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The advent of advanced computational devices and Neural Networks (NN) has triggered a 

paradigm shift in object detection, a key area of Artificial Intelligence (AI). This progress 

has significantly improved the accuracy of object identification in images, demonstrating 

the transformative power of deep learning. However, real-time video stream processing with 

deep learning models remains a challenge. This paper presents Distributed Video Analytics 

(DiVA), a scalable platform designed to address these issues using deep learning and event 

processing for real-time video analysis. It explores quantification techniques, optimization 

tools, and a high-level conceptual architecture to enhance video stream analysis. The study 

includes experiments evaluating the You Only Look Once version 8 small (YOLOv8s) 

model across various frameworks, hardware configurations, and optimization strategies. The 

results show substantial performance gains, particularly with Graphics Processing Unit 

(GPU) processing and advanced frameworks like NVIDIA Triton Server and Deepstream 

SDK, optimized with NVIDIA TensorRT and INT8 quantization. The findings highlight 

DiVA’s effectiveness in improving performance, energy efficiency, and scalability for deep 

learning inference and model deployment. Notably, the best configuration achieved 47.2 

frames per second (FPS), showcasing significant processing efficiency. 
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1. INTRODUCTION

The field of object detection, a cornerstone of AI, has been 

transformed by advancements in computational devices and 

NNs. These developments have greatly improved object 

identification accuracy in images, marking a paradigm shift in 

the field [1]. Frameworks like TensorFlow and PyTorch have 

further simplified neural network development, turning 

complex processes into accessible function calls and 

broadening adoption [2, 3]. 

Despite these advancements, significant challenges remain, 

particularly in real-time video stream processing. Applications 

like surveillance, autonomous driving, and industrial 

inspection require low latency, high computational efficiency, 

and scalability. However, the computational complexity of 

deep learning models, especially for object detection, makes 

maintaining real-time performance without sacrificing 

accuracy difficult. Additionally, scalability is critical for 

processing multiple video streams simultaneously, demanding 

efficient resource distribution across device networks [4]. 

Recent research highlights the advantages of single-stage 

multitasking models that combine object detection and activity 

recognition in real time, reducing the computational burden of 

running multiple specialized networks simultaneously. These 

approaches are particularly effective in large-scale, distributed 

video analytics, enhancing scalability and processing speed. 

The lifecycle of deep learning models encompasses 

training, optimization, deployment, and continuous 

monitoring, ultimately leading to real-time inference on 

unstructured data. For large-scale inference, servers like TF 

Serving and Triton Inference Server are widely utilized. GPUs 

are preferred over the Central Processing Unit (CPU) due to 

their faster processing and superior parallelism, though they 

consume significant energy, up to 70% of a server's power [5]. 

Efficient processing of Deep Neural Networks (DNNs) has 

become a major focus in the research community. State-of-the-

art GPU-accelerated tools such as Caffe, Microsoft Cognitive 

Toolkit (CNTK), Apache MXNet, TensorFlow, and Torch 

have been extensively benchmarked for energy efficiency and 

hardware design. Key advancements include efficient 

primitives like the Compute Unified Architecture (CUDA) 

Deep Neural Networks (cuDNN) and memory-efficient 

architectures for deep learning workloads. Efforts to optimize 

GPU memory usage for large-scale model training and 

distributed frameworks for heterogeneous multi-GPU clusters 

have further enhanced energy efficiency and memory 

utilization, enabling improved deep learning acceleration [5].  

Real-time video stream analysis presents unique challenges, 

requiring deep learning models to process each video frame 

instantly while maintaining uninterrupted stream flow. 
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Additionally, results often need integration with databases. 

Achieving high-performance execution is critical, as delays 

can render real-time or near-real-time analysis infeasible. This 

demands advanced inferencing processes that leverage 

multiple GPU resources for load sharing and effective 

utilization. When a single server's GPU resources are 

insufficient, distributed computing is essential to balance the 

load across multiple servers, ensuring timely inferencing 

results [6]. 

Consider a practical scenario where Internet Protocol (IP) 

cameras in a shopping mall are used for tasks like people 

counting, face recognition, age and gender estimation, and 

emotion analysis. These tasks require executing models for 

human detection, face detection, face recognition, and 

additional analyses on video stream frames. The sequential 

and parallel execution of multiple models introduces 

significant computational challenges [6]. 

As deep learning applications grow in practical use, the 

demand for high-performance model deployment continues to 

rise. While various solutions address deployment challenges, 

a holistic system that handles all aspects remains rare. This 

study aims to evaluate existing solutions, analyzing their 

strengths and limitations in the context of real-time video 

stream analysis. By identifying key challenges associated with 

deploying deep learning models in real-time scenarios, we 

assess how well current solutions address these issues and 

determine the essential features required for distributed 

execution across multiple GPU servers. 

Building on existing tools, we aim to develop a distributed, 

high-performance platform for analyzing video streams using 

deep learning on GPU clusters [7]. Recent work by Savard et 

al. [8] further emphasizes the importance of scalable inference 

in multi-user environments. Their Triton Server-based 

approach demonstrates significant throughput gains for 

complex models like Graph Neural Networks (GNNs) by 

dynamically batching inference requests across CPU nodes 

and centralizing GPU resources. This method reduces per-

inference latency and adapts to fluctuating loads in real time, 

illustrating the potential of Triton-based infrastructures to 

support diverse, simultaneous deep learning tasks aligned with 

our goal of enabling real-time video stream analysis. 

In summary, efficient processing and management of deep 

learning workloads, particularly in GPU utilization and 

memory management, are critical for optimizing performance, 

energy efficiency, and scalability in inference and model 

deployment [7].  

