
Towards Efficient Video Stream Analysis: A Distributed Deep Learning Framework: The

DiVA Approach

Huseyin C. Cobanoglu1* , Betül Ay2 , Faruk Bulut3, 4 , Ruya Samli1

1 Department of Computer Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Türkiye
2 Department of Computer Engineering, Faculty of Engineering, Fırat University, Elazig 23119, Türkiye
3 School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, England
4 Department of Computer Engineering, Istanbul Aydın University, Istanbul 34295, Türkiye

Corresponding Author Email: cancobanoglu@gmail.com

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license

(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.18280/ts.420326 ABSTRACT

Received: 2 April 2025

Revised: 10 June 2025

Accepted: 17 June 2025

Available online: 30 June 2025

The advent of advanced computational devices and Neural Networks (NN) has triggered a

paradigm shift in object detection, a key area of Artificial Intelligence (AI). This progress

has significantly improved the accuracy of object identification in images, demonstrating

the transformative power of deep learning. However, real-time video stream processing with

deep learning models remains a challenge. This paper presents Distributed Video Analytics

(DiVA), a scalable platform designed to address these issues using deep learning and event

processing for real-time video analysis. It explores quantification techniques, optimization

tools, and a high-level conceptual architecture to enhance video stream analysis. The study

includes experiments evaluating the You Only Look Once version 8 small (YOLOv8s)

model across various frameworks, hardware configurations, and optimization strategies. The

results show substantial performance gains, particularly with Graphics Processing Unit

(GPU) processing and advanced frameworks like NVIDIA Triton Server and Deepstream

SDK, optimized with NVIDIA TensorRT and INT8 quantization. The findings highlight

DiVA’s effectiveness in improving performance, energy efficiency, and scalability for deep

learning inference and model deployment. Notably, the best configuration achieved 47.2

frames per second (FPS), showcasing significant processing efficiency.

Keywords:

object detection, Triton Inference Server,

Deepstream SDK, Complex Event

Processing (CEP), YOLO

1. INTRODUCTION

The field of object detection, a cornerstone of AI, has been

transformed by advancements in computational devices and

NNs. These developments have greatly improved object

identification accuracy in images, marking a paradigm shift in

the field [1]. Frameworks like TensorFlow and PyTorch have

further simplified neural network development, turning

complex processes into accessible function calls and

broadening adoption [2, 3].

Despite these advancements, significant challenges remain,

particularly in real-time video stream processing. Applications

like surveillance, autonomous driving, and industrial

inspection require low latency, high computational efficiency,

and scalability. However, the computational complexity of

deep learning models, especially for object detection, makes

maintaining real-time performance without sacrificing

accuracy difficult. Additionally, scalability is critical for

processing multiple video streams simultaneously, demanding

efficient resource distribution across device networks [4].

Recent research highlights the advantages of single-stage

multitasking models that combine object detection and activity

recognition in real time, reducing the computational burden of

running multiple specialized networks simultaneously. These

approaches are particularly effective in large-scale, distributed

video analytics, enhancing scalability and processing speed.

The lifecycle of deep learning models encompasses

training, optimization, deployment, and continuous

monitoring, ultimately leading to real-time inference on

unstructured data. For large-scale inference, servers like TF

Serving and Triton Inference Server are widely utilized. GPUs

are preferred over the Central Processing Unit (CPU) due to

their faster processing and superior parallelism, though they

consume significant energy, up to 70% of a server's power [5].

Efficient processing of Deep Neural Networks (DNNs) has

become a major focus in the research community. State-of-the-

art GPU-accelerated tools such as Caffe, Microsoft Cognitive

Toolkit (CNTK), Apache MXNet, TensorFlow, and Torch

have been extensively benchmarked for energy efficiency and

hardware design. Key advancements include efficient

primitives like the Compute Unified Architecture (CUDA)

Deep Neural Networks (cuDNN) and memory-efficient

architectures for deep learning workloads. Efforts to optimize

GPU memory usage for large-scale model training and

distributed frameworks for heterogeneous multi-GPU clusters

have further enhanced energy efficiency and memory

utilization, enabling improved deep learning acceleration [5].

Real-time video stream analysis presents unique challenges,

requiring deep learning models to process each video frame

instantly while maintaining uninterrupted stream flow.

Traitement du Signal
Vol. 42, No. 3, June, 2025, pp. 1541-1552

Journal homepage: http://iieta.org/journals/ts

1541

https://orcid.org/0009-0008-5690-2130
https://orcid.org/0000-0002-3060-0432
https://orcid.org/0000-0003-2960-8725
https://orcid.org/0000-0002-8723-1228
https://crossmark.crossref.org/dialog/?doi=10.18280/ts.420326&domain=pdf

Additionally, results often need integration with databases.

Achieving high-performance execution is critical, as delays

can render real-time or near-real-time analysis infeasible. This

demands advanced inferencing processes that leverage

multiple GPU resources for load sharing and effective

utilization. When a single server's GPU resources are

insufficient, distributed computing is essential to balance the

load across multiple servers, ensuring timely inferencing

results [6].

Consider a practical scenario where Internet Protocol (IP)

cameras in a shopping mall are used for tasks like people

counting, face recognition, age and gender estimation, and

emotion analysis. These tasks require executing models for

human detection, face detection, face recognition, and

additional analyses on video stream frames. The sequential

and parallel execution of multiple models introduces

significant computational challenges [6].

