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Diabetic retinopathy (DR) causes vision blindness due to retinal impairment over prolonged 

high blood glucose levels. Pre-diagnosis of glucose levels and detection of impairments 

reduce the risk of DR. Image-based diagnosis and detection are widely adopted in modern 

clinical assessments, aided by computerized algorithms. A Converging Feature 

Classification Method (CFCM) is proposed to reduce the false rates in diagnosing DR using 

optical eye images. This method utilizes an activated convolution neural network (A-CNN) 

to reduce false rates. The activation process is the normalization of extracted features by 

detaining the replicated ones. Such replications are prevented from increasing the false rate 

through the hidden computing layers of the CNN. The normalized CNN trains the hidden 

layer by identifying false (replicated) features and extracting unique features for DR 

detection. Similarly, the extracted unique features are aligned with the training images to 

find the exact match of DR. The training is improved through replicated and non-replicated 

features to ensure high precision in DR detection is achieved. 
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1. INTRODUCTION

Diabetic retinopathy detection involves the availability of a 

detailed dataset of retinal images, meticulously annotated by 

ophthalmologists. The original images are preprocessed and 

made free of noise, to improve clarity in their application [1]. 

Features that are representative of the images can be manually 

and automatically derived. Convolutional Neural Networks 

(CNNs), having been so successful in image classification, are 

often applied [2]. Optimization of the models for full training 

toward eliminating overfitting and ensuring generalization is 

done during training [3]. Accuracy and specificity are used to 

determine how good the model is doing. Fine-tuning of the 

parameters and architecture of the model further refines its 

performance. It is under such satisfactory results that the 

deployment in a real-world setting commences, underpinned 

by continuous monitoring [4]. Periodic updates and 

refinements sustain the model's relevance and effectiveness. 

Transparency and adherence to regulatory standards remain 

paramount for clinical integration [5]. 

Feature classification is a step of diabetic retinopathy 

detection that involves extracting characteristics from retinal 

images. The features may include morphology, texture, 

vascular, and intensity features [6]. After the extraction of 

features, the selection of features is executed vigorously using 

either statistical methods or dimensionality reduction. A 

chosen algorithm, such as Support Vector Machines (SVM), 

Random Forest, or k-nearest Neighbors (k-NN), is applied to 

classify the images from extracted features to eventually 

classify diabetic retinopathy severity levels [7, 8]. Here, the 

classifier is trained using a labeled dataset where each image 

is attached to one of the diabetic retinopathy severity levels. 

Evaluation of the performance of the classifier using metrics 

like accuracy, sensitivity, specificity, and area under the 

receiver operating characteristic curve (AUC-ROC) is used to 

evaluate the effectiveness of the classifier. Further 

improvement by tuning some of the parameters improves the 

performance of the classifier [9, 10]. 

Machine learning techniques, particularly CNNs, are 

increasingly used for diabetic retinopathy detection by 

analyzing retinal images [11]. These algorithms can identify 

key features such as hemorrhages, exudates, and 

microaneurysms, indicative of the condition [12]. Training 

datasets, meticulously labeled by experts, are fundamental for 

model development, ensuring accuracy and reliability. 

Evaluation metrics like sensitivity, specificity, and AUC-ROC 

curve assessment are employed to measure the model's 

performance [13, 14]. Fine-tuning parameters and architecture 

optimization further refine the model for improved efficacy. 

Deployed systems facilitate early diagnosis and personalized 

treatment strategies, ultimately enhancing patient outcomes 

[15]. Continuous monitoring and periodic updates are 

necessary to uphold model relevance and effectiveness in real-

world scenarios. Compliance with regulatory standards and 
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ethical considerations is imperative for responsible clinical 

deployment, ensuring patient safety and privacy [16]. The 

article’s contribution is listed below: 

▪ The proposal, display, and description of converging feature 

classification method that improves the DR detection 

precision through sensitivity improvements of 

heterogeneous features. 

▪ The modification of conventional CNN with activation 

function of forward and reverse training features to prevent 

feature replications affecting precision. 

▪ Dataset-based experimental analysis and metric-based 

comparative analysis to verify, validate, and conclude the 

proposed method’s performance. 

The article is organized as follows: In Section 2, the related 

works from different authors are discussed with the pros and 

cons, and a summary of the consolidated problem identified. 

Section 3 presents the briefing and discussion of the proposed 

classification method with CNN description and classification. 

This section presents the explanation, derivations, and 

illustrations related to the proposed method. Section 4 presents 

the results and discussion under experimental and comparative 

analysis with an explanation followed by the conclusion and 

future scope in Section 5. 

 

 

2. RELATED WORKS 

 

Nasir et al. [17] developed a method for detecting diabetic 

retinopathy using a faster RCNN with fused features from 

retina images. The method employs an automatic and 

intelligent system to detect diabetic retinopathy (DR) early 

from retina fundus images. A machine learning-based faster 

RCNN classifier is then employed to classify DR or normal 

conditions and identify DR lesions. This approach surpasses 

existing methods, offering a promising solution for early 

diabetic retinopathy identification. 

Wong et al. [18] introduced a method that fine-tunes feature 

weights and parameters together for better diabetic retinopathy 

detection and grading. Their approach utilizes pre-trained 

networks (ShuffleNet and ResNet-18) to extract features from 

retinal fundus images. The method uses an Error Correction 

Output Code (ECOC) ensemble for classification, which 

outperforms traditional deep learning models. The method 

offers promise for more effective diabetic retinopathy 

diagnosis and grading. 

Khan et al. [19] introduced VGG-NIN, a deep-learning 

architecture for diabetic retinopathy detection. Their model 

aims to streamline computational complexity while accurately 

capturing complex features. By utilizing the SPP layer, the 

model can process DR images at different scales, while the 

NiN layer enhances nonlinear representation. The method 

shows improved accuracy and computational efficiency 

compared to existing approaches, promising better automatic 

diagnosis of DR. 