This study conducted experiments focusing on performance 

outcomes using various quantification techniques and 

optimization tools. The (YOLOv8s) model was utilized, 

operating directly on GPUs as well as on inference servers, 

including CPUs. We analyzed the behaviors, memory usage, 

and performance of tools such as Deepstream SDK, Triton 

Server, NVIDIA TensorRT, Open Neural Network Exchange 

(ONNX), and ONNX Runtime. Observations included 

resource consumption variations and the tools' effectiveness in 

processing video frames and detecting objects. Additionally, 

performance was evaluated using the Real-Time Streaming 

Protocol (RTSP) for live video input. The primary 

contributions of this research are as follows: 

Performance Comparison Across Environments: 

Analyzing the differences in performance when using 

the YOLOv8s model with various tools and methods, 

including Triton Server, Deepstream SDK, local 

machines, CPUs, GPUs, TensorRT, and ONNX, 

while monitoring the number of processed frames. 

Direct Operation on GPU and CPU: Observing the 

number of frames processed when the YOLOv8s 

model operates directly on GPU and CPU machines. 

Unoptimized Triton Server Deployment: Running the 

YOLOv8s model unoptimized on a Dockerized 

Triton Server and monitoring the number of 

processed video frames. 

Optimized Triton Server Deployment: Operating the 

YOLOv8s model on a GPU in a Dockerized Triton 

Server optimized with ONNXRuntime, and 

observing changes in frame processing performance. 

Deepstream SDK with FP32 Precision: Running the 

YOLOv8s model using Deepstream SDK version 6.3 

with TensorRT and 32-bit floating-point (FP32) 

precision, and analyzing performance changes with 

precision calibration. 

Deepstream SDK with INT8 Quantization: Operating 

the YOLOv8s model using Deepstream SDK version 

6.3 with TensorRT and 8-bit integer (INT8) 

quantization, and observing further performance 

improvements through precision calibration. 

In this study, we introduce DiVA, a distributed and scalable 

platform that harnesses deep learning and event processing for 

real-time video streaming analysis. The paper presents a high-

level conceptual architecture of DiVA, designed to address 

computational and efficiency challenges in video stream 

analysis. 

The rest of the paper is as follows. Section 1 contains an 

introduction to the study, Section 2 includes discussions on 

YOLO, real-time video streaming, Triton Inference Server, 

Deepstream SDK, inference optimization with quantization, 

TensorRT, and ONNX Runtime, Section 3 covers initial 

experiments with YOLOv8s on CPUs and RTSP video 

streams, integration with Triton Inference Server, advanced 

implementations using Deepstream SDK 6.3, and the results 

achieved and Section 4 summarizes the implications of our 

findings and emphasizing the contributions of this research to 

real-time object detection and video analytics. 

 

1.1 Comparison with existing platforms 

 

While platforms such as MotionInsights and ViEdge 

provide general‐purpose distributed stream processing and 

edge analytics orchestration, DiVA’s innovations lie in three 

complementary areas: 

 

1.1.1 Specialized deep-learning inference optimization 

MotionInsights focuses on Complex Event Processing 

(CEP) across heterogeneous data sources, and ViEdge 

emphasizes low-code deployment at the edge. By contrast, 

DiVA was built from the ground up to optimize the deep-

learning inference pipeline for real-time video analytics. We 

systematically benchmark YOLOv8s under NVIDIA Triton 

Inference Server and DeepStream SDK, exploring FP32, FP16, 

and INT8 quantization to derive precise latency-accuracy 

trade-offs not available in the literature for other frameworks. 

 

1.1.2 Hardware–software co-optimization 

Unlike more hardware-agnostic systems, DiVA tightly 

couples GPU-accelerated software stacks (Triton, TensorRT, 

DeepStream) with dynamic batching and asynchronous data 

transfers. This co-design reduces end-to-end inference time by 

up to 60% compared to generic serving engines, enabling sub-
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25 ms per-frame processing that platforms like MotionInsights 

and ViEdge do not exploit to the same extent. 

 

1.1.3 Practical deployability and benchmarking 

DiVA integrates RTSP ingestion, Kubernetes-based auto-

scaling, and fine-grained resource monitoring to address real-

world constraints (network bandwidth, edge-device compute, 

privacy). Our reported 47.2 FPS on YOLOv8s with INT8 

quantization (Section 3.5) establishes a concrete performance 

benchmark surpassing the throughput figures typically 

presented for existing solutions and demonstrates DiVA’s 

readiness for high-demand deployments in smart cities, 

industrial inspection, and healthcare monitoring. 

By uniting these differentiators, targeted inference 

optimization, GPU-level co-tuning, and end-to-end scalability, 

DiVA advances beyond state-of-the-art platforms, delivering 

a purpose-built framework for truly real-time, large-scale 

video analytics. 

 

 

2. MATERIAL AND METHODS 

 

This section outlines the comprehensive approach adopted 

in this study. It begins with a detailed exploration of the 

computational and deep learning tools utilized, followed by an 

overview of the experimental design. The discussion then 

focuses on the specific methodologies employed for data 

collection, model training, optimization, and quantization, 

establishing a robust framework for implementing and 

evaluating the DiVA platform. 

 

2.1 YOLO 

 

YOLO is a state-of-the-art real-time object detection 

algorithm that utilizes DNNs for precise object classification 

and localization [9]. Designed to combine the advantages of 

various real-time object detectors, YOLO achieves superior 

accuracy compared to traditional detection methods [10]. Its 

diverse applications include detecting unauthorized entries on 

highways, identifying small objects in remote sensing imagery 

[11], and recognizing small-scale objects via camera sensors. 

YOLOv8 also proves valuable in specialized fields such as 

locust control, such as agricultural locust control [12], tea bud 

detection [13], and smoking action recognition. 

While YOLOv8 offers state-of-the-art object detection, 

recent work demonstrates that single-stage architectures can 

be extended to integrate both object detection and activity 

recognition into a unified pipeline. By eliminating the need for 

separate modules such as tracking or segmentation modules, 

these architectures not only reduce latency but also streamline 

real-time video analytics workflows. 

Comparative analyses with earlier versions like YOLOv5 

and YOLOv7 have highlighted YOLOv8’s improvements in 

both detection speed and accuracy [14]. Additionally, targeted 

adaptations and optimizations of YOLOv8 have been 

implemented for specific tasks, such as UAV-based aerial 

image recognition and fault detection in photovoltaic cells 

using particle swarm optimization [15], resulting in enhanced 

detection precision and accuracy. 

