

while YOLOv8, the latest version, introduces improved 

backbone architecture and anchor-free detection. Earlier 

versions (YOLOv3, YOLOv4) were excluded due to their 

relatively outdated performance benchmarks and lack of 

support for recent training frameworks. Similarly, although 

EfficientDet and RetinaNet are strong contenders, YOLO 

models were prioritized for their superior inference speed, 

making them more suitable for real-time clinical applications. 

In deep learning research, performance metrics play a 

crucial role in gauging and refining how well models work. 

They help researchers see how accurately a model predicts 

outcomes and guide improvements, especially for tasks like 

object detection and classification. For object detection and 

classification tasks, these include mean average precision 

(MAP), precision, recall, and F1 score [41, 42], which offer 

insight into both the precision and reliability of the model’s 

detections across a variety of conditions and dataset 

complexities. 

The MAP measure used in object detection is a crucial 

parameter for determining the model’s accuracy level. For 

each cutoff threshold, precision and recall data are computed 

to be used in creating a precision-recall curve. MAP, as the 

average of the area under this curve, gives a summary of the 

model’s performance at different cutoff levels [43]. A higher 

MAP value indicates that the model performs better in object 

identification. For object detection, the MAP value is used to 

determine at which cutoff criteria the model performs better or 

worse, allowing for an objective evaluation of the model’s 

performance. 

As an example, Figure 10 depicts two distinct clusters that 

indicate the grouping of each pixel in the detected and known 

images by counting them one by one [44] This visualization 

provides insights into the actual outcomes in comparison to the 

predicted responses, enhancing the understanding of the 

models’ detection performance [45]. 

Confusion Matrix is a fundamental tool for evaluating the 

performance of classification models, providing four key 

values that provide insights into the model’s predictive 

capabilities. 

● True Positive (TP) indicates the number of samples that 

are correctly predicted as positive when they are indeed 

positive. 

● True Negative (TN) represents the samples that are 

accurately predicted as negative when they are actually 

negative. 

● False Positive (FP) reflects the number of samples that 

are incorrectly predicted as positive despite being negative. 

●  False Negative (FN) refers to samples that are 

inaccurately predicted as negative when they are truly positive 
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[46]. 

These values serve as the basis for calculating several key 

performance metrics, including accuracy, precision, recall, 

and F1 score. 

Accuracy is a primary performance metric utilized in 

classification tasks and is calculated as the ratio of correct 

predictions (both TP and TN) to total number of samples (Eq. 

(1)). In other words, it represents the proportion of correctly 

identified samples within the entire dataset. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 +  𝑇𝑃

𝑇𝑁 +  𝐹𝑁 + 𝐹𝑃 + T𝑃
 (1) 

 

This measure serves as an essential indicator of the model’s 

overall effectiveness, providing a straightforward assessment 

of its classification capabilities. However, it alone may not be 

sufficient, especially in cases of class imbalance. 

Precision is an additional performance parameter utilized in 

classification tasks to measure the proportion of true positive 

predictions relative to the total positive predictions made by 

the model (Eq. (2)) [47]. In other words, it indicates how 

effectively the model identifies positive cases without 

misclassifying negatives as positives. A higher precision value 

indicates a more reliable model when it comes to identifying 

positive instances, thus minimizing the risk of incorrectly 

labeling negative cases as positive. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃
 (2) 

 
 

Figure 7. YOLO v5 architecture [25, 36] 
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Figure 8. YOLO v7 architecture [25, 36] 

 

 
 

Figure 9. YOLO v8 architecture [25, 36] 
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Figure 10. Evaluation of region forecast performance [44] 

 

Recall, also known as sensitivity, complements precision by 

measuring the ratio of true positives to the actual positive cases. 

It is the ratio of accurately identified positive cases to the 

actual number of positive cases (Eq. (3)). In other words, it 

measures the model’s ability to recognize all relevant 

instances within the dataset. A higher recall value indicates 

that the model is adept at detecting positive cases, making it 

particularly valuable in applications where missing a positive 

instance is critical. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
 (3) 

 

A common challenge in model evaluation is the trade-off 

between precision and recall; improving one often leads to a 

decrease in the other. While precision focuses on reducing 

false positives, recall aims to capture as many true positives as 

possible [47]. Therefore, adjusting the cutoff levels becomes 

essential to find a balance between precision and recall, 

optimizing overall model performance. 