Shamrat et al. [20] crafted an advanced deep neural network 

to scrutinize fundus images and improve diabetic retinopathy 

detection. Their goal is to automate the classification of DR 

stages, employing Convolutional Neural Network (CNN) 

models. The DRNet13 model, along with fifteen pre-trained 

models, underwent an evaluation to assess their efficiency and 

accuracy. The method displayed superior speed and efficiency 

in comparison to other CNN architectures. 

Kommaraju et al. [21] suggested using convolutional neural 

networks with residual blocks for DR detection. The model 

aims to automatically detect how severe diabetic retinopathy 

is by using CNNs and residual blocks. The model utilizes 

CNNs and residual blocks to automatically assess the severity 

of diabetic retinopathy, leveraging their effectiveness in image 

analysis tasks. The suggested approach achieves better 

efficiency for real-time diagnosis. 

De Sousa and Camilo [22] developed a new method called 

HDeep for detecting diabetic retinopathy. The approach 

hierarchically combines four CNNs to accurately detect and 

classify DR. With the increasing prevalence of diabetes and its 

complications, such as DR, accurate detection methods are in 

high demand. The HDeep method shows promise in 

effectively detecting and classifying diabetic retinopathy, 

offering potential benefits for patient care. 

Luo et al. [23] introduced MVDRNet, a method for 

detecting diabetic retinopathy. MVDRNet utilizes multiple 

deep neural networks and attention mechanisms to fully 

exploit lesion features from a wide field of view. The method 

assigns greater importance to crucial network channels to 

improve feature extraction. The method shows its 

effectiveness in accurately detecting diabetic retinopathy by 

utilizing multi-view fundus images. 

Saranya et al. [24] developed a deep-learning model to spot 

non-proliferative diabetic retinopathy by finding exudates in 

retinal images. The model is made to automatically spot bright 

areas, vital for early diabetic retinopathy detection, using 

advanced deep learning methods. The method employs 

algorithms to remove image backgrounds, eliminate the optic 

disc (OD), and segment potential lesions. The method 

effectively detects bright lesions, showing promise for diabetic 

retinopathy screening. 

Oh et al. [25] built a system to detect DR early, using 

advanced technology on wide-view eye images. The aim is to 

improve screening efficiency and accuracy, especially in low-

income countries where access to healthcare is limited. The 

model using early treatment DR study 7-standard field images 

performed better than those focusing on the optic disc and 

macula. The method helps improve early detection, especially 

in regions with limited healthcare resources. 

Liu et al. [26] suggested a method for diagnosing DR using 

transfer learning. The method incorporated techniques like 

CLAHE and grayscale image transformation to enhance 

diagnostic efficiency despite limited data availability. Data 

augmentation methods such as random brightness, contrast 

transformations, and mix-up algorithms were employed for 

data enhancement. The method demonstrated superior 

performance in accurately detecting DR. 

Zhang et al. [27] presented an automated system for 

detecting severe DR using deep learning. The system's 

objective is to enhance screening accessibility and efficiency 

through artificial intelligence-based technology. The 

effectiveness of the system heavily relies on a large and 

diverse dataset for training and validation to ensure robust 

performance. The method shows promising results in 

improving screening efficiency. 

Das et al. [28] proposed a method for diabetic retinopathy 

detection using CNNs. Their goal is to improve upon manual 

DR diagnosis, which is often slow and unreliable due to 

resource constraints and expert dependence. The method 

employs deep learning CNNs to learn patterns from fundus 

images and classify the severity of the disease. The approach 

has the potential to enhance the accessibility and quality of 

diabetic retinopathy screening and treatment. 

Krishnamoorthy et al. [29] introduced H1DBi-R Net, a 
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hybrid 1D Bidirectional RNN for diabetic retinopathy 

detection and classification. The goal is to enhance accuracy 

in detecting and classifying diabetic retinopathy, facilitating 

early intervention. The proposed method combines various 

techniques to improve the accuracy of diabetic retinopathy 

detection from fundus images. The method provides a 

promising approach for accurately detecting diabetic 

retinopathy through fundus images. 

Modi and Kumar [30] created a smart system for diabetic 

retinopathy detection and diagnosis using bat-based feature 

selection and deep forest technique. The aim is to develop an 

efficient model for early DR detection and diagnosis using 

fundus images. The Bat Algorithm (BA) is utilized to identify 

relevant and optimized features for DR detection. The model 

presents an efficient and effective approach for early diabetic 

retinopathy detection and diagnosis using fundus images. 

Usman et al. [31] proposed utilizing principal component 

analysis (PCA) for feature extraction and classification in 

diabetic retinopathy detection. Their method enhanced the 

efficiency of early detection and classification through 

machine learning and deep learning algorithms. PCA aids in 

simplifying data dimensionality while retaining critical 

information for more effective analysis. The model's 

performance is assessed using metrics such as accuracy and 

Hamming loss. 

 

2.1 Problem definition 

 

This proposed method is designed to reduce the impact of 

replicated feature detection and its effect on the sensitivity 

factor. The methods discussed above focused on filtering [19, 

30] or precise feature selection [22, 27, 31] from which the 

benchmark for different detection is pursued. The problem is 

the feature dimension and its presence within the detected 

region for which the training and validation require either a 

large number of iterations or adaptable feature training. In the 

second case, the training metrics are to be changed randomly 

on encountering an error. Such detections are concise in a 

larger data training increasing the error rates. Therefore, to 

prevent such complications, the convergence factor is 

estimated across different features irrespective of their replicas. 

 

 

3. CONVERGING FEATURE CLASSIFICATION 

METHOD 

 

Detecting Diabetic retinopathy is a crucial task in fundus 

images and provides the necessary prevention in the early 

stage. This is a common problem in today’s work, which is 

majorly caused by the diabetic patient based on the severity. 

So, the severity is detected in the initial stage, and from which 

the computation is carried out appropriately. In this, the 

computation time is taken into consideration and from which 

the process comes to an end. In this approach, DR detection 

illustrates the better analysis and provides the necessary steps 

to follow up. Here, the examination is processed for the 

different sets of images from the database, and from that, the 

output is extracted. In this manner, DR detection is carried out 

in the medical field to detect the problem and normalize it. The 

DR detection is analyzed by extracting the data from a huge 

set of databases and fetching the features. The proposed 

method is illustrated in Figure 1. 