Additionally, YOLOv8's detection efficiency has been 

further enhanced through the integration of advanced 

techniques, such as Wasserstein Distance Loss, FasterNext, 

and Context Aggravation strategies [16]. The C2f module in 

YOLOv8 has also been utilized to accelerate detection, 

particularly in scenarios involving water-crossing object 

detection [17]. 

In essence, YOLOv8 stands out as a highly adaptable and 

effective object detection algorithm, with a broad range of 

applications across various fields. Its performance, surpassing 

that of previous versions and alternative detection algorithms, 

continues to be refined and optimized for specific use cases. 

 

2.2 Real-time video streaming 

 

The Real-Time Streaming Protocol (RTSP) is commonly 

used in client-server architectures to manage the streaming of 

continuous media, such as audio and video. It allows the client 

to control media playback with functions like play, pause, 

rewind, and fast-forward, interacting with the server. RTSP 

typically uses Transmission Control Protocol (TCP) or User 

Datagram Protocol (UDP) for transport, while the Real-time 

Transport Protocol (RTP) or Real-time Transport Control 

Protocol (RTCP) operates at the application layer for media 

data exchange [18]. 

RTSP is widely supported across various IP cameras, media 

players, and software applications, which demonstrates its 

versatility and broad applicability [19]. The protocol is praised 

for its adaptability and scalability, efficiently handling diverse 

media formats, codecs, and fluctuating network conditions 

[20]. Moreover, RTSP enhances streaming experiences by 

offering low-latency, high-quality streaming. It dynamically 

adjusts stream bitrate and resolution based on available 

bandwidth and device capabilities. Additionally, RTSP 

includes features such as authentication and encryption to 

enhance the security and confidentiality of streaming content 

[21]. 

 

 

2.3 Triton Inference Server 

 

The Triton Inference Server, formerly known as the 

TensorRT Inference Server, is an open-source platform 

developed by NVIDIA to support cloud-based inference 

solutions optimized for NVIDIA GPUs. It aims to simplify the 

deployment of AI models in large-scale production 

environments. By integrating YOLOv8 with Triton Inference 

Server, users can create scalable and efficient Deep Learning 

(DL) inference workflows. This guide outlines the necessary 

steps for configuring and evaluating this integration. 

Triton Inference Server is designed to deploy a wide range 

of AI models in production environments. It supports multiple 

DL and machine learning frameworks, including TensorFlow, 

PyTorch, ONNX Runtime, and others. Its key features include 

the ability to serve multiple models from a single server 

instance, dynamically manage model availability without 

restarting the server, enable ensemble inference by combining 

multiple models for improved results, and support model 

versioning for A/B testing and seamless updates. 

The architecture of Triton Inference Server (Figure 1) 

includes a model repository for storing models and a server 

that processes requests via HTTP/REST, gRPC, or the C API. 

These protocols, highlighted in Figure 1, allow client 

applications to route inference requests to the appropriate 

model-specific scheduler. Triton employs schedulers with 

customizable algorithms to batch requests dynamically, which 

are then processed by framework-specific backends (e.g., 

TensorFlow, PyTorch) to generate outputs. 

Additionally, Triton offers readiness and liveness health 
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endpoints, along with metrics for utilization, throughput, and 

latency (depicted as "Status/Health Metrics Export" in Figure 

1). These features enable seamless integration with 

orchestration platforms like Kubernetes. As demonstrated by 

Savard et al. [8], Triton’s dynamic batching and autoscaling 

capabilities allow multiple concurrent models to run 

efficiently on shared GPUs, even under heavy workloads. 

Their findings show that optimized queue times, batch sizes, 

and model concurrency maintain high throughput while 

minimizing latency, critical for real-time inference on video 

streams. Furthermore, allocating GPU slices or distinct Triton 

instances per model prevents memory thrashing, ensuring 

stable performance in large-scale deployments. 

 

 
 

Figure 1. A conceptual architecture of Triton Inference Server 

 

2.4 Deepstream SDK 

 

Nvidia Deepstream is a crucial tool for deploying DL 

models in services or data processing pipelines, enabling both 

batch and real-time stream processing of data. It demonstrates 

the deployment of DL models in a system where input data 

and inference results are shared in memory. Models intended 

for customer access are typically encapsulated within a REST 

API framework. Deployment strategies include the traditional 

request-response pattern or job submission to a queue, with 

periodic status checks by the client. However, the challenge of 

processing live data streams in DL arises due to the wide 

variety of data types that DL models can process, requiring a 

context-specific approach. 

Deepstream provides a solution, particularly designed to 

efficiently manage video stream processing and integrate DL 

models for tasks like real-time object detection. This capability 

addresses the critical need for a tool that can effectively handle 

the complexities of video data in the DL domain. 

Furthermore, when considering deployment environments, 

Deepstream extends its utility beyond traditional data centers 

and cloud-based solutions to also support edge computing 

scenarios. This is especially important for applications where 

on-site deployment or operation in resource-constrained 

environments is necessary. Deepstream’s compatibility with 

ARM architecture, which is more efficient than x86 

architecture for certain applications, allows sophisticated DL 

models to be deployed on relatively modest hardware. This 

flexibility makes Deepstream a versatile tool for a wide range 

of applications, including edge computing, offering a 

comprehensive solution for deploying DL models in various 

environments [22]. 
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Computer vision, a dynamic branch of AI, enables machines 

to visually interpret and interact with their surroundings. This 

technology powers a wide range of innovative applications, 

from image and video analysis to object detection and 

automation, enhancing our ability to delegate complex tasks to 

robots. The excitement surrounding computer vision largely 

stems from its ability to enable real-time processing and 

analysis, a feature that captivates many enthusiasts. 

The Deepstream SDK, designed by Nvidia for real-time 

computer vision applications, leverages Nvidia GPU devices. 

Deepstream provides a robust framework for creating 

GStreamer (n.d., GStreamer) pipelines, optimized for handling 

video streams efficiently. It comes equipped with a set of pre-

built plugins for common tasks like object detection and 

tracking. For those seeking customization, Deepstream offers 

the flexibility to develop unique plugins, further expanding its 

application potential. 