F1 Score serves as the harmonic average of the precision 

and recall values, providing a single score that reflects both 

accuracy and recall. It is particularly useful when dealing with 

imbalanced datasets, as it emphasizes the importance of both 

identifying positive instances correctly and minimizing false 

positives (Eq. (4)). By integrating both precision and recall, 

the F1 score offers a comprehensive assessment of a model’s 

performance, making it a valuable tool for model evaluation. 

 

F1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 (4) 

 

Loss function is a crucial parameter in evaluating a model’s 

performance, serving as a measure of error and success. Its 

primary role is to quantify the deviation of predictions from 

the true values, providing a numerical indication of how well 

the model performs. Ideally, a well-optimized architecture will 

yield a loss function value close to zero, indicating accurate 

predictions. Conversely, if the model’s predictions are 

significantly off, the loss function value approaches one, 

reflecting poor performance. Consequently, minimizing the 

loss function becomes a key objective during model training, 

guiding the optimization process to improve accuracy. This 

metric not only assesses the effectiveness of the model but also 

plays a vital role in updating the model's parameters to 

enhance learning [48]. 

 

 

3. RESULTS 

 

In this study, we evaluated the performance of YOLO v5, 

v7, and v8 on four distinct test sets derived from the initial 

dataset. Each test set was trained to ensure a comprehensive 

assessment of the models’ capabilities. The training phase 

involved utilizing the training datasets to optimize the models, 

followed by rigorous evaluation using the respective test 

datasets. Each model underwent training for a total of 100 

epochs, a process designed to refine their learning and enhance 

performance. This structured approach enabled a thorough 

analysis of each model’s effectiveness in object detection, 

providing valuable insights into their strengths and limitations 

across the various datasets. The subsequent sections will detail 

the findings from these evaluations, highlighting the models’ 

accuracy, precision, and overall effectiveness in detecting the 

specified targets. The experimental results in this study were 

achieved using the computational resources of UHeM Altay 

[49] cluster system with applications written in Python 

programming language. 

Table 1 outlines the hyperparameters employed during the 

training of the YOLO models. Hyperparameters are crucial for 

determining the behavior and effectiveness of the learning 

process. Each parameter is carefully selected to optimize the 

models’ performances. 

 

Table 1. Hyper parameters 

 
Parameter Value 

Image Size 512×512 

Batch 16 

Epoch 100 

Base Weights 

yolov5 x.pt  

yolov7.pt 

yolov8 x.pt 

 

The selection of hyperparameters such as batch size and the 

number of epochs is crucial in optimizing model performance 

and ensuring efficient training. A batch size of 16 was chosen 

based on the trade-off between computational efficiency and 

model stability. Larger batch sizes can speed up the training 

process but may lead to less accurate gradient estimates, 

potentially hindering convergence. Conversely, smaller batch 

sizes provide more precise gradient updates but can 

significantly increase training time. A moderate batch size of 

16 helps balance these aspects, promoting stable learning 

while managing memory constraints [27, 28]. The number of 

epochs, set at 100, was determined through preliminary 

experiments, where increasing the epochs beyond this value 

showed diminishing returns in terms of performance 

improvement. This indicates that 100 epochs were sufficient 

for the model to learn the underlying patterns in the data 

without risking overfitting. By fine-tuning these 

hyperparameters, we aimed to achieve a balance between 

training efficiency and model accuracy, thereby optimizing the 

learning process for the YOLO models employed in this study. 

Image Size (512×512): This parameter indicates the 

dimensions of the input images processed by the models. By 

choosing a size of 512×512 pixels, we ensure that the images 

retain enough detail for effective feature extraction while 

maintaining a balance between computational efficiency and 
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memory usage. This size is commonly used in object detection 

tasks, as it allows the model to capture essential features while 

avoiding excessive resource consumption. 