In this stage, the feature extraction runs through the 

detection of a false rate from which the replications are 

avoided. The replicated data are avoided by exploring the 

CNN method in this work. Pre-diagnosis of glucose levels and 

detection of impairments reduce the risk of DR. Image-based 

diagnosis and detection are widely adopted in modern clinical 

assessments, aided by computerized algorithms. Thus, the 

proposed work introduces the CNN for the reliable 

computation of DR detection. Here, the CNN is developed to 

obtain better precision in this proposed work, and from which 

it explores the fundus image features. The necessary feature is 

extracted from the large set of databases and finds the severity 

level of DR. In this phase, DR detection is the major step in 

which the preliminary level is to gather the data with the labels 

that define the severity levels and it is equated below. 

 

𝛽 = {[(𝑖0+. . +𝑖𝑛) ∗ 𝑓𝑢]} + (

∑ 𝑓𝑢𝑖0
𝑖𝑛
⁄

𝜇
(𝑔𝑖+𝑚𝑖+𝑙𝑤)
⁄

) ∗

[(𝑔𝑖 +𝑚𝑖 + 𝑙𝑤)] + (
(𝑖0 + 𝑓𝑢)

𝜇⁄ ) ∗ (
∏ 𝑖0𝑓𝑢

(𝑔𝑖+𝑚𝑖+𝑙𝑤)
𝜇⁄
)  

(1) 

 

The gathering of data is used to explore the features from 

the fundus image and it is represented as 𝛽. Here, the image 

is  𝑖0 , trainingimagesare described as  𝑖𝑛 , the features are 

labeled as 𝑓𝑢. In this equation, the severity levels are observed 

as higher, medium, and low and they are symbolized 

as𝑔𝑖 , 𝑚𝑖  𝑎𝑛𝑑 𝑙𝑤, the detection is formulated as 𝜇. In this case, 

gathering the data is to identify the severity level that explores 

the better detection of DR. In this phase, the analysis is used 

for the different sets of processing false rates in this work. The 

main concern of this process is to label the severity level 

among the input fundus images which is the input image. Here, 

the input image is extracted from the database from which the 

computation step is carried out in the appropriate time duration. 

The processing step involves the better detection of images 

from the gathering method. 

The gathering of the image is used to examine the DR levels 

whether it is higher, medium, or lower. If it is higher the 

treatment is given to that section and if it is medium the second 

priority is given which must be not developed. If it is lower 

there is a minimum chance of affecting the eye. So, the impact 

is minimal in this lower case, thus the evaluation is observed 

for the gathering of the data and provides better image 

processing from the gathered image. Here, the features are 

extracted from the fundus image and from which the detection 

is performed and it is represented as (
∏ 𝑖0𝑓𝑢

(𝑔𝑖+𝑚𝑖+𝑙𝑤)
𝜇⁄
). Thus, the 

input fundus images are gathered in this derivation and 

perform a better understanding of the desired features and find 

the better computation in this work. From this approach, 

extraction of features computed from the fundus image is 

equated in the below equation as follows. 

 

𝑓𝑢(𝑋) =

{
 
 

 
 ∑ [(𝛽 + 𝜇) ∗ (𝑡𝑒 + 𝑎′)] + (

1

∏ 𝑖𝑛𝑔𝑖
𝜇
(𝑚𝑖+𝑙𝑤)
⁄

) + {[(∑ (𝛽 + 𝑎′)𝑖𝑛 ) − 𝑡𝑒]}
𝑖0
𝑖𝑛

= [((𝑚𝑖 + 𝑙𝑤)) ∗ ∏ (ℎ𝑖 + 𝜇)𝑖𝑛 ] ∗ [(𝑔𝑖 + 𝑖𝑛) ∗
𝜇

𝛽
𝑎′
⁄
] − 𝑡𝑒

  (2) 
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Figure 1. Proposed method illustration 

 

 
 

Figure 2. Normalization for 𝑓𝑢(𝑋) 
 

The feature extraction is performed for the detection of 

necessary features which are having higher severity. The 

extraction is  𝑋 , in this higher, medium, and lower are 

considered to find the DR, which is processed by mapping 

with the previous stage and produces the result on the 

mentioned time interval and it is described as 𝑡𝑒 , the 

calculation is labeled as 𝑎′. In this stage, a varied range of 

fundus images is taken into consideration from which it 

examines the better gathering of data from the database and 

provides the result with the severity levels. In this approach, 

the severity levels are processed with the mapping step which 

defines the better detection of DR on the mentioned time 

interval.  

Here, the necessary features are extracted from the database 

gathering and from which it produces the DR detection in a 

better manner. In such a way, the necessary features are 

examined on the mentioned time interval that deploys the 

higher, medium, and lower levels. Thus, the severity eases the 

extraction of features in this derivation where the initial step is 

taken for the higher severity level, followed up by the medium 

and lower level of DR in patients. Thus, this examination is 

carried out for the better label differentiation of levels from 

which the features are extracted on the fixed time interval and 

it is represented as [(𝑔𝑖 + 𝑖𝑛) ∗
𝜇

𝛽
𝑎′
⁄
] − 𝑡𝑒 . From this fundus 

image features extraction process analysis runs through the 

normalization of DR and it is derived below: 

 
𝑍 = (𝛼 + 𝑋) ∗ ∑ [(𝑔𝑖 − 𝑙𝑤) + 𝜇] ∗1

𝑖𝑛
⁄

(
𝛽 + 𝜇

√(
1

𝑖𝑛
) ∗ 𝑋

⁄
)+∏ (𝑡𝑒 − 𝑋) − (𝑙𝑤 +

𝑋∗𝜇
(𝑖0+𝑓𝑢)
⁄

∑ (𝛼+𝑖𝑛)𝛽
)𝑎′   

(3) 

 

The analysis is observed for the normalization of features 

from which the fundus input images are processed for 

detection. The normalization is 𝛼, the analysis is represented 

as  𝑍  in this time intervals are considered for the better 

detection of DR and find the extraction of higher severity 

levels. The lower severity levels are observed in this category 

and produce better detection based on similar feature 

extraction. If the features are similar then observation is 

reduced and improves the computation time. Here, it states the 

recognition of the DR among the patients and deliberates with 

the features from the fundus image. In this approach, the 

analysis is extracted for the normalization of the levels and 

reduces the computation cost based on the time duration. Here, 

the examination is carried out for the different sets of fundus 

image processing in which it explores the normalized value 

from the extracted image. The normalization process for 𝑓𝑢(𝑋) 
is represented in Figure 2. 

