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 Colorectal cancer remains one of the leading causes of morbidity and mortality worldwide, 

posing a serious threat to human health. Colonoscopy is considered the gold standard for 

colorectal cancer diagnosis, and adenoma detection rate (ADR) is a critical quality indicator 

of colonoscopic procedures. However, accurate detection is challenging due to the complex 

intestinal structure under colonoscopy, the presence of interfering elements such as foam, 

residue, and feces, and the diverse sizes and subtle features of adenomatous polyps. 

Moreover, most existing AI-based detection models are computationally intensive and too 

slow for real-time application. To address these challenges, this study proposes a real-time 

colorectal adenoma detection method based on an improved single-stage object detection 

network, YOLOv5. To mitigate issues like false negatives and false positives in intermediate 

video frames caused by motion blur or camera defocus, the original algorithm is enhanced 

by integrating motion information and a sequential bounding-box matching post-processing 

module. This improves recall in video-based detection by correcting missed detections in 

intermediate frames. Performance validation on the public ImageNet VID dataset shows a 

5.93% increase in mAP, while experiments on colonoscopy video datasets demonstrate a 

20.47% improvement in recall rate. 
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1. INTRODUCTION 

 

Colorectal cancer has maintained a high incidence and 

mortality rate globally, posing a serious threat to human life 

and health. In clinical practice, most colorectal cancers evolve 

from colorectal adenomas. Early detection and removal of 

adenomatous polyps have important clinical significance for 

the prevention or cure of colorectal cancer. Colonoscopy is the 

gold standard for diagnosing colorectal cancer. An important 

evaluation index to measure the quality of colonoscopy is the 

ADR. Evidence-based medical studies have shown that for 

every 1% increase in ADR, the incidence of colorectal cancer 

is reduced by 3%–6%. Therefore, effectively improving ADR 

can potentially reduce the risk of colorectal cancer. However, 

in clinical practice, physicians are often affected by subjective 

factors such as lack of experience and visual fatigue, which 

lead to missed detections and false detections during 

examinations. Thus, constructing a real-time auxiliary 

detection model for adenomas under colonoscopy has great 

significance for improving ADR and reducing the incidence of 

colorectal cancer. 

Object detection is a deep learning implementation aimed at 

finding target objects in images. After the computer identifies 

the target object, it marks the position with rectangular boxes 

and outputs the category of the target. Early object detection 

was performed on static images. In early studies, Karkanis et 

al. [1] used traditional machine learning algorithms to extract 

color and texture features of adenomatous polyps in 

colonoscopy images, achieving a sensitivity of 90% and an 

accuracy of 95%. In 2014, Fu et al. [2] segmented superpixel 

digestive endoscopy images to detect colorectal adenomas, 

analyzed color histograms of different pixel values, and 

synthesized multi-scale color features, eventually achieving a 

diagnostic accuracy of 90.2%. In 2019, Zhu et al. [3] 

developed a CAD system using Convolutional Neural 

Network (CNN), which applied image enhancement and 

transfer learning methods to detect the invasion depth of early 

colorectal cancer, achieving a sensitivity of 76.47% and an 

accuracy of 89.16%, effectively reducing physicians’ 

misestimation of invasion depth. However, with the 

continuous optimization of medical resources and the 

automation of medical equipment in China, traditional image-

based object detection is difficult to meet the needs of highly 

automated medical applications. Therefore, the demand for 

object detection in medicine has shifted from static images to 

dynamic videos, and the requirement for real-time detection 

has been further increased. 