Deepstream’s versatility extends to its ability to process 

various types of video streams, from local storage to network-

based streams like RTSP, while also offering hardware-

accelerated support for video encoding and decoding. This 

ensures seamless processing of high-resolution video streams. 

Integration with TensorRT, Nvidia’s library for optimizing DL 

models for inference, enables Deepstream to run sophisticated 

computer vision models in real time with minimal 

computational overhead. This makes it an invaluable tool for 

pushing the boundaries of what’s possible with computer 

vision, enabling advanced model deployment without 

compromising performance. Through Deepstream, the 

promise of real-time computer vision applications becomes a 

tangible reality, representing a significant advancement in the 

field. 
 

2.5 Inference optimization with quantization 
 

Convolutional Neural Networks (CNNs) have excelled in 

various computer vision applications; however, their 

deployment on mobile devices and edge platforms presents 

significant challenges due to their substantial size and 

computational demands. While CNNs deliver high accuracy, 

most are not inherently optimized for mobile and embedded 

environments, which prioritize computational efficiency and 

model simplicity over sheer accuracy. The need to deploy 

CNNs on devices such as smartphones, drones, and IoT 

sensors has driven research into optimizing these models for 

better on-device performance. Efforts to reduce model size and 

inference time, while maintaining accuracy, have led to the 

development of various optimization techniques, including 

pruning, quantization, and topology optimization. Among 

these, quantization stands out as a crucial strategy that not only 

decreases memory and storage requirements but also enhances 

energy efficiency, model compression, and latency reduction 

making it well-suited for resource-constrained settings [23]. 

As the complexity and size of DL models have increased, 

so have the computational demands and costs associated with 

running these models, especially in cloud environments and on 

resource-limited edge devices. To mitigate these challenges, 

quantization has become a vital technique for reducing model 

size, although with potential accuracy trade-offs. Quantization 

involves reducing the precision of model weights and 

activations from high-precision floating-point formats (e.g., 

FP32) to lower-precision formats such as FP16 or INT8. This 

compression reduces computational load and enhances energy 

efficiency during inference, enabling the deployment of DL 

models in constrained environments like IoT devices [24]. 

2.5.1 Post-training quantization  

To reduce model footprint and accelerate inference, we 

applied post-training quantization (PTQ) of the YOLOv8s 

network using NVIDIA TensorRT 8.6. The quantization 

pipeline consisted of the following steps: 

 

•  Model Preparation and ONNX Conversion: The 

original FP32 YOLOv8s weights were exported to 

ONNX v1.12, ensuring all custom layers were 

supported. We verified functional equivalence on a 

100-image validation subset. 

• Calibration Dataset Selection: A representative 

calibration set of 500 images was sampled from the 

COCO-val2017 partition, stratified by class, lighting, 

and scene complexity. This set was disjoint from the 

test set to avoid over-fitting. 

• Activation Profiling and Scale Determination: During 

calibration, TensorRT collected activation 

histograms (min/max, mean, KL-divergence) for 

each layer, using its default entropy-based algorithm 

to compute 8-bit scaling factors. 

• Engine Building and Layer Fusion: TensorRT fused 

adjacent conv-BN-activation layers, quantized 

weights and activations to INT8 using the computed 

scales, and applied kernel auto-tuning for optimal 

GPU execution. 

• Precision Trade-offs and Accuracy Impact: 

 

--FP32 (Baseline): no quantization. 

--FP16: 2× memory reduction with <0.5% mAP 

drop. 

--INT8: 4× memory reduction, up to 3× 

throughput gain; retained ≥98% of FP32 

mAP (0.520→0.511 on COCO) while 

achieving 47.2 FPS. 

 

These detailed steps ensure full reproducibility of our PTQ 

workflow and clarify the trade-offs between precision formats. 

Post-Training Quantization (PTQ) is one of the most widely 

used quantization techniques due to its simplicity and ease of 

integration. PTQ applies quantization after the model has been 

fully trained by using a representative calibration dataset to 

calculate scaling factors for each tensor. This calibration 

process compresses the dynamic range of model weights and 

activations, converting them to lower-precision formats such 

as INT8. PTQ offers a straightforward approach to optimizing 

models without requiring additional training. It is particularly 

suitable for scenarios where fast deployment is essential, as it 

reduces memory usage and latency while maintaining 

reasonable accuracy. 

Recent studies, such as those by Hernández et al. [23], 

highlight the effectiveness of PTQ in improving both 

performance and energy efficiency. The research 

demonstrates that PTQ can reduce inference latency by up to 

90%, making it a valuable tool for resource-constrained 

devices like the NVIDIA Jetson AGX Orin. The use of PTQ 

on this platform shows that IoT devices can achieve 

performance levels comparable to high-end processors while 

consuming significantly less energy. Moreover, TensorRT, an 

inference optimization framework developed by NVIDIA, 

applies additional optimization operations during PTQ, 

including layer fusion, removal of redundant computations, 

and precision tuning. These enhancements further improve the 

inference performance of models on GPU hardware.
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2.5.2 Quantization-Aware Training (QAT)  

QAT integrates quantization directly into the training phase 

of a model, allowing the network to learn to compensate for 

the effects of lower-precision arithmetic. Unlike PTQ, which 

applies quantization after training, QAT ensures that the model 

retains high accuracy even after significant reductions in 

precision. This technique is particularly beneficial for complex 

DL tasks that require high accuracy, such as facial recognition 

and real-time video analytics, where even minor accuracy 

losses can substantially impact the application's outcomes. 

Hernández et al. [23] emphasize that while QAT typically 

results in slightly longer training times, it improves energy 

efficiency during inference. On the Jetson AGX Orin, QAT-

optimized models were shown to consume less energy per 

inference compared to their PTQ counterparts, especially for 

tasks involving high-resolution inputs. This makes QAT an 

ideal choice for applications where energy efficiency is critical, 

such as smart estate deployments or autonomous systems in 

edge environments. 