Batch Size (16): The batch size refers to the number of 

training samples processed before the model’s weights are 

updated. A batch size of 16 was selected to promote stability 

during training while managing memory constraints. This size 

helps to smooth the gradient estimates during the 

backpropagation process, allowing for more reliable updates 

to the model's parameters. 

Epochs (100): An epoch represents one complete pass 

through the entire training dataset. Training for 100 epochs 

was found to be sufficient for allowing the models to learn the 

underlying patterns in the data. This extended training duration 

provides the models with ample opportunity to refine their 

weights, potentially leading to improved performance on 

unseen data. 

Base Weights: The base weights utilized for each YOLO 

version were specifically chosen to leverage the pre-trained 

knowledge obtained from prior tasks. The selected weights, 

such as yolov5x.pt, yolov7.pt, and yolov8x.pt, facilitate a 

quicker convergence during training. By initializing the 

models with these pre-trained weights, we aim to enhance the 

detection capabilities of the models on the angiographic 

dataset, as they can build on previously learned features. 

To enhance generalization and reduce overfitting, data 

augmentation was applied during training. The YOLO training 

pipeline included standard augmentation techniques such as 

horizontal flipping, random rotations within ±10°, brightness 

and contrast adjustments, and mosaic augmentation. These 

techniques helped simulate variations in imaging conditions 

and anatomical orientation, thereby improving the robustness 

of the detection models. 

Table 2 presents the training times for each YOLO model 

across the four datasets, highlighting the computational 

demands associated with training each configuration. The 

training durations reported reflect the total time taken for each 

model to complete the training process on each dataset. 

As seen, YOLO v5 exhibited the shortest training times, 

indicating its efficiency in processing the data. This rapid 

training capability is advantageous in practical applications 

where timely results are critical, especially in clinical settings 

that rely on swift decision-making. In contrast, YOLO v7 

demonstrated significantly longer training durations, with 

times extending beyond 8 hours for the initial dataset and even 

longer for subsequent datasets. Such prolonged training 

periods may suggest a more complex model architecture or 

difficulties in convergence, potentially stemming from the 

dataset’s intricacies or the model’s inherent characteristics. 

YOLO v8, while not as swift as YOLO v5, completed training 

in approximately 4 hours, indicating a balanced approach in 

terms of efficiency and model capability. This intermediate 

training time underscores YOLO v8’s ability to manage 

complexity while still providing reasonable training durations. 

 

Table 2. Training times for the models 

 
Model Data Set Training Time 

YOLO v5 

Dataset 1 2:51:31 

Dataset 2 2:52:20 

Dataset 3 2:49:48 

Dataset 4 2:47:24 

YOLO v7 

Dataset 1 8:42:45 

Dataset 2 9:16:52 

Dataset 3 9:04:34 

Dataset 4 9:08:28 

YOLO v8 

Dataset 1 4:07:12 

Dataset 2 4:07:02 

Dataset 3 4:07:10 

Dataset 4 4:05:47 

 

To assess real-time applicability, inference speed was 

measured on a single NVIDIA A100 GPU (40GB). YOLOv5 

achieved an average of 75 frames per second (FPS), YOLOv8 

reached 65 FPS, and YOLOv7 recorded 45 FPS for 512x512 

image input. These results affirm YOLOv5’s suitability for 

real-time clinical environments, where fast decision-making is 

crucial. GPU memory usage was also evaluated, with 

YOLOv5 requiring the least memory (~4.8GB) and YOLOv7 

the most (~8.2GB). These measurements underscore the trade-

offs between model complexity and deployment feasibility in 

resource-constrained hospital settings. 

Figure 11 illustrates the evolution of loss values throughout 

the training epochs for each YOLO model, offering a visual 

representation of the models’ learning processes. The figure 

displays the trajectories of loss values for each model, 

providing insights into their respective training dynamics. A 

consistent decline in loss values, particularly for YOLO v5 and 

YOLO v8, suggests effective optimization and learning 

throughout the training epochs. This trend indicates that these 

models successfully adjusted their weights in response to the 

training data, thereby enhancing their ability to generalize to 

new, unseen data. Conversely, fluctuations or less consistent 

patterns in the loss values for YOLO v7 may indicate potential 

challenges during training. Such irregularities can be 

attributed to several factors, including the model’s complexity, 

learning rate adjustments, or specific dataset characteristics 

that may hinder convergence. 