With the rise of deep learning, more researchers have 

applied deep learning methods to object detection, 

continuously updating object detection technology and 

optimizing networks, thereby improving detection speed and 

accuracy. This allows object detection networks to match the 

frame rate of videos and transition from detecting static images 

to detecting videos, marking the beginning of real-time 

detection. Since deep learning algorithms can automatically 

extract object features, several deep learning models based on 

CNNs [4] have been applied to real-time detection of 

colorectal adenomas. In 2020, Qadir et al. [5] used 20 
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colonoscopy videos from the public dataset CVC-Clinic to 

validate their method. When processing the current frame of 

the video, they used information from the preceding and 

following frames to analyze the temporal dependency between 

consecutive frames and determine whether there is a true 

positive result in the current frame. The final results showed 

that the model’s accuracy and recall were improved by 16% 

and 10%, respectively, compared to the original network. In 

2017, Zhang et al. [6] realized real-time detection of 

adenomatous and hyperplastic polyps using deep CNNs. They 

collected an experimental dataset of 1930 images under 

random lighting, zoom, and optical magnification conditions, 

with 1104 non-polyp images, 263 hyperplastic polyp images, 

and 563 adenomatous polyp images. The experiment yielded 

accuracy, recall, and mean average precision of 87.3%, 87.6%, 

and 85.9%, respectively. In 2020, Ma et al. [7] modified the 

network model to re-input the false positives identified by the 

original network for repeated learning and outputting results. 

After several iterations, the false positive rate was significantly 

reduced. The model was evaluated on 11,954 colonoscopy 

video frames from the CVC-Clinic Video DB dataset, and the 

accuracy of the model was improved by about 2% compared 

to the original network. 

However, the above studies still have certain limitations: (1) 

In order to improve detection accuracy, the network depth is 

continuously increased and recognition steps are added, 

resulting in a significant decrease in detection speed and 

affecting real-time performance; (2) Current studies mostly 

use static images or carefully selected colonoscopy videos as 

datasets for training and validating deep learning models. 

However, in actual clinical diagnosis, there are many uncertain 

factors such as bowel preparation, withdrawal time, and 

colonoscopy equipment, which may reduce the performance 

of computer-aided systems. To address these problems, this 

paper proposes a real-time detection method for colorectal 

adenomas based on an improved single-stage object detection 

network YOLOv5, aiming to improve ADR in colonoscopy 

and effectively assist physicians in adenoma screening. 

 

 

2. METHOD 

 

2.1 Continuous frame image object detection method fused 

with motion information 

 

Since adenomatous polyps under colorectal endoscopy 

appear on the display screen as the scope is withdrawn, their 

movement speed is relatively slow, and the movement distance 

between adjacent frames is relatively limited. Therefore, in a 

group of video frames containing the same object, as long as 

the algorithm detects the object in one of the frames and gives 

a high confidence score, the approximate range where the 

object will appear in the next frame can be inferred based on 

the object’s maximum movement distance. Figure 1 shows an 

example of detection box judgment using motion information. 

In Figure 1, image (a) is the current frame where the target 

has been detected with a high confidence score. According to 

the maximum movement speed of the adenomatous polyp in 

the field of view, the approximate range where the target 

appears in the next frame is judged, i.e., the yellow dashed box 

in (b). When the target appears within this range in the next 

frame, and the target obtains a certain confidence score, it can 

be largely determined that the target is the same as the one 

detected in the previous frame. Then, the detection box 

position in (b) is used to estimate the approximate position of 

the detection box in (c), i.e., the blue dashed box in (c). This 

process continues until all frames containing the target are 

traversed. Fusing object motion information can, to a certain 

extent, eliminate the occurrence of false detection and missed 

detection when the algorithm performs object detection on 

videos. This mechanism is called the post-processing error 

correction mechanism. The elimination of missed detection of 

objects is shown in Figure 2. 