In the above Figure 2, the 𝑓𝑢 from 𝑖𝑜 is extracted at a regular 

𝑡𝑒  for analysis. The (𝛽 + 𝜇) = 1 (true) achieves 𝑓𝑢 ∈ 𝑔𝑖 
classification and the failing results in 𝑓𝑢 ∈ 𝑙𝑤 extraction. In 

the normalization process, 𝑙𝑤 features are matched with 𝛼 in 

different 𝑡𝑒 for 𝜇 process. The normalization is performed to 

validate false rates between multiple training instances. 

Therefore, the activation process is first used to differentiate 

𝑔𝑖  and 𝑙𝑤  ∀𝑓𝑢(𝑋) . Based on this normalization the output 

detection is pursued using replication/ non-replication features. 

In this phase, analysis is observed for the different set of 

processing that defines the normalization. If there is 

normalization is detected then it deploys the false rate which 

is discussed in the below section. In this normalization, the 

detection of the DR is associated with the severity levels and 

provides a better analysisof this equation. The lower level is 

discarded in this stage and deploys the better processing for 

the normalization detection and it is formulated as (𝑙𝑤 +

𝑋∗𝜇
(𝑖0+𝑓𝑢)
⁄

∑ (𝛼+𝑖𝑛)𝛽
). The evaluation is processed for the normal level 
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extraction from the features. Thus, the analysis is equated and 

from this, the categorization of normalization is formulated in 

the below equation. 

 

𝛿 =
1

𝑖𝑛
+∏ (𝛼 + 𝑔𝑖) + (𝑓𝑢 ∗ 𝛽) ∗ (

∏ (𝑖0+𝑔𝑖)𝜇

𝛼
𝑍⁄

) =  𝑅′𝑍

∏ (𝜇 + 𝛼)
𝑖0
𝑖𝑛

∗ 𝛽 + (
∑ 𝑍𝑋

𝑓𝑢
⁄ ) ∗ 𝑔𝑖 = 𝑁0

}  
(4) 

 

The categorization of normalization is processed in the 

above equation and it is described as 𝛿 , the replication and 

non-replication are labeled as 𝑅′ 𝑎𝑛𝑑 𝑁0 . Here the first 

condition is the replication process that includes the extraction 

of similar features from the database and provides the 

detection of DR. In this stage, the examination is carried out 

for the analysis of the normalization process and finds the 

better analysis if it has a higher severity level and is equated 

as (𝛼 + 𝑔𝑖) + (𝑓𝑢 ∗ 𝛽). In this category, the normalization is 

defined for the replication process and examines the 

computation in a better manner for this replication. Here, the 

replication is detected if there is similar data are observed from 

the extracted features. The proposed method is reliable in 

handling noisy inputs, apart from imbalanced training sets. 

The 𝑓𝑢(𝑋) process differentiates the impact of noise over the 

input DR image. The noise suppression is performed in the 

pre-processing step using different filters; in this concept, 

Gaussian noise filter is used to extract the features without 

distortion. Besides, the output image is indexed for 𝑍 process 

wherein the severity level decides rate of noise impact. 

Therefore, filtering and  𝑍  processes are relevant to ensure 

noise pixels impact a less in the output image processing. 

Whereas, the non-replication states the dissimilar data 

extraction from the features and provides the detection in this 

stage is easy. This process maps with the previous step and 

produces the result. Here, the examination is used to relate the 

necessary feature extraction with non-similar and it is said to 

be non-replication. In this normalization method, the 

extraction of features is used to relate with the input images 

and that deliberates with the reliable computation and it is 

formulated as  𝛽 + (
∑ 𝑍𝑋

𝑓𝑢
⁄ ) . Thus, the categorization of 

normalization is performed and from this, the detection of 

false rate in replication is addressed and it is formulated in the 

below equation: 

 

𝜇 =
𝑖0+𝛽

∑ (𝑍+𝛼)𝑋
∗ ∏ (𝛿 ∗ 𝑖𝑛) + (𝑅

′ + 𝜎) + 𝑡𝑒𝛽   (5) 

 

The false rate is detected and it is represented as 𝜎, in this 

replication data are avoided in this step where the time 

duration is reduced. In this category, the false rate is addressed 

for the replication process and degrades the computation 

process. In this stage, the normalization is used to define the 

reduction of the replication process and provides reliable 

processing in this work. The replication is used to relate with 

the false rate addressing this work and reduced. In this case, 

the false rate is addressed where the higher level of severity is 

recognized and where the false rate is reduced. In this process, 

a false rate is detected and provides the efficient reduction of 

replication in this computation process. Post to this both the 

replicated and non-replicated data are processed in CNN 

where the false rate is addressed and reduced. The false rate 

features are identified as presented in Figure 3. 

The false rate feature detection process requires  𝛿 

categorization of 𝑓𝑢  through 𝑓𝑢(𝑋)  steps. As the process is 

continuous, the extraction and feature classification 

(𝑔𝑖  𝑎𝑛𝑑 𝑙𝑤) is used for 𝜇. In the 𝛿 process (𝑔𝑖 ∗ 𝑍) and (
𝑍

𝑓𝑢
) 

for maximum true positives are validated for 1 to 𝑙𝑤 instances 

∈ 𝑡𝑒. If the first is true then 𝑅′ is identified and for 𝑁𝑜 as well 

as the 𝜎 > 𝑙𝑤  condition is verified. If this is true then a false 

rate is observed in 𝑅′  and 𝑁𝑜  are detected. The failing 

condition generates 𝛿 = 𝑚𝑖 case that is used for normalization 

check (Figure 3). 