 

Table 3. Test results 

 
Model Dataset F1 Score F1 Score Confidence Precision Recall MAP@0.5 Accuracy 

YOLO v5 

Dataset 1 0.98 0.538 0.897 0.99 0.982 0.98 

Dataset 2 0.97 0.377 0.877 0.98 0.976 0.98 

Dataset 3 0.98 0.411 0.904 0.99 0.980 0.98 

Dataset 4 0.38 0.032 0.902 0.31 0.323 0.24 

YOLO v7 

Dataset 1 0.48 0.208 0.902 0.90 0.426 0.38 

Dataset 2 0.62 0.255 0.856 0.94 0.615 0.57 

Dataset 3 0.46 0.183 0.837 0.90 0.418 0.34 

Dataset 4 0.23 0.204 0.733 0.60 0.149 0.18 

YOLO v8 

Dataset 1 0.98 0.588 0.857 0.98 0.984 0.98 

Dataset 2 0.97 0.521 0.869 0.98 0.980 0.98 

Dataset 3 0.97 0.454 0.818 0.98 0.985 0.98 

Dataset 4 0.35 0.027 0.855 0.26 0.401 0.23 
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Figure 11. Loss changes during training 

 

Figure 11 illustrates the changes in loss values over the 

training epochs for YOLO v5, v7, and v8. The loss values for 

YOLO v5 and YOLO v8 show a consistent decrease, 

indicating effective learning and optimization throughout the 

training process. YOLO v5 achieved lower final loss values 

compared to the other models, suggesting a quicker 

convergence and a better fit to the training data. In contrast, 

YOLO v7 exhibited more fluctuation in its loss values, 

potentially due to challenges in optimizing the model 

parameters effectively. This instability may be attributed to the 

complexity of the model architecture or sensitivity to specific 

features in the datasets, highlighting the need for further fine-

tuning of hyperparameters to achieve stable learning. 

After the training, model performances were evaluated 

using test images that were not included in the training process 

in the datasets. This evaluation was critical to ensure that the 

models could generalize their learning to new, unseen data 

effectively. Table 3 summarizes the performance metrics 

obtained from evaluating each YOLO model against the test 

images. The table provides key metrics such as F1 Score, F1 

Score Confidence, Precision, Recall, Mean Average Precision 

(mAP) at an Intersection over Union (IoU) threshold of 0.5, 

and Accuracy. These metrics collectively offer a 

comprehensive assessment of the models’ detection 

capabilities, emphasizing not only their accuracy in 

identifying blockages but also their reliability across different 

datasets. 

According to the Table 3, YOLO v5 performed best overall, 

particularly in Dataset 1, 2, and 3, achieving F1 Scores above 

0.97, in addition to offering high precision. YOLO v7 had the 

lowest scores across all datasets, indicating potential issues in 

model performance, especially in Dataset 4. YOLO v8 showed 

strong performance comparable to YOLO v5, maintaining 

high F1 Scores and precision across Datasets 1, 2, and 3, but 

struggled with Dataset 4. The high F1 scores observed in 

YOLO v5 and YOLO v8 across the initial three datasets 

indicate their robustness in detecting vascular occlusions, 

reflecting their ability to maintain a balance between precision 

and recall. 

However, the significant drop in performance for Dataset 4, 

particularly for YOLO v5, prompts a deeper investigation into 

this dataset’s unique characteristics that may have contributed 

to this variance. Analyzing the discrepancies in performance 

across datasets provides valuable insights into potential model 

limitations and areas for improvement. 