 

 
(a) Detection result of current frame        (b) Prediction of next frame                    (c) Prediction of third frame 

 

Figure 1. Example of detection box judgment using motion information 
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(a) Previous frame                 (b) Frame with missed detection                       (c) Next frame 

 

Figure 2. Motion information fusion mechanism for eliminating missed object detection 

 

 
(a) Previous frame                  (b) Frame with false detection                       (c) Next frame 

 

Figure 3. Motion information fusion mechanism for eliminating false object detection 

 

When a frame with missed detection of a target occurs in a 

sequence group containing the same target, the algorithm 

fused with motion information can calculate the range where 

the target should appear in that frame based on the position of 

the target in the previous frame and the maximum movement 

distance of the target. This range is used as the detection box 
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of the target. As shown in Figure 2, the target is not detected 

in (b). According to the detection results in (a) and (c), it can 

be judged that the target must exist in (b). Therefore, (b) is a 

frame with missed detection. According to the position in (a), 

the approximate position range of the target in (b) can be 

judged, i.e., the yellow dashed box in the figure, and it is used 

as the detection box of the adenoma in frame (b). It is not 

difficult to see from the figure that the blue dashed box is the 

true position of the adenoma. It can be seen that this method 

has a certain effect in eliminating missed detections. 

In addition, this method also performs very well in 

eliminating false detections. The elimination of false detection 

situations is shown in Figure 3. 

Since the prediction box given by motion information is 

calculated based on the target’s movement speed and 

represents the maximum movement range of the target, when 

the target appears in the previous frame, it can only appear 

within the predicted range in the next frame. If a target appears 

in a single frame but is not within or exceeds the predicted 

range, it proves that the target is a false detection and needs to 

be excluded. As shown in Figure 3, a false detection target 

appears at the bottom of (b), and this target does not appear in 

the inferred area from (a), nor does it appear in the next frame 

(c). Therefore, this target is a result of a false detection 

generated by the algorithm. It is filtered out by the algorithm 

during the post-processing process. It can be seen that this 

method can play a positive role in eliminating false detections. 

In addition to reducing false detections and missed 

detections of targets by the algorithm, this method also helps 

in correcting the boundary position of detection boxes, which 

can help the algorithm to more accurately recognize targets 

and obtain higher accuracy of detection boxes. Figure 4 shows 

an example in which the algorithm fused with motion 

information repositions an inaccurately located boundary box 

to make it more precise. 

 

 

 
(a) Previous frame                     (b) Frame with inaccurate detection box                          (c) Next frame 

 

Figure 4. Boundary box positioning after motion information fusion 

 

 
 

Figure 5. Principle of frame-skipping detection implementation 

 

As can be seen from the above figure, the original algorithm 

produces an inaccurately positioned boundary box as shown in 

image (b). However, based on the detection box information 

in (a), it can be inferred that the appearance range of the 
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detection box in (b) is within the yellow box. Therefore, the 

original detection boundary box can be shrunk to the size of 

the predicted box and used as the target detection box of the 

frame, thus correcting the boundary position of the detection 

box in each frame. 

 

2.2 Frame-skipping detection transmission algorithm 

 

For colorectal endoscopy videos, the movement of the 

scope is relatively slow, and there is a large amount of 

repetitive information in the video. The movement amplitude 

of the target is small. To address this issue, this study adopts a 

frame-skipping detection method [8], where the frame 

sequence is fully permutated and then odd-numbered frames 

are selected for detection. This can greatly improve the 

detection speed of the algorithm. The specific implementation 

scheme is shown in Figure 5. 

 

Table 1. Frame-skipping detection algorithm 

 

Pseudocode of Frame-Skipping Detection Algorithm 

Input: Video clip containing k consecutive frames {t₁, t₂, ..., 

tₖ} 

Output: Target detection results of the video 

1. Initialize key frame 𝑘 = 1 

2.𝑓1 =  𝑁𝑓𝑒𝑎𝑡(𝐼1) 

3.𝑦1 =  𝑁𝑡𝑎𝑠𝑘(𝑓1) 

4.for𝑖 = 2to𝑘do 

5.    if 𝑖 is odd then then 

6.        𝑀𝑘→𝑖 = 𝐹(𝐼𝑘 , 𝐼𝑖) 

7.        𝑓𝑖 = 𝐷(𝑓𝑘, 𝑇(𝑀𝑘→𝑖))   //Feature propagation 

8.        𝑦𝑖 = 𝑁𝑡𝑎𝑠𝑘(𝑓𝑖) 