 

3.1 CNN for classification 

 

A modified convolutional neural network is used for the 

fundus image and deploys the extraction process for input 

images. The modification concerns the conditional split of the 

hidden layer processes that is different from the conventional 

CNN. In this conditional analysis, false rate based outputs are 

extracted using 𝛼 and𝛼𝑡 parameters. Besides, the activation is 

provided before the output extraction to increase the chance of 

feature classification. Here, the varying images are extracted 

in this case by deploying the detection of normalization. In this 

method replication and non-replication data are examined and 

forwarded to the neural layer and from this the training is given 

in between the layers. The output layer is responsible for 

reliable precision, in this methodology, the assessment layer is 

derived and it is equated in the below equation: 

 

𝑖0(𝑋) = (
𝑍

∏ (𝛽∗𝜇)𝛼
) + [(𝛿 + 𝑅′) + 𝑓𝑢(0)]

𝑖1(𝑋) = (
𝑍

∏ (𝛽∗𝜇)𝛼
) + [(𝛿 + 𝑅′) + 𝑓𝑢(1)]

⋮

𝑖𝑛(𝑋) = (
𝑍

∏ (𝛽∗𝜇)𝛼
) + [(𝛿 + 𝑅′) + 𝑓𝑢(𝑛 − 1)]}

 
 

 
 

  (6) 

 

 

 
 

Figure 3. False rate feature identification 
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The assessment layer is equated for the extraction of the 

necessary features from which the replication is given as the 

input in this case. In this approach, the categorization is 

performed for the features and deploys from the initial stage to 

the 𝑛 − 1 layers. The different range of the image is extracted 

from the database and from this features which are with the 

replication format are derived in this assessment layer. This 

assessment layer is responsible for the reliable computation 

that states the better processing in CNN. From this training 

inputs are formulated in the below equation as follows: 

 

𝑔𝑟(𝑖0) = ∏ (𝑔𝑖 ∗ 𝑓𝑢)𝛽 + (
(𝜎−𝑅′)

𝛿
) − 𝑡𝑒  (7) 

 

The training input is fetched from this methodology and 

processed by the labeled images in which it finds the severity 

levels. The training is described as 𝑔𝑟 , in this case, 

normalization’s categorization replication is given as the input 

in the CNN process. Here, the training is examined in the false 

rate is addressed in this case. In this approach, the 

normalization is carried out from the replication and reduces 

the upcoming computation. Here, the false rate is reduced from 

the fundus image and the replication method. The time is 

associated with the replication detection and avoids further 

layer processing and it is represented as (
(𝜎−𝑅′)

𝛿
) − 𝑡𝑒. From 

this methodology, the addressed false rates are trained in the 

below equation: 

 

𝜎(𝑔𝑟) = ∏ (𝛽 + 𝑅′) − 𝑣𝑝 + 𝑔𝑖 − 𝑡𝑒𝑖𝑛   (8) 

 

The false rate is trained and it’s been avoided in the 

upcoming layers, this overall computation is processed in the 

mentioned time. In this case, the previous state of the process 

is mapped with the current case and produces the result. Thus, 

the examination is provided by a mapping process, the 

previous state is represented as 𝑣𝑝 , which is carried out to 

address the false rate and reduce it. Thus, the training is given 

to the false rate on the image by mapping with the previous 

stage. Irrespective of the normalization, the false rates are 

found a high at some places due to the difference in 𝜎(𝑔𝑟) and 

the actual 𝑔𝑟  obtained. Using the  𝐴  and  𝛼  estimation, the 

consecutive normalization process is free from false positives. 

Therefore, the places where difference is high experiences a 

bit high false rate. From this approach, The CNN is fed with 

the non-replicated features to perform allied matching with the 

external training inputs, in its hidden layer for “m” non-

replicated features and the activation process is the 

normalization of extracted features by detaining the replicated 

ones. This activation process is required to Such replications 

are prevented from increasing the false rate through the hidden 

computing layers of the CNN and they are formulated in the 

below derivations: 

 

𝑎𝑡 = (𝑣𝑝 − 𝑢𝑡) + 𝑔𝑟 ∗ (
𝜎−𝑣𝑝

𝛽+𝜇
)  (9) 

 

𝐴 = (𝑅′ + 𝜇) ∗ ∑ (𝑣𝑝 + 𝑓𝑢(𝑛 − 1))𝜎   (10) 

 

Eq. (9) is used for the matching process and it is described 

as 𝑎𝑡 , the current state of the image is 𝑢𝑡 . The activation 

process is symbolized as 𝐴. Here, the mapping is processed for 

non-replication images, which provides efficient processing 

for the non-replication images. Thus, the external training 

inputs are used for the non-replication features in these neural 

layers, whereas Eq. (10) is used for the prevention of 

replications which increases the false rate through the hidden 

computing layers by introducing the activation process in 

CNN. The CNN for the previous state (false rate) based 

activated training model is illustrated in Figure 4. 