Figure 12 presents sample results from all datasets, 

showcasing the outputs generated by the YOLO models in the 

context of vascular occlusion detection. Each entry in the 

figure includes a representative example of the model’s 

predictions, illustrating how accurately the models identified 

and localized the specified targets within the angiographic 

images. The samples are selected to highlight each model’s 

performance across different datasets, demonstrating their 

ability to generalize their learning the images that are not used 

for training. This figure not only serves to visualize the 

effectiveness of the detection algorithms but also provides a 

comparative perspective on how each model performs in 

identifying occlusions under varying conditions and 

complexities present in the datasets. By examining these 

results, we gain insights into the models’ strengths in 

accurately recognizing vascular blockages, as well as any 

potential limitations in their detection capabilities. 
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Figure 12. YOLO Models’ sample predictions for vascular occlusion detection across the datasets 

 

Figure 12 displays representative samples of the predictions 

made by YOLO v5, v7, and v8 across different datasets. The 

visual comparisons highlight the models' abilities to accurately 

identify and localize areas of vascular occlusion. YOLO v5 

and YOLO v8 consistently detected stenotic regions with high 

precision in most samples, particularly in Datasets 1, 2, and 3. 

However, the performance variability of YOLO v7, especially 

in Dataset 4, suggests limitations in handling more complex or 

less distinct features present in certain angiographic images. 

These results emphasize the differences in model 

generalization capabilities and the impact of dataset 

characteristics on detection performance. 

In this study, YOLO v5 demonstrated superior performance 

across Datasets 1, 2, and 3, achieving F1 scores consistently 

above 0.97, along with high precision and recall values. These 

findings underscore YOLO v5’s effectiveness in accurately 

detecting stenotic regions, suggesting its potential suitability 

for clinical applications requiring high accuracy and reliability. 

In contrast, YOLO v7 displayed notably lower 

performances across all datasets, particularly under the 

conditions presented by Dataset 4. The reduced accuracy and 

recall values for YOLO v7 suggest potential limitations in 

handling complex groupings within angiographic images, 

pointing to a need for further model optimization when 

addressing more intricate image classifications. 

Notably, YOLO v8 yielded competitive performance with 

YOLO v5, achieving similar F1 scores and precision metrics 

across Datasets 1, 2, and 3. However, both models exhibited 

challenges in Dataset 4, likely due to the unique and complex 

structure of this dataset, which may require further adaptation 

of YOLO architectures for optimal performance. 
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4. DISCUSSION 

 

This study evaluated the performance of YOLO v5, YOLO 

v7, and YOLO v8 in detecting vascular occlusions from 

angiographic images. Overall, YOLO v5 exhibited 

exceptional performance across the datasets, particularly in 

scenarios characterized by random assignments and ID-based 

groupings. Its strong precision and recall metrics underscore 

its efficacy in recognizing angiographic features, making it 

highly suitable for clinical applications, particularly in real-

time settings where accurate detection is crucial. 

Similarly, YOLO v8 demonstrated robust capabilities 

across the datasets, showcasing its potential utility in clinical 

environments. In contrast, YOLO v7 consistently 

underperformed, particularly in more complex grouping 

configurations, indicating possible limitations in its 

architecture. Notably, Dataset 4 presented significant 

challenges for all models, highlighting the necessity for further 

investigation into the models' capabilities when subjected to 

stringent classification criteria. 

The consistently high accuracy and precision metrics of 

YOLO v5 and YOLO v8 across three of the four datasets 

affirm these models' capabilities in identifying stenotic areas 

within angiographic images. These results are particularly 

relevant in clinical scenarios such as the assessment of 

coronary artery stenosis, where the ability to reliably detect 

occlusions can support rapid diagnosis and assist cardiologists 

in making timely treatment decisions. The integration of such 

advanced detection algorithms into clinical workflows could 

enhance diagnostic processes and improve patient outcomes. 

In contrast, YOLO v7’s lower performance metrics across 

all datasets, especially in Dataset 4, suggest challenges in 

identifying intricate details within angiographic images. The 

noticeably lower performance of YOLO v7 across all datasets, 

particularly in Dataset 4, can be attributed to several factors 

related to the model’s architecture and adaptation capabilities. 