9.    endif 

10.endfor 

11. Initialize B as the set of all detection boxes in the k 

frames 

12.do 

13.    Sequence selection to obtain the detection box 

sequence 𝐵𝑠𝑒𝑞  and the corresponding scores 𝐵𝑠𝑒𝑞′ 

14.    for𝑖 = 2to𝑘do 

15.        if𝑖 is even then then 

16.            if both𝐵𝑖−1
𝑠𝑒𝑞

𝑎𝑛𝑑𝐵𝑖+1
𝑠𝑒𝑞

exist, then 

17.                𝐵𝑖
𝑠𝑒𝑞

= 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝐵𝑖−1
𝑠𝑒𝑞

, 𝐵𝑖+1
𝑠𝑒𝑞

)   // Generate 

detection result 

18.          else if 𝐵𝑖−1
𝑠𝑒𝑞

> 0.85 

19.                𝐵𝑖
𝑠𝑒𝑞

= 𝐵𝑖−1
𝑠𝑒𝑞

 

20.                𝐵𝑖+1
𝑠𝑒𝑞

= 𝐵𝑖−1
𝑠𝑒𝑞

 

21.          else if 𝐵𝑖+1
𝑠𝑒𝑞

> 0.85 

22.                𝐵𝑖
𝑠𝑒𝑞

= 𝐵𝑖+1
𝑠𝑒𝑞

 

23.                𝐵𝑖−1
𝑠𝑒𝑞

= 𝐵𝑖+1
𝑠𝑒𝑞

 

24.          endif 

25.        endif 

26.    endfor 

27.    Remove 𝐵𝑠𝑒𝑞  from B 

28.while𝐵𝑠𝑒𝑞is empty 

29.Return detection results {𝑦𝑖} 

 

First, arrange the input video containing k frames in 

sequence, {t₁, t₂, …, tₖ}, and then extract the odd-numbered 

frames in the video as detection frames according to Eq. (1). If 

the video consists of an odd number of frames, the odd-

numbered frames are extracted as detection frames; if the 

video consists of an even number of frames, then both the odd-

numbered frames and the last frame are extracted as detection 

frames, while the remaining frames are non-detection frames. 

In the figure, the frame with the yellow border is the first frame 

where the target appears and is also called the key frame. For 

the key frame, features are extracted using Nfeat and detection 

is performed using Ntask. The odd-numbered frames tᵢ 

(i=3,5,7,…) with blue borders in the figure are called non-key 

detection frames. The features of the non-key frames are 

obtained from the detection of the key frame, and then 

detection is performed using Ntask. The even-numbered frames 

tᵢ (i=2,4,6,…) with black borders are non-detection frames. 

Non-detection frames do not undergo feature extraction or 

target detection. The detection boxes of targets in these frames 

are estimated based on the positions of the targets in the 

preceding and following detection frames (as shown by the 

green detection boxes in the figure). 

 

𝑡𝑖 = {
𝑡1, 𝑡3, … , 𝑡𝑘                           𝑘 = 2𝑎 + 1

𝑡1, 𝑡3, … , 𝑡𝑘−1, 𝑡𝑘                   𝑘 = 2𝑎
 (1) 

 

The pseudocode for the implementation of the frame-

skipping detection algorithm is shown in Table 1. 

 

 

3. EXPERIMENTAL PROCESS 

 

3.1 Experimental environment 

 

This experiment was run on a workstation with the Ubuntu 

18.04 operating system (Dell Precision 5820 high-

performance deep learning tower workstation). Its core 

configuration includes an Intel Core i7-7800 ×1, NVIDIA 

RTX 2080Ti ×2, and 128GB DDR4 RAM. The monitor used 

is an AOC Loire Series 4K medical image display. The deep 

learning framework used is Python 3.8.5 and PyTorch 1.6.0. 