 

 
 

Figure 4. CNN for 𝑣𝑝 based activated training 

 

The 𝑣𝑝 based assessment is performed to identify any false 

rate is 𝑓𝑢(%) even after normalization. This learning aims at 

extracting the least feasible 𝑚 form 𝑣𝑝 ∈ 𝑅′. If the activation 

generates 𝛼 ≥ 𝛼𝑡  and 𝛼 < 𝛼𝑡  classifications under 𝑣𝑝 ∈ 𝑅′ or 

𝑚  then the true positives are extracted. In the activation 

process, (𝑅′ + 𝜇)  and 𝑓𝑢(𝑛 − 1)  are the output-extracting 

conditions. Based on the available activations the 𝛼𝑡 (
𝜎−𝑣𝑝

𝛽+𝜇
) is 

the extracting condition for actual feature classification 

(Figure 4). Thus, it is processed for the different layers in CNN 

for unique feature detection. The features are allied with the 

training input as derived below: 

 

𝑙𝐴 = [(𝛽 + 𝑖0) ∗ (𝛼 + 𝐴)] + 𝑎𝑡 − 𝑡𝑒 (11) 

 

whereas, 
 

𝑎′ = 𝑣𝑝(𝑖0) + 𝑎𝑡 − 𝑢𝑡(𝑛 − 1) − 𝑡𝑒 (12) 
 

The allied process is examined in Eq. (11) and it is described 

as 𝑙𝐴 , in this case, normalization replication and non-

replication are given as the input for the CNN. The training 

input is fed for the computation process where the false rate is 

addressed on the required time interval. This includes the 

activation process to reduce the replication in this proposed 

work and from this time is observed by calculating with the 

previous state of the process. This runs through the different 

layers in CNN and estimates the better computation in this 

work. The CNN process for precision-oriented training is 

illustrated in Figure 5. 
 

 
 

Figure 5. CNN process for precision-oriented training 
 

Unlike the process in Figure 4 for false-based training, the 

above Figure 5 presents the learning process based on 

precision. Here, the activation function validates 𝑢𝑡 = 0  or 

𝑢𝑡 = 1 condition, such that for 𝑛 trails the allied process of 

conjoint  𝑅′  and 𝑁𝑜  is used. This validation is performed to 

verify if 𝛼 ′ = 𝑡𝑟𝑢𝑒/𝑓𝑎𝑙𝑠𝑒; the passing criteria is used to train 
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the 𝑛 layers of the CNN. The case of 𝛼 ′ = 𝑓𝑎𝑙𝑠𝑒 generates 𝑅′ 
for different  𝛼 ≥ 𝛼𝑡  (or) 𝛼 < 𝛼𝑡  conditions.Thus, both the 

allied process is observed on the mentioned time interval, from 

this approach, the precision is trained in the CNN to obtain the 

better output as DR detection and it is formulated below. 

 

𝑟𝑐 = [(𝑣𝑝 − 𝑢𝑡) + (𝑙𝐴 ∗ 𝑓𝑢)] + 𝜇 − 𝑡𝑒(𝑛 − 1)  (13) 

 

The precision is improved in this equation and it is 

represented as𝑟𝑐 , in this case, detection of DR is used to relate 

with better computation with different layers. Here, it is 

associated with the feature extraction from the fundus image 

where the time is calculated for reliable improvement and 

replication is reduced in the normalization. In this 

methodology, the CNN is proposed for efficient feature 

extraction where the training inputs are deliberated with the 

different layers and improve the precision in this work. Thus, 

the training is improved through replicated and non-replicated 

features to ensure high precision in DR detection is achieved. 

The number of training iterations deployed reduces the false 

rate and achieves better precision. This analysis for testing, 

training, and validation is illustrated in Figure 6. 

 

 

 
 

Figure 6. False rate and 𝑟𝑐  analysis 

 

The above Figure 6 presents the analyses of false rates and 

𝑟𝑐  for different training iterations. The training, testing, and 

validation are the considerations throughout the iterations. In 

the activation-based conditions, the maximum possible 

conditions for  𝛼  and 𝛼′  are analyzed to validate both 𝑁𝑜 

and 𝑅′ equivalently. Therefore, the 𝑣𝑝  and 𝑢𝑡  differentiations 

are used throughout the training to increase 𝑟𝑐 . The AUC and 

confusion matrix analysis based on false rates and true positive 

rates are discussed in this section. In Figure 7, the AUC for the 

different processes: 𝐼𝐴 and 𝛼′ are presented. 

 

 

 
 

Figure 7. AUC for 𝐼𝐴 and α′ 

 

In Figure 7, the AUC analysis for 𝐼𝐴 and 𝛼′ are presented. 

This proposed method performs 𝑣𝑝  and 𝑢𝑡  differentiations 

between successive 𝑁𝑜 . In this differentiation, precision 

focussed 𝛼′verification is performed. If the activation function 

generates  𝑚  then  𝛼 = 𝛼𝑡  (or) 𝛼 > 𝛼𝑡  or  𝛼 < 𝛼𝑡  or 𝛼 < 𝛼𝑡 
assessment is performed using 𝑅′ inputs. This suppresses the 

false rates between the 𝑓𝑢(𝑛 − 1) for 𝐴 estimation. Hence, the 

true positives are improved. Followed by this process, the 

precision-focused confusion matrix is presented in Figure 8 

below. 

 

 
 

Figure 8. Confusion matrix for 𝐼𝐴 and α′ 

 

The confusion matrix is validated for 𝑁𝑜  and  𝑅′  across 

various 𝐼𝐴  and 𝛼′. The differentiation-focused improvements 

are validated across 𝛼  conditions post the A function 

implication. Based on the available 𝑟𝑐  and (𝑟 − 1) recurrences 

the 𝛼 ′ = 𝑇𝑟𝑢𝑒  is achieved to reduce the differentiations. 

Considerably, the recurrent iterations are useful for 𝜎(𝑔𝑟) 
extraction to increase the precision (Figure 8). 
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4. RESULTS AND DISCUSSION 
 

4.1 Experimental analysis 
 

The experimental analysis is performed using MATLAB 

codes; the software is deployed in a system with a 2.0GHz 

processing element and 4GB of random access memory. The 

software specification is used to execute the codes that process 

DR images (data source: [32]). This source contains images 

resized into 224×224 pixels under different categories. The 

activated CNN is trained under 1200 iterations and 3-8 epochs/ 

iteration. A total of 3662 DR images are used for training and 

180 images for testing. From this, the results of 4 sample 

inputs are presented in Tables 1 and 2 as per the processes 

explained in the proposed method. 

As far as the scalability is concern, the proposed method is 

designed to support various input types irrespective of the 

infection type. The normalization and false rate detection for 

any image size and feature extraction are monotonous. Using 

the monotonous assessments of 𝑖𝑛(𝑋) and 𝜎(𝑔𝑟), the image 

with varying sizes and features are addressed. The change in 

feature distribution or feature presence are identified with 

multiple 𝛼𝑡  and 𝐴 assessments. Using the CNN training, the 

number of iterations is alone variable based on the image size 

and number of training inputs. This is unanimously followed 

for large and small datasets to retain similar precision. 
 