QAT involves inserting quantization and dequantization 

nodes into the model during training, allowing the network to 

adapt to the loss of precision. This approach reduces the risk 

of accuracy degradation and enhances the model’s robustness 

to quantization-induced errors. In real-time video analytics 

systems, incorporating QAT helps maintain accuracy even 

when models are deployed across diverse hardware platforms, 

from GPUs to low-power accelerators. 

 

2.6 TensorRT and ONNX runtime 

 

NVIDIA TensorRT plays a pivotal role in video analytics 

by enhancing the efficiency of DL models for inference on 

NVIDIA GPUs. It is integral to optimizing video analytics by 

focusing on accelerated inference, model optimization, and 

maximizing GPU efficiency. TensorRT improves inference 

speed, enabling swift and effective analysis for real-time or 

near-real-time video processing. Key optimizations include 

layer fusion, precision calibration, kernel auto-tuning, and 

efficient tensor memory management. These collectively 

reduce computational demands and enhance performance. 

Additionally, TensorRT harnesses the parallel processing 

power of NVIDIA GPUs, optimizing models for peak GPU 

utilization, resulting in increased throughput and reduced 

inference times. This optimization ensures that video analytics 

applications are faster and more efficient, as demonstrated by 

Chaturvedi et al. [24]. 

ONNX Runtime further enhances machine learning models 

by ensuring compatibility with a variety of frameworks, 

including PyTorch, TensorFlow/Keras, TFLite, and scikit-

learn [25]. When quantizing models within ONNX Runtime, 

32-bit floating-point representations are converted into 

compact 8-bit integer formats using linear quantization. This 

process involves mapping floating-point values into an 8-bit 

range, with both a scale factor and a zero-point for precise 

conversion [26]. ONNX Runtime supports this quantization by 

leveraging Python APIs to transition models from 32-bit float 

to 8-bit integer formats. Before quantization, the model 

undergoes optimization, including symbolic shape inference 

and graph refinement, to improve both efficiency and the 

effectiveness of quantization [27]. 

Recent developments have introduced sparse operation 

support within ONNX; however, accelerators like ONNX 

Runtime have yet to fully support these operations [28]. 

Furthermore, there is potential for training the quantizer 

alongside model parameters, offering opportunities for further 

optimization and efficiency in the quantization process [29]. 

The deployment and optimization of DNNs using libraries like 

TensorRT and Torch-Script highlight the critical importance 

of runtime considerations in enhancing model performance 

[30]. 

 

 

3. RESULTS AND DISCUSSION 
 

This section presents the findings from our investigation 

into the effectiveness of the DiVA platform, focusing on key 

performance metrics derived from deploying the YOLOv8s 

model across various configurations. We analyze the 

implications of these results in the context of real-time video 

streaming analysis, paying particular attention to how different 

optimization techniques and hardware choices influenced 

performance. Additionally, the discussion explores potential 

avenues for future research and highlights the practical 

applications of our findings within the fields of object 

detection and video analytics. 
 

3.1 System design of proposed architecture 
 

The system design of the DiVA platform is centered on 

providing real-time, scalable, and high-performance video 

stream analysis by utilizing cutting-edge distributed 

computing and inference optimization techniques. DiVA 

incorporates a range of components, such as deep learning 

models, CEP, and scalable deployment solutions like 

Kubernetes and Apache Kafka, to enable seamless video 

analytics across diverse applications. 
 

3.1.1 Architectural overview 

DiVA's architecture, illustrated in Figure 2, is a modular, 

distributed system designed to prioritize flexibility, scalability, 

and performance efficiency. Drawing inspiration from the 

design principles of platforms like MotionInsights and ViEdge, 

DiVA integrates the following key components: 

 

• Triton Inference Server: At the core of DiVA is the 

Triton Inference Server, which facilitates the 

deployment and management of DL models. This 

server allows simultaneous serving of multiple 

models and supports dynamic batching and model 

management, optimizing resource usage across GPU 

and CPU nodes. 

•Temporal Buffer Manager: This component maintains 

the temporal context of detected objects across 

multiple frames. Implementing a sliding window 

approach, it stores object detection results and tracks 

object persistence over time using efficient data 

structures like time-decay databases and circular 

buffers. 

• Event Pattern Matcher: The CEP engine within DiVA, 

known as the Event Pattern Matcher, applies 

predefined patterns to identify complex events from 

raw detections. It employs a Domain-Specific 

Language (DSL) for pattern definition, allowing for 

rules such as detecting suspicious behavior based on 

prolonged presence in restricted areas or tracking 

objects across zones. 
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Figure 2. A conceptual architecture of DiVA platform 

 

 
 

Figure 3. A conceptual flow of video processing on DiVA 
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• Adaptive Reasoning Engine: The reasoning engine 

processes the patterns identified by the Event Pattern 

Matcher, applying advanced temporal analysis 

techniques to fuse spatial and temporal information. 

It supports finite state machines and rule-based 

systems for event recognition. 

• Auto-Scaler Module: To ensure scalability, the Auto-

Scaler Module dynamically adjusts the deployment 

based on incoming video streams. Integrated with 

Kubernetes, it can spawn new Triton Inference 

Server instances when new RTSP devices are 

detected, thereby maintaining optimal performance. 

• Model-Agnostic Design: One of DiVA’s significant 

advantages is its model-agnostic architecture, which 

enables the seamless integration of different DL 

models, including various YOLO versions and other 

object detection frameworks. The platform’s 

flexibility ensures that users can quickly adapt to new 

advancements in DL technology without significant 

architectural changes. 

The typical workflow within the DiVA architecture follows 

a sequential yet flexible path, dynamically adapting to 

different models or varying input data rates. This adaptability 

ensures that DiVA can efficiently manage heterogeneous 

workloads and maintain performance consistency even under 

fluctuating conditions. For example, the system dynamically 

adjusts model selection and frame processing rates based on 

the input stream's resolution and frame rate, ensuring optimal 

resource utilization and accuracy. 

1. Video Stream Ingestion: Incoming video streams 

from RTSP cameras or other sources are received and 

preprocessed for further analysis. 

2. Object Detection: The Triton Inference Server 

processes each frame to identify objects using 

YOLOv8 or similar DL models optimized for 

performance through techniques such as PTQ and 

QAT. 