The initial parameter settings during the training process are 

as follows: batch size is set to 32, learning rate is 0.01, the 

number of training epochs is set to 200, and the learning rate 

is halved every 100 epochs. The momentum parameters of the 

ADAM optimizer β₁, β₂, and ε are set to 0.5, 0.999, and 0.001 

respectively. 

 

3.2 Dataset 
 

The dataset is divided into two parts. The first part comes 

from the video data of colorectal endoscopy surgeries in the 

Department of Gastroenterology of the hospital from June 

2021 to September 2021. After screening, 26 video clips from 

26 patients were retained. The resolution of all video clips is 

1920×1080, and the frame rate is consistently 25 FPS. Each 

corresponding endoscopy report for these videos contains at 

least one adenomatous polyp. The second part is used to verify 

the generalization ability of the improved algorithm, and the 

ImageNet VID video dataset [9] was obtained from the 

Internet. This dataset contains a total of 30 classes, and the 

specific categories are shown in Table 2. 

The advantage of this dataset lies in its large number of data 

samples. As shown in Table 3, the training set contains 3862 

video clips and 1,122,397 images, with an average of about 

129 videos and 37,400 images per category. Large sample data 

is beneficial for network training and feature learning. 

 

1621



 

Table 2. Object categories of ImageNet VID video dataset 

 
Airplane Antelope Bear Bicycle Bird Bus 

Car Cattle Dog Domestic_cat Elephant Fox 

Giant_panda Hamster Horse Lion Lizard Monkey 

Motorcycle Red_panda Rabbit Sheep Snake Squirrel 

Tiger Train Turtle Watercraft Whale Zebra 

 

Table 3. Sample distribution of ImageNet VID dataset 

 
Video Object Detection Dataset Number of Videos Number of Images 

Training Set 3862 1122397 

Validation Set 555 176126 

Test Set 937 315175 

 

3.3 Real-time detection evaluation metrics 

 

In the real-time detection of adenomatous polyps in 

colorectal endoscopy, both detection accuracy and detection 

speed are very important. In order to maximally reflect the 

detection accuracy and speed of the improved algorithm, and 

to reduce the false detection rate and missed detection rate 

during detection while improving the detection speed, this 

study selects precision (P), recall (R), F1 score, F2 score, mean 

average precision when IoU is 0.5 (mAP@0.5), and frames per 

second (FPS) as performance evaluation metrics of the 

network. The definitions of precision and recall are as follows 

[10-15]: 

 

P 100%P

P P

T

T F
= 

+
 

(2) 

 

R 100%P

P N

T

T F
= 

+
 

(3) 

 

where, TP is true positive, representing the number of correctly 

detected adenomas; FP is false positive, representing the 

number of non-adenomatous tissues mistakenly identified as 

adenomas; FN is false negative, representing the number of 

adenomas that were not correctly detected. However, in 

practical detection processes, precision and recall alone are not 

sufficient to prove that the network performance is optimal. 

Therefore, it is necessary to combine both to calculate the F1 

score and F2 score, to measure the comprehensive 

performance of the algorithm in terms of precision and recall, 

thereby verifying the overall performance of the network. 

Generally speaking, the F1 score indicates that both precision 

and recall are equally important, while the F2 score indicates 

that recall is more important than precision, emphasizing more 

on the completeness of detection. 

 

1 2
P R

F
P R


= 

+  
(4) 

 

2 5
4

P R
F

P R


= 

+  
(5) 

 

Mean Average Precision (mAP) represents the overall 

performance of the algorithm. The calculation method is: draw 

the R-P curve with IoU=0.5 on the coordinate axis, and the 

area under the resulting curve is mAP@0.5. The specific 

formula is given below. Since this experiment focuses on the 

target detection of adenomas under colorectal endoscopy, 

mAP = AP. 

𝑚𝐴𝑃 = 𝐴𝑃 = ∫ 𝑝(𝑅)𝑑𝑅
1

0

 (6) 

 

Frames Per Second (FPS) represents the detection speed 

of the algorithm. The higher the FPS of the algorithm, the more 

frames it can detect per second, and the better it can detect 

videos with high refresh rates. 