Table 1. Feature detectionand normalization 

 

Input 𝒈𝒊 𝒍𝒘 𝜶 

    

    

    

    

 

Table 2. Matching, detection, and mean error 

 
𝜶𝒕 Detection 
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Mean Error Mean Error 

  

  

  

 

4.2 Comparative analysis 
 

In the results and discussion, the metrics such as accuracy, 

precision, sensitivity, false rate, and mean error are 

comparatively analyzed with the existing MVDRNet [23], 

DRFEC [28], and HOG+RCNN [17] methods. These methods 

are discussed briefly in the related works section. Besides, the 

replicated features (4 to 22) and the training iterations (100 to 

1200) are varied to perform the comparative analysis. The 

proposed method is different from the existing methods by 

converging pre-normalization and activation together. The 

activation thus operates after the failing outputs of 𝑓𝑢 ∈ 𝐼𝑊. In 

the normalization process, the chances of verifying 𝛿∀𝑅′ and 

𝑁𝑜 is monotonous. Therefore, the activation process instigates 

the input neurons under 𝑅′  detection over 𝑁𝑜 . Besides (𝛼 +
𝑔𝑖)  and (𝑓𝑢 ∗ 𝛽)  are independent processes across different 

false rate identification. Thus, the existing neurons that are less 

categorized are reformed to contains 𝑖𝑛(𝑋)  until 𝑔𝑟(𝑖𝑜) 
requires further training instances. The existing methods 

revive the neuron with/without activation functions, 

irrespective of the needs. Different from the existing methods 

the false positive achieving instances alone revive the neurons 

for training, reducing its complexity. 

 

4.2.1 Accuracy 

In this method, the diabetic retinopathy detection process is 

performed using A-CNN to provide necessary 

recommendations to prevent from the early stage (Refer to 

Figure 9). Based on the severity analysis, the appropriate 

treatment is provided to reduce the risk of DR. Here, the CNN 

is developed to obtain better DR prediction precision in this 

proposed work and from which it extracts the necessary fundus 

image feature. The number of training iterations deployed 

reduces the false rate and thereby achieves high DR detection 

accuracy. The normalization of replicated and non-replicated 

image features is independently identified and segregated to 

maximize the feature classification and thereby reduce the 

false rate in the precise time interval. The replicated image 
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features are obtained to provide training for those images. The 

replicated data are avoided to achieve high DR detection 

accuracy with less false rate and analysis time. The initial 

fundus image is compared with the training image for accurate 

DR detection. Similarly, the CNN is used in this model for 

identifying and segregating the replicated and non-replicated 

data to achieve high accuracy. 

 

 

 
 

Figure 9. Accuracy 

 

4.2.2 Precision 

In this proposed method, the DR detection analysis is 

performed by extracting the features from the input images and 

fetching the features for accurately detecting the problem to 

improve high detection precision represented in Figure 10. 

The replicated features and false rate are suppressed using 

activation process for differentiating 𝑔𝑖  and 𝑙𝑤  ∀𝑓𝑢(𝑋) 
between the multiple training instances for identifying the 

false rate occurrence. The feature classification is pursued to 

identify the false rate occurrence due to retinal abnormalities 

and replicated features observed from the input images. Due 

to min/ max sensitivity variations in the input image, the risk 

of DR is easily identified to maximize decision precision with 

less replicated features. Based on this normalization process, 

the final output is pursued based on replication/ non-

replication features. The false rate of occurrence leads to the 

chances of vision loss, thereby affecting the retina and 

reducing detection accuracy. The CNN was used to increase 

the robustness range in DR detection with maximum pooling 

between training images and preprocessed images. In this 

scenario, the replicated features identified images are 

recurrently trained until achieve maximum true positives from 

1 to 𝑙𝑤 instances ∈ 𝑡𝑒. Hence, high DR detection precision is 

achieved. 

 

 

 
 

Figure 10. Precision 

 

4.2.3 Sensitivity 

The high sensitivity is obtained from input fundus images 

based on extracted features classification to reduce lower 

severity levels in this category and give better output (Refer to 

Figure 11). In this proposed method, the lower severity levels 

are detected based on similar feature extraction in any region 

leads to retinal abnormalities; such problems are identified to 

state the detection of DR among the deliberates and patients 

for providing precise diagnosis. 
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Figure 11. Sensitivity 

 

Based on the condition (𝑙𝑤 +
𝑋∗𝜇

(𝑖0+𝑓𝑢)
⁄

∑ (𝛼+𝑖𝑛)𝛽
)  used for 

identifying the lower severity level in training images are 

addressed with less classification time. Here, the chances of 

periodic shuffling are made based on extracted features from 

the initial retina image to the corresponding pre-processed 

image for improving DRD precision. In the normalization 

process, the𝑙𝑤  features are matched with  𝛼  in random time 

intervals for 𝜇 process. The normalization output is used to 

identify the false rate between multiple training instances. If 

there is normalization is detected in any region, then it deploys 

the false rate. In this proposed method, the activation process 

is constantly defined for high accuracy of DR detection from 

which high sensitivity is satisfied. 

 

4.2.4 False rate 

In this proposed method sequential DR detection using the 

input fundus images is performed based on extracted features 

and classification identifies the failing features in𝑓𝑢 ∈ 𝑙𝑤 for 

improving detection accuracy (Figure 12). Based on the 

normalization, the matching of lower severity level features 

with 𝛼 in different𝑡𝑒 using CNN for processing the replicated 

images is to reduce higher severity level. Based on the feature 

classification, the CNN is applied to identify the non-

replication states, from this identification the dissimilar 

features extracted from the input images are used to provide 

the precise DR detection. This process maps with the previous 

output for non-replicated feature identification through the 

proposed method to satisfy high sensitivity. 