One possible reason for this underperformance is the model’s 

sensitivity to dataset diversity. Unlike YOLO v5 and YOLO 

v8, which incorporate more advanced features for 

generalization, YOLO v7 may struggle to effectively adapt its 

weights to varying data characteristics, such as differences in 

image resolution, contrast, and occlusion complexity. This 

limitation suggests that YOLO v7’s architecture may lack the 

robustness needed to handle highly heterogeneous datasets, 

leading to inconsistencies in detection accuracy. Furthermore, 

the design of YOLO v7, while optimized for speed, may 

sacrifice certain aspects of feature extraction that are crucial 

for detecting fine-grained details in complex medical images. 

It is worth noting that the dataset employed in this study was 

curated to include only angiographic frames containing at least 

one annotated stenotic region. As such, every image presented 

a positive detection target, thereby reducing the risk of 

extreme class imbalance often observed in pixel-level 

classification tasks. Moreover, the YOLO architecture handles 

object detection through region-level predictions with built-in 

confidence and objectless scoring mechanisms, which 

inherently mitigate the effects of background-to-object 

imbalance. Therefore, additional strategies such as Focal Loss 

or weighted sampling were not deemed necessary for this 

application. 

Dataset 4 posed significant challenges for all models, with 

a marked decrease in performance metrics, especially for 

YOLO v7. This dataset likely contained more complex and 

less distinct stenotic features, which are harder to identify due 

to variations in contrast, vessel overlap, and noise. The decline 

in performance suggests that the models, especially YOLO v7, 

struggled with the intricate structures present in these images, 

indicating a potential weakness in handling high variability 

and subtle visual patterns. These findings highlight the 

importance of dataset characteristics in evaluating model 

performance and underscore the need for further 

enhancements in YOLO v7’s feature extraction and adaptation 

mechanisms to improve its reliability in complex medical 

imaging tasks. 

Although the study analyzes individual frames, these 

images are extracted from full coronary angiographic 

sequences and thus inherently reflect various phases of 

contrast agent flow. While we did not explicitly model 

temporal dynamics across consecutive frames, the spatial 

features captured in these images correspond to meaningful 

stages in the vascular filling process. Future work will aim to 

integrate time-sequential data or video-based deep learning 

approaches to better leverage temporal vessel behavior and 

support functional assessment of stenosis. 

These limitations may stem from inherent architectural 

constraints that hinder the model’s adaptability to complex 

patterns, as evidenced in highly structured image groupings. 

Future work may benefit from modifying YOLO v7’s 

structure or exploring alternative configurations better suited 

for medical imaging applications. 

The comparative analysis of Dataset 4 underscores the 

significant impact of dataset structure on model performance, 

as all YOLO versions encountered difficulties with this 

grouping. This observation emphasizes the importance of 

dataset characteristics when training deep learning models for 

complex clinical tasks. Adapting YOLO architectures to 

effectively manage the variability within detailed 

angiographic data may enhance their diagnostic reliability and 

clinical applicability. 

From a clinical perspective, both false positives and false 

negatives present significant concerns. False negatives may 

result in missed diagnoses of critical stenotic lesions, 

potentially leading to untreated ischemia or myocardial 

infarction. Conversely, false positives could prompt 

unnecessary invasive procedures. In this study, a confidence 

threshold of 0.5 was applied uniformly across models; 

however, optimizing this value based on precision-recall 

trade-offs could help reduce diagnostic errors. Future work 

will focus on threshold tuning and post-processing rules 

tailored for high-risk clinical applications to ensure patient 

safety and diagnostic reliability. 

In conclusion, while YOLO v5 and YOLO v8 show 

promising results for angiographic image classification, 

further research is essential to address the challenges observed 

in complex datasets and to optimize YOLO v7 for enhanced 

performance in clinical scenarios. Future research could focus 

on integrating additional image modalities, such as 3D 

angiography or multi-spectral imaging, to further enhance 

detection accuracy and develop a more comprehensive 

diagnostic tool for clinical use. Additionally, exploring 

ensemble learning techniques or combining YOLO models 

with other advanced architectures could provide more robust 

solutions for detecting subtle vascular abnormalities, 

ultimately improving the reliability and applicability of these 

methods in real-world clinical settings.
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