 

 

4. EXPERIMENT SETTINGS AND RESULT ANALYSIS 

 

4.1 Experimental settings and result analysis on ImageNet 

VID video dataset 

 

This experiment is based on the further improvement of the 

YOLOv5s network, so that it can achieve better performance 

in video object detection. Therefore, the improved YOLOv5s 

network is used as the control group. A total of 5 sets of 

experiments (Test) are set to verify the algorithm optimization 

module proposed in this study. The specific settings are as 

follows: 

• T1: YOLOv5s 

• T2: YOLOv5s + motion information + Seq-NMS 

• T3: YOLOv5s + motion information + Seq-Bbox 

• T4: YOLOv5s + frame skipping detection + motion 

information + Seq-NMS 

• T5: YOLOv5s + frame skipping detection + motion 

information + Seq-Bbox 

Since this experiment uses the public ImageNet VID dataset, 

the performance of the algorithm is mainly evaluated in terms 

of mAP and detection speed. The results are shown in Table 4 

and Table 5. Table 4 mainly shows the performance difference 

in detection speed between the control group and the improved 

algorithm; Table 5 mainly shows the mAP of each group of 

algorithms for dynamic detection of objects in videos, i.e., the 

difference in accuracy. From the data in Table 4, comparing 

experiments T1, T2, and T3, it is not difficult to see that after 

integrating motion information and the two post-processing 

matching mechanisms, Seq-NMS and Seq-Bbox, the detection 

speed of the algorithm has suffered a certain loss. The FPS 

dropped by about 20–40, which may be due to the increased 

computational load caused by the introduction of new modules. 

However, comparing experiments T2, T3, T4, and T5, it can 

be seen that after integrating frame skipping detection into the 

algorithm, due to the mechanism of this module, the algorithm 

can reduce half of the detection frames during video object 
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detection. Therefore, the detection speed of the algorithm can 

be nearly doubled. 

From the data in Table 5, it can be seen that the dataset 

contains a total of 30 categories. The best results for single-

category object detection in the table are marked in bold. For 

single-category object detection in videos, the best 

performance is achieved by group T3, with the highest AP 

value for 20 categories. The next best group is T5, which 

achieves the highest AP value for 9 categories. The common 

feature of groups T3 and T5 is that both integrate motion 

information and the Seq-Bbox post-processing mechanism. It 

can be seen that compared with Seq-NMS, Seq-Bbox can 

bring more significant performance improvement to the 

algorithm’s detection results. This may be because the 

mechanism of Seq-NMS is to establish links between the 

detected object boxes in a sequence of frames. For objects that 

are not detected, it is impossible to establish effective links 

between frames, and thus the detection accuracy of such 

objects cannot be improved. Seq-Bbox, on the other hand, uses 

bilinear interpolation for the intermediate frames during 

detection, which can realize the detection of sparse objects and 

improve the recognition rate of missed detections. Compared 

with the control group T1, the mAPs of the other four groups 

are all higher than T1, which proves that the post-processing 

mechanism has a certain optimization effect on video object 

detection results. Considering the results of detection speed 

and accuracy from all five experiments, T5 achieves a good 

balance between speed and accuracy improvement. Therefore, 

this group of algorithms is used to validate on colorectal 

endoscopy video data, to observe the difference between its 

performance and the control group in detecting adenomatous 

polyps, and to further verify the feasibility of applying the 

proposed method in this study to the real-time detection of 

adenomatous polyps. 
 