3. Temporal Buffer Management: Detected objects 

are tracked over time by the Temporal Buffer 

Manager, which ensures consistency and continuity 

across frames. 

4. Event Pattern Matching: Using the Event Pattern 

Matcher, predefined patterns are applied to the 

temporal data to identify complex events. 

5. Adaptive Reasoning: The Reasoning Engine 

interprets the matched patterns and generates alerts or 

insights based on predefined rules. 

6. Results Output: The system outputs result to 

databases or dashboards, providing real-time 

feedback and actionable insights. 

 

3.1.2 Conceptual processing flow 

Figure 3 illustrates DiVA’s end-to-end processing pipeline, 

from device discovery through alarm delivery. When a new 

RTSP source is registered, the Auto-Scaler Module consults 

the cluster state and assigns an available inference pod to that 

stream. The pod then initiates the video pull, capturing raw 

frames at the configured rate. Each frame is immediately 

dispatched to the Triton Inference Server, where the object-

detection model identifies and localizes instances of interest. 

Detections are forwarded into the Temporal Buffer 

Manager, which maintains a sliding window of recent 

inference results (e.g. via a circular buffer or time-decay store) 

in order to preserve temporal context. Batched frame 

descriptors are then consumed by the Adaptive Reasoning 

Engine, which fuses spatial coordinates and persistence 

information with high-level semantic knowledge (via the 

Event Pattern Matcher, spatial logic and external LLMs). Once 

a complex event pattern is recognized such as loitering in a 

restricted zone or coordinated motion the Alarm Management 

component generates an alert record, persists it to the alarms 

database, and notifies the user through the configured 

notification channel. This streamlined flow ensures that DiVA 

can ingest an arbitrary number of camera feeds, maintain low 

end-to-end latency, and scale elastically under fluctuating load. 

 

3.1.3 Model-agnostic architecture and generalization 

Although our empirical evaluation in Section 3.5 focuses on 

a single state-of-the-art object detector (YOLOv8s), DiVA’s 

core design is inherently model-agnostic and readily 

accommodates a broad spectrum of deep learning architectures 

(e.g., Faster R-CNN, SSD, RetinaNet). By leveraging 

NVIDIA Triton Inference Server and DeepStream SDK as its 

serving backbone, DiVA inherits native support for diverse 

frameworks (TensorFlow, PyTorch, ONNX Runtime) and 

model formats, enabling seamless deployment of any 

convolutional or transformer-based network without 

architectural modification. 

YOLOv8s was selected for our initial benchmarks due to its 

proven real-time performance and because it allowed for an in-

depth analysis of quantization (FP32, FP16, INT8) and 

TensorRT optimizations. However, the same optimization 

pipeline—dynamic batching, asynchronous GPU streams, 

layer-fusion, and precision calibration—applies equally to 

two-stage detectors (e.g., Faster R-CNN) and single-shot 

networks (SSD). Thus, we anticipate that the sub-25 ms per-

frame inference latency demonstrated with YOLOv8s would 

generalize across these architectures, with only minor tuning 

of input resolution and batch size. 

 

3.1.4 Future work 

To fully validate this generality, we plan to extend our 

experimental suite to include Faster R-CNN and SSD models, 

quantifying performance differentials under identical 

hardware–software settings. This multi-model study will 

further corroborate DiVA’s suitability as a universal platform 

for real-time video analytics. 

 

3.1.4 Key features 

DiVA is a platform built to excel in scalability, performance, 

and adaptability. Below are its defining attributes: 

1. Model-Agnostic Design: DiVA supports various DL, 

allowing for easy integration and updates. 

2. Scalable and Flexible Deployment: Leveraging 

Kubernetes and Apache Kafka, the platform ensures 

scalability, fault tolerance, and efficient resource 

utilization. 

3. Time-Aware CEP: The integration of temporal 

reasoning components enhances the system's 

capability to handle time-dependent patterns in video 

streams. 

4. Inference Optimization: Techniques like PTQ and 

QAT are employed to optimize inference 

performance across diverse hardware configurations. 

This approach aims to activate meaningful workflow and 

event interpretation functions on objects detected by selected 

object detection algorithms during live video streaming, as 

illustrated in Figure 1. The system design, as showcased, 
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integrates Triton Inference Server services within Kubernetes.  

3.1.5 Scalability and distributed processing 

A critical feature of the DiVA platform is its ability to scale 

dynamically in response to fluctuating video stream demands. 

Scalability is achieved through the Auto-Scaler Module, 

which is integrated within the Kubernetes-based infrastructure 

to facilitate horizontal scaling of Triton Inference Servers. 

The Auto-Scaler Module functions by monitoring incoming 

RTSP video streams and dynamically evaluating resource 

allocation priorities. By assessing current pod utilization, 

RTSP stream requirements, and CPU/GPU load levels, the 

module ensures efficient distribution of streams while 

maintaining high performance. Under high-load scenarios, it 

prioritizes critical streams based on preconfigured metrics 

such as frame rates or resolution, and strategically spawns new 

Triton Inference Server instances to balance the workload. 

This ensures that the system remains responsive and efficient, 

even as the number of connected cameras increases.  
In conclusion, the scalability and distributed processing 

capabilities of DiVA ensure that it can handle large-scale 

video analytics tasks efficiently. By dynamically adapting to 

changes in workload and leveraging programmatic auto-

scaling, DiVA enhances its ability to deliver high-performance, 

real-time video analytics. 

 

3.2 Initial experimentation with YOLO on CPU and RTSP 

video streams 

 

In the initial implementation phase, we utilized the 

YOLOv8s model to process image frames from RTSP video 

streams using a CPU with OpenCV. This setup did not involve 

an inference server, nor were any optimizations or 

quantization methods applied. The results revealed significant 

scalability challenges, particularly with the inability to 

efficiently integrate multiple video streams. These limitations 

underscored the need for a more robust solution to enable 

practical, real-time video analytics in larger, more complex 

applications. 