 

 

 
 

Figure 12. False rate 

 

Using this proposed method, the consistent replication and 

normalization process is evaluated for DR detection to provide 

reliable processing without increasing the false rate as the 

optimal output. The CNN is implemented to reduce the higher 

level of severity and where the false rate is reduced. In this 

article, high detection precision is achieved under feature 

extraction and classification. Using CNN, the less false rate is 

detected. 

 

4.2.5 Mean error 

In this diabetic retinopathy detection is pursued using 

feature extraction, classification, and normalization output to 

satisfy high precision with less mean error represented (Refer 

to Figure 13). The replicated data is addressed from the 

extracted features is mitigated using the CNN process. In this 

process, if a false rate is identified in the input images, then 

provides the efficient reduction of replication in this 

computation process for easily recognizing DR. Both the 

replicated and non-replicated features are processed in CNN 

for addressing the false rate. The CNN helps to reduce the false 

rate occurrence based on increasing true positives. From the 

instance, the normalization process is pursued to identify the 

false rate that is trained, and it’s been avoided in the upcoming 

layers. Thus, the training is given to the false rate identified 

images by mapping with the previous step to prevent 

replication. In this proposed work, the CNN is to satisfy high 

accuracy and precision of DR detection and thereby reduce 

mean error. 
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Figure 13. Mean error 

 

4.2.6 F1-score 

The F1-score measures the model's performance by 

balancing precision and recall. The F1 score is high when 

fewer features are replicated, the F1 score fluctuates with an 

increase in replicated features to indicate variability due to 

overfitting or reduced feature distinctiveness. The score 

reduces when redundancy in replicated features dilutes the 

meaningful variance that is required for optimal detection. 

 

 

 
 

Figure 14. F1-score 

 

The lower F1 score occurred when training iterations were 

minimal due to insufficient learning. The score increases with 

more iterations when the model understands patterns in fundus 

images. The proposed method achieves a consistent and 

optimal performance with a high F1 score. Over-replication of 

features and insufficient training leads to less detection. A high 

F1-Score indicates the proposed method's capability to 

identify DR in fundus images by maintaining a balance 

between false positives and false negatives (Figure 14). 

 

4.2.7 Specificity 

The replicated features determine the model's input 

variability which is measured over the specificity that varies 

from high to low. High specificity ensures the model's ability 

to correctly identify non-diseased cases. Specificity is high 

with fewer replicated features and a wavy trend appears due to 

over-representation with an increase in features. This may lead 

to confusing the model to identify false positives as infected 

parts. An increase in replication lowers specificity which 

disturbs the system to distinguish between relevant and 

redundant features. A low specificity with minimal iterations 

slows down its ability to accurately distinguish between 

diseased and healthy cases. An increase in iteration progress 

better learning and feature extraction. Specificity in diabetic 

retinopathy detection helps to avoid misclassifying healthy 

fundus images as diseased. High and stable specificity with 

continuous training in the model helps to distinguish DR from 

non-DR images (Figure 15). Tables 3 and 4 are used to 

summarize the above comparative analysis with the discussion. 

 

 

 
 

Figure 15. Specificity
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Table 3. Summary of comparative analysis for replicated 

features 

 
Metrics MVDRNet DRFEC HOG+RCNN CFCM 

Accuracy 

(%) 
86.46 87.54 89.97 91.341 

Precision 0.898 0.911 0.927 0.9355 

Sensitivity 0.881 0.891 0.915 0.9214 

False Rate 0.159 0.138 0.107 0.0687 

Mean 

Error 
0.091 0.082 0.069 0.0514 

F1-Score 0.882 0.893 0.910 0.9338 

Specificity 0.883 0.890 0.910 0.9216 

 

Table 4. Summary of comparative analysis for training 

iterations 

 
Metrics MVDRNet DRFEC HOG+RCNN CFCM 

Accuracy 

(%) 
88.17 90.81 93.03 95.321 

Precision 0.90 0.914 0.938 0.9597 

Sensitivity 0.902 0.913 0.93 0.9504 

False Rate 0.115 0.103 0.078 0.0431 

Mean 

Error 
0.067 0.052 0.042 0.0251 

F1-Score 0.899 0.913 0.937 0.9591 

Specificity 0.901 0.920 0.939 0.9547 

 

The proposed CFCM leverages accuracy, precision, and 

sensitivity by 10.05%, 11.75%, and 12.87% respectively. This 

method improves F1-score by 11.64% and 9.08% respectively. 

This method reduces the false rate and mean error by 13.19% 

and 8.78%. 

The proposed CFCM leverages accuracy, precision, and 

sensitivity by 9.3%, 12.71%, and 10.62% respectively. This 

method improves F1-score by 12.83% and 10.41% 

respectively. This method reduces the false rate and mean 

error by 11.11% and 8.57%. 

 

 

5. CONCLUSION 

 

To address the problem of replicated features in DR 

detection, this article proposed and briefed the CFCM. The 

proposed method is designed to reduce the false rates using 

activated CNN. 

The activation process is used to reduce the mean error by 

training the network using precision and false rates in and fro 

manner. The hidden computing layers are designed to 

accommodate replication, condition-based feature extractions 

and DR region detection. The unique features are allied with 

the training network throughout the iterations until the highest 

possible accuracy is achieved. In precise, the feature 

sensitivity is used to define the feature classification as 

replicated or non-replicated. The activation function 

normalizes the replications to extract any possible feature 

matches with the input. This enhances the mean error 

reduction through maximum precision conditions. Therefore, 

the proposed CFCM leverages accuracy, precision, and 

sensitivity by 10.05%, 11.75%, and 12.87% respectively for 

its maximum replicated features.  

Through the experimental analysis, the problem of feature 

segregation based on its unveiling region was seen. This does 

not fit the initial matching features, for which the F1-score is 

less for certain iterations. Therefore, to address this problem, 

the activation based on sigmoid is planned to be used as a 

segregating pass in future work. The sigmoid activation 

function used revives only limited neurons for verifying 

matching features. As the function is linear, no replication is 

false positive/matching detection would be seen. 
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