Table 4. Speed performance differences of the algorithms on 

ImageNet VID 
 

Group Detection Time (FPS) 

T1 87 

T2 64 

T3 53 

T4 112 

T5 106 

Table 5. Accuracy performance differences of the algorithms on ImageNet VID 

 

Category 

Method 
Airplane Antelope Bear Bicycle Bird Bus Car Cattle 

T1 0.8203 0.7895 0.8513 0.6533 0.6936 0.7964 0.6377 0.7004 

T2 0.827 0.7962 0.8528 0.6732 0.7036 0.8154 0.6543 0.7697 

T3 0.8368 0.8093 0.8543 0.6974 0.7285 0.8324 0.6715 0.7937 

T4 0.8254 0.7933 0.8672 0.6654 0.6987 0.8253 0.6577 0.7152 

T5 0.8302 0.7999 0.8754 0.6898 0.7322 0.8285 0.673 0.7635 

Category 

Method 
Dog Domestic_cat Elephant Fox Giant_panda Hamster Horse Lion 

T1 0.7018 0.8104 0.7168 0.8593 0.9035 0.7963 0.6283 0.6007 

T2 0.7082 0.8365 0.7547 0.8849 0.9187 0.8281 0.6714 0.6498 

T3 0.7356 0.8633 0.7633 0.9036 0.9354 0.8466 0.6835 0.6833 

T4 0.6933 0.8247 0.7364 0.8754 0.9336 0.8157 0.6533 0.6288 

T5 0.7254 0.871 0.7616 0.9075 0.9287 0.84 0.6694 0.6624 

Category 

Method 
Lizard Monkey Motorcycle Rabbit Red_panda Sheep Snake Squirrel 

T1 0.7659 0.4190 0.7536 0.6177 0.8270 0.6387 0.7060 0.4953 

T2 0.7900 0.4736 0.7963 0.6694 0.8572 0.6954 0.7366 0.5591 

T3 0.8250 0.5118 0.8360 0.7030 0.8995 0.7190 0.7698 0.6088 

T4 0.7893 0.4493 0.7746 0.6480 0.8462 0.6780 0.7492 0.5760 

T5 0.8136 0.513 0.8277 0.6982 0.8824 0.7062 0.7736 0.6127 

Category 

Method 
Tiger Train Turtle Watercraft Whale Zebra mAP 

T1 0.8617 0.7466 0.6668 0.5715 0.6034 0.8480 0.7160 

T2 0.9216 0.7698 0.7384 0.6338 0.6217 0.8677 0.7492 

T3 0.9215 0.8192 0.7968 0.6521 0.6418 0.9159 0.7753 

T4 0.8500 0.7580 0.6841 0.6070 0.6180 0.8590 0.7365 

T5 0.9176 0.8064 0.7754 0.6354 0.6482 0.9038 0.7691 

 

4.2 Experiment settings and result analysis on colonoscopy 

videos 

 

For the object detection of colonoscopy videos, this paper 

evaluates the algorithm's performance comprehensively using 

five metrics: Precision, Recall, mAP, F1 Score, and FPS under 

IoU thresholds of 0.5, 0.6, and 0.7 for adenomatous polyp 

detection. The experimental results are presented in Table 6. 

From the data in the table, it can be observed that the four 

improved algorithms outperform the original algorithm (T1) 

in overall performance. The most significant improvement is 

seen in the Recall of the T3 group, where Recall increased by 

20.68% when the IOU was 0.7. This is due to the original 

algorithm often missing intermediate frames during adenoma 

detection in colonoscopy videos, caused by issues like 

dynamic blur or camera defocus. After adding Seq-Bbox in 

YOLOv5 and incorporating the motion state information of 

adenomas, the algorithm establishes Tubelets in the target 

frame sequence by using detection results from preceding and 

subsequent frames. This mechanism significantly reduces the 

missed detections in intermediate frames during detection. 

With the improved algorithm's recall rate increased, the F1 

score of the T3 group improved significantly compared to the 

control group (T1), with a 13.72% increase when the IOU was 

0.7. However, compared to the 93 FPS of the T1 group, the 

FPS of the T3 group dropped to 61. The T5 group, which 
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added a frame-skipping detection mechanism based on the T3 

group, improved the detection speed from 61 FPS to 109 FPS. 