As deep learning applications grow in practical use, the

demand for high-performance model deployment continues to

rise. While various solutions address deployment challenges,

a holistic system that handles all aspects remains rare. This

study aims to evaluate existing solutions, analyzing their

strengths and limitations in the context of real-time video

stream analysis. By identifying key challenges associated with

deploying deep learning models in real-time scenarios, we

assess how well current solutions address these issues and

determine the essential features required for distributed

execution across multiple GPU servers.

Building on existing tools, we aim to develop a distributed,

high-performance platform for analyzing video streams using

deep learning on GPU clusters [7]. Recent work by Savard et

al. [8] further emphasizes the importance of scalable inference

in multi-user environments. Their Triton Server-based

approach demonstrates significant throughput gains for

complex models like Graph Neural Networks (GNNs) by

dynamically batching inference requests across CPU nodes

and centralizing GPU resources. This method reduces per-

inference latency and adapts to fluctuating loads in real time,

illustrating the potential of Triton-based infrastructures to

support diverse, simultaneous deep learning tasks aligned with

our goal of enabling real-time video stream analysis.

In summary, efficient processing and management of deep

learning workloads, particularly in GPU utilization and

memory management, are critical for optimizing performance,

energy efficiency, and scalability in inference and model

deployment [7].

This study conducted experiments focusing on performance

outcomes using various quantification techniques and

optimization tools. The (YOLOv8s) model was utilized,

operating directly on GPUs as well as on inference servers,

including CPUs. We analyzed the behaviors, memory usage,

and performance of tools such as Deepstream SDK, Triton

Server, NVIDIA TensorRT, Open Neural Network Exchange

(ONNX), and ONNX Runtime. Observations included

resource consumption variations and the tools' effectiveness in

processing video frames and detecting objects. Additionally,

performance was evaluated using the Real-Time Streaming

Protocol (RTSP) for live video input. The primary

contributions of this research are as follows:

Performance Comparison Across Environments:

Analyzing the differences in performance when using

the YOLOv8s model with various tools and methods,

including Triton Server, Deepstream SDK, local

machines, CPUs, GPUs, TensorRT, and ONNX,

while monitoring the number of processed frames.

Direct Operation on GPU and CPU: Observing the

number of frames processed when the YOLOv8s

model operates directly on GPU and CPU machines.

Unoptimized Triton Server Deployment: Running the

YOLOv8s model unoptimized on a Dockerized

Triton Server and monitoring the number of

processed video frames.

Optimized Triton Server Deployment: Operating the

YOLOv8s model on a GPU in a Dockerized Triton

Server optimized with ONNXRuntime, and

observing changes in frame processing performance.

Deepstream SDK with FP32 Precision: Running the

YOLOv8s model using Deepstream SDK version 6.3

with TensorRT and 32-bit floating-point (FP32)

precision, and analyzing performance changes with

precision calibration.

Deepstream SDK with INT8 Quantization: Operating

the YOLOv8s model using Deepstream SDK version

6.3 with TensorRT and 8-bit integer (INT8)

quantization, and observing further performance

improvements through precision calibration.

In this study, we introduce DiVA, a distributed and scalable

platform that harnesses deep learning and event processing for

real-time video streaming analysis. The paper presents a high-

level conceptual architecture of DiVA, designed to address

computational and efficiency challenges in video stream

analysis.

The rest of the paper is as follows. Section 1 contains an

introduction to the study, Section 2 includes discussions on

YOLO, real-time video streaming, Triton Inference Server,

Deepstream SDK, inference optimization with quantization,

TensorRT, and ONNX Runtime, Section 3 covers initial

experiments with YOLOv8s on CPUs and RTSP video

streams, integration with Triton Inference Server, advanced

implementations using Deepstream SDK 6.3, and the results

achieved and Section 4 summarizes the implications of our

findings and emphasizing the contributions of this research to

real-time object detection and video analytics.

1.1 Comparison with existing platforms

While platforms such as MotionInsights and ViEdge

provide general‐purpose distributed stream processing and

edge analytics orchestration, DiVA’s innovations lie in three

complementary areas:

1.1.1 Specialized deep-learning inference optimization

MotionInsights focuses on Complex Event Processing

(CEP) across heterogeneous data sources, and ViEdge

emphasizes low-code deployment at the edge. By contrast,

DiVA was built from the ground up to optimize the deep-

learning inference pipeline for real-time video analytics. We

systematically benchmark YOLOv8s under NVIDIA Triton

Inference Server and DeepStream SDK, exploring FP32, FP16,

and INT8 quantization to derive precise latency-accuracy

trade-offs not available in the literature for other frameworks.

1.1.2 Hardware–software co-optimization

Unlike more hardware-agnostic systems, DiVA tightly

couples GPU-accelerated software stacks (Triton, TensorRT,

DeepStream) with dynamic batching and asynchronous data

transfers. This co-design reduces end-to-end inference time by

up to 60% compared to generic serving engines, enabling sub-

1542

25 ms per-frame processing that platforms like MotionInsights

and ViEdge do not exploit to the same extent.

1.1.3 Practical deployability and benchmarking

DiVA integrates RTSP ingestion, Kubernetes-based auto-

scaling, and fine-grained resource monitoring to address real-

world constraints (network bandwidth, edge-device compute,

privacy). Our reported 47.2 FPS on YOLOv8s with INT8

quantization (Section 3.5) establishes a concrete performance

benchmark surpassing the throughput figures typically

presented for existing solutions and demonstrates DiVA’s

readiness for high-demand deployments in smart cities,

industrial inspection, and healthcare monitoring.

By uniting these differentiators, targeted inference

optimization, GPU-level co-tuning, and end-to-end scalability,

DiVA advances beyond state-