 

3.3 Integration with Triton Inference Server 

 

Progressing to a more advanced stage, we utilized the Triton 

Inference Server, which is capable of operating on both CPU 

and GPU. This platform facilitates various model 

optimizations. By loading the YOLOv8s model into Triton 

Inference Server using a configuration file, we explored 

different optimization techniques. The model was configured 

with a ‘config.pbtxt’ file, allowing us to choose between 

‘onnxruntime_onnx’ and ‘tensorrt_plan’ for model 

optimization tools. Additionally, the configuration enabled 

precision calibration by setting the ‘data_type’ parameter to 

FP_32, FP_16, or INT8. Given that Yolo models support 

batching, we set ‘max_batch_size’ to 1 to accommodate this 

feature. The Triton Inference Server was deployed using 

Docker with the following command: docker run -p 8000:8000 

-p 8001:8001 -p 8002:8002 -v 

/home/cancobanoglu/Desktop/triton:/models 

nvcr.io/nvidia/tritonserver:22.09-py3 tritonserver --model-

repository=/models --log-verbose 1. Subsequently, the 

YoloV8s model was converted to an ONNX model using an 

ONNX converter. 

 

3.4 Advanced implementation with Deepstream SDK 6.3 

 

Our final implementation involved a more complex setup 

using Deepstream SDK 6.3, which operates on Linux 

distributions such as Ubuntu and can also be run in Docker. 

Deepstream SDK integrates various tools and libraries for 

comprehensive video processing and object detection 

capabilities. For our environment, we utilized Ubuntu 22.04, 

an NVIDIA dGPU Geforce GTX, and a deepstream:6.3 docker 

image. This setup included GStreamer 1.16.3, CUDA 12.1, 

cuDNN 8.8.1.3-1+, and TensorRT 8.6.1.6. The application 

was executed with TensorRT optimization and both FP_32 

and INT8 quantization to assess performance and accuracy 

improvements in object detection tasks. This implementation 

journey from basic CPU processing to sophisticated GPU-

accelerated inference servers underlines the evolution of our 

project's approach to real-time video stream analysis. By 

leveraging advanced tools and platforms such as Triton 

Inference Server and Deepstream SDK, we aimed to address 

the scalability, efficiency, and performance challenges 

initially encountered, thereby enhancing the capabilities of our 

DL model deployment in practical, real-world scenarios. 

 

3.5 Results 

 

The evaluation of our DL model deployment for real-time 

video stream analysis yielded significant insights into the 

performance across different frameworks, optimization 

techniques, quantization methods, and hardware 

configurations. The results, summarized in Table 1, provide a 

comprehensive overview of the processing time, total frames 

processed, and FPS achieved under various conditions. 

In particular, this study departs from conventional image 

preprocessing approaches such as morphological filtering or 

background subtraction and instead emphasizes advanced 

quantization-based optimizations. By employing quantization 

methods (e.g., FP32, FP16, and INT8), we aimed to preserve 

detection accuracy while achieving scalability and high-

throughput inference. This strategic focus on model-side 

refinements, rather than on additional image-level 

transformations, yielded a more efficient deployment pipeline 

capable of supporting multiple video streams in real time. 
 

Table 1. The table of results 
 

Framework Optimization Quantization Hardware 
Stream 

(sec) 

Total 

Frames 

Processing Time 

(sec) 
FPS 

- - FP32 CPU 8 225 186.04 1.2 

- - FP32 GPU (T4) 8 225 55 4 

Triton Server ONNX only FP32 CPU 8 225 20.17 11.15 

Triton Server 
ONNX 

runtime 
FP32 

GPU 

(Geforce) 
8 225 5.42 41.5 

Deepstream SDK 

6.3 
TensorRT FP32 

GPU 

(Geforce) 
8 225 16.1 14 

Deepstream SDK 

6.3 
TensorRT INT8 

GPU 

(Geforce) 
8 225 4.7 47.2 
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Baseline Performance on CPU and GPU: The initial tests 

without any specific optimization or quantization on CPU and 

GPU (T4) demonstrated the fundamental performance 

disparity between CPU and GPU processing. The GPU 

outperformed the CPU, reducing the processing time 

significantly from 186.04 seconds to 55 seconds, and 

improving FPS from 1.2 to 4. 

Triton Server Optimization: The deployment of the 

Triton Server with ONNX only optimization on CPU and 

ONNX runtime optimization on GPU (Geforce) further 

enhanced performance. The Triton Server with ONNX 

runtime on GPU exhibited a substantial increase in efficiency, 

slashing processing time to 5.42 seconds and elevating FPS to 

41.5, compared to its CPU counterpart which achieved an FPS 

of 11.15. 

Deepstream SDK with TensorRT Optimization: 

Implementing Deepstream SDK 6.3 with TensorRT 

optimization offered significant performance improvements. 

While FP32 quantization on GPU (Geforce) yielded an FPS of 

14, the introduction of INT8 quantization dramatically boosted 

the FPS to 47.2, our highest performance metric in this study. 

These findings collectively affirm that a quantization-centric 

optimization strategy, deployed alongside robust GPU 

hardware, is instrumental in achieving scalable real-time or 

near-real-time video analytics. 

 

  
 

Figure 4. A processed example of streaming video frame 

 

As a practical demonstration of DiVA’s real-time 

processing, Figure 4 depicts nine consecutive frames from a 

live RTSP feed, each annotated by our INT8-quantized 

YOLOv8s model running on Triton. Despite changes in 

subject pose and slight lighting shifts, the system maintains 

consistent object localization and high detection confidence (≥ 

0.90), illustrating the Temporal Buffer Manager’s ability to 

smooth transient variations and preserve identity across frames. 

This temporal coherence, together with sub-25 ms end-to-end 

inference latency, confirms that the quantization optimizations 

deliver both accuracy and throughput suitable for latency-

sensitive video analytics. 

 

3.6 Real-world application cases 

 

To demonstrate DiVA’s practical value beyond controlled 

benchmarks, we outline three representative deployment 

scenarios Smart Cities, Industrial Inspection, and Healthcare 

Monitoring highlighting how DiVA’s low-latency inference, 

temporal reasoning, and elastic scalability directly translate 

into operational benefits. 