In terms of detection accuracy, when IOU was 0.7, the 

Precision of the T5 group decreased by 0.18%, Recall 

decreased by 0.21%, mAP decreased by 0.64%, and the F1 

score decreased by 0.7%, nearly maintaining the detection 

accuracy of the T3 group. This ensured a balance between 

detection speed and accuracy, achieving improvements in both 

speed and accuracy. 

Figure 6 shows an example of how the Seq-Bbox 

mechanism supplements the anchor for missed intermediate 

frames during adenoma detection in colonoscopy videos by 

establishing Tubelet Bbox links. The images are frames 

extracted from the T1 and T5 group detection videos. 

From the top of Figure 6, the detection result without the 

Tubelet Bbox link from the original network shows a missed 

detection in the intermediate frame when detecting a polyp in 

two directions. This leads to an increased miss detection rate, 

which reduces the recall rate for adenomas. However, with the 

improved algorithm, the Tubelet Bbox link is established 

between adjacent frames. This link uses bilinear interpolation 

to locate the detection box in the intermediate frame. After 

generating the detection box, the motion information of the 

adenoma is matched, and the bounding box is shrunk to 

increase the IOU with the Ground Truth, improving the 

accuracy of detection. The final detection box confidence is 

averaged from the detection boxes of the previous and next 

frames. 

 

Table 6. Results of the improved method for colonoscopy video detection 

 
Method IOU Precision Recall mAP F1 score FPS 

T1 

0.5 0.9376 0.8115 0.8656 0.8700 

93 0.6 0.9241 0.7633 0.8322 0.8360 

0.7 0.9030 0.7150 0.7857 0.7981 

T2 

0.5 0.9435 0.8966 0.9130 0.9195 

66 0.6 0.9322 0.8743 0.9065 0.9023 

0.7 0.9184 0.8682 0.8886 0.8926 

T3 

0.5 0.9681 0.9526 0.9572 0.9603 

61 0.6 0.9580 0.9477 0.9436 0.9528 

0.7 0.9388 0.9218 0.9240 0.9353 

T4 

0.5 0.9336 0.8821 0.9074 0.9071 

118 0.6 0.9152 0.8643 0.8853 0.8890 

0.7 0.9031 0.8366 0.8536 0.8686 

T5 

0.5 0.9677 0.9428 0.9433 0.9551 

109 0.6 0.9541 0.9336 0.9350 0.9437 

0.7 0.9370 0.9197 0.9176 0.9283 

 

 
 

Figure 6. Anchor supplementation via Seq-Bbox mechanism 

1624



5. CONCLUSION

This paper addressed the problem of missed and false 

detections in intermediate frames when using the YOLOv5 

network for adenoma detection in colonoscopy videos. First, a 

method was proposed to fuse motion information from 

consecutive frames to enhance the target detection effect. This 

method estimates the approximate position of the target in the 

next frame by calculating the target's movement distance, and 

experimental validation showed that it improved the results of 

missed and false detections in consecutive frame target 

detection. In addition, this method can effectively locate the 

boundaries of the detection box, improving detection accuracy. 

Then, two post-processing methods for target detection in 

videos were presented, namely Seq-NMS and Seq-Bbox, and 

their implementation processes and core ideas were analyzed. 

The improvements these two methods bring to detection 

results and their limitations were identified, and the motion 

information of the target was incorporated into both methods. 

After validation, it was found that this improvement increased 

the algorithm's accuracy, recall, and mean average precision 

(mAP). Finally, to further improve the detection speed of the 

algorithm and meet the real-time requirements of video target 

detection, a frame-skipping detection mechanism was 

incorporated into the algorithm. The algorithm was 

comprehensively evaluated and analyzed using the ImageNet 

VID video dataset and colonoscopy videos from a hospital's 

gastroenterology department. The results showed that the 

improved algorithm enhanced both accuracy and speed 

performance, with Recall improving by 20.47% and FPS 

increasing by 16. This confirmed that the improvement in this 

study was effective. 
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