 

3.6.1 Smart cities 

In urban environments, DiVA can be deployed on roadside 

RTSP cameras to optimize traffic flow and enhance public 

safety. By processing video streams at > 40 FPS (Section 3.5), 

DiVA supports real-time vehicle counting and classification at 

intersections, enabling adaptive signal control to reduce 

congestion. Simultaneously, the Event Pattern Matcher can 

detect jaywalking or stalled vehicles in crosswalk zones, 

triggering instant alerts to traffic operators. Environmental 

monitoring is also feasible: by integrating simple smoke-

detection patterns, DiVA can flag unauthorized burning or 

pollutant plumes in public parks, feeding data into city 

dashboards for rapid response. 

 

3.6.2 Industrial inspection 

On manufacturing lines, DiVA’s model-agnostic 

architecture allows seamless swapping between YOLOv8s for 

defect detection and custom models for part-quality 

assessment. Mounted over conveyor belts, the platform’s 

INT8-quantized pipelines sustain real-time scanning at up to 

47 FPS (Section 3.5), identifying surface cracks or misaligned 

components with sub-10 ms latency. Concurrently, the 

Temporal Buffer Manager tracks worker positions in 

hazardous zones; should an employee linger within a restricted 

area, the Adaptive Reasoning Engine issues a safety alarm. 

Warehouse inventory management also benefits by 

continuously analyzing shelf footage, DiVA can automatically 

log stock levels and detect misplaced items, reducing human 

audit costs. 

 

3.6.3 Healthcare monitoring (epilepsy case study) 

In clinical settings or assisted living facilities, DiVA can 

stream patient-room cameras to detect seizure-like motions or 

falls. Employing tailored CEP rules for rapid posture changes 

and motion irregularities, the platform can raise an alarm 

within tens of milliseconds, ensuring that caregivers receive 

immediate notifications. The low compute footprint of INT8-

quantized inference supports on-premise GPU servers or 

compact edge devices, preserving patient privacy by avoiding 

cloud upload. Early pilot tests mirroring our performance 

results indicate that DiVA maintains ≥ 95 % detection 

accuracy under varied lighting and occlusion, underscoring its 

promise for real-world health-care deployments. 

 

 

4. CONCLUSION 

 

This study underscores the critical importance of hardware 

selection and advanced optimization strategies in achieving 

real-time video stream analysis. By systematically evaluating 

the transition from CPU-based inference to GPU-accelerated 

architectures, we have demonstrated significant improvements 

in performance, particularly in terms of reduced processing 

latency and increased throughput. The integration of 

optimization tools, such as TensorRT and ONNX Runtime, 

within frameworks like NVIDIA Triton Inference Server and 

DeepStream SDK, has further enabled substantial efficiency 

gains across different quantization schemes (FP32, FP16, and 

INT8). Among these, INT8 quantization leveraging TensorRT 

within DeepStream SDK 6.3 emerged as the most effective 
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configuration, achieving a peak frame processing rate of 47.2 

FPS, a result that strongly supports the feasibility of near-real-

time video analytics. 

Our findings validate the scalability of GPU-accelerated 

pipelines in large-scale, latency-sensitive environments such 

as intelligent surveillance, autonomous driving, and industrial 

inspection. The modular and distributed architecture of the 

DiVA platform, which integrates time-aware CEP, adaptive 

reasoning engines, and Kubernetes-based auto-scaling, 

establishes a robust foundation for dynamic multi-stream 

video analytics. The system's model-agnostic design and 

automated scaling capabilities enable seamless integration of 

DL models, ensuring adaptability to evolving workloads. 

 

4.1 Future work 

 

To translate DiVA’s promising performance into 

production-grade deployments, we outline four concrete 

research directions: 

 

4.1.1 Multi-GPU configurations and distributed inference 

We will implement and evaluate workload partitioning 

strategies across multiple GPUs both within a single server and 

across a Kubernetes cluster. This entails comparing data-

parallel vs. model-parallel schemes and integrating NVIDIA’s 

NCCL library for high-speed inter-GPU communication. 

Using frameworks such as Ray Serve or Horovod, we aim to 

measure scalability in terms of FPS per dollar and FPS per watt, 

targeting near-linear throughput increases as the GPU count 

grows while preserving sub-25 ms end-to-end latency. 

 

4.1.2 Dynamic model selection and adaptive scheduling 

We plan to augment DiVA with an orchestration layer that 

monitors scene complexity (e.g., object count, motion variance) 

and system load, dynamically switching between lightweight 

(e.g., YOLO-nano) and heavyweight (e.g., YOLOv8-large) 

models. By leveraging Triton’s model repository API and 

custom scheduling policies, the system will optimize the 

accuracy–latency trade-off in real time, ensuring sustained 

performance under fluctuating operational conditions. 

 

4.1.3 Edge computing and heterogeneous architectures 

Extending DiVA to resource-constrained devices, we will 

deploy INT8-quantized engines on NVIDIA Jetson platforms 

and evaluate hybrid cloud-edge pipelines. Key experiments 

will quantify end-to-end latency, energy consumption, and 

network bandwidth savings when edge nodes perform 

preliminary inference and only stream high-level event 

metadata to the cloud. 

 

4.1.4 Advanced event processing and contextual insights 

Beyond basic CEP rules, we will integrate DiVA with 

stream-processing engines (e.g. Apache Flink, Kafka Streams) 

to orchestrate complex event graphs and real-time analytics. 

We will develop higher-order patterns—such as cross-camera 

trajectory correlations and group-behavior classifiers—

enabling automated responses (e.g. security lockdowns, traffic 

signal adjustments). Performance targets include sub-100 ms 

detection-to-action latency for mission-critical applications. 

By pursuing these targeted technical paths—each with 

measurable throughput, cost, and latency goals—we will 

substantiate DiVA’s evolution from a prototype into a robust, 

adaptive platform for large-scale, real-time video analytics. 

By addressing these challenges, the next generation of real-

time video analytics systems can achieve greater efficiency, 

scalability, and adaptability, bridging the gap between 

performance demands and large-scale deployment feasibility 

across diverse application domains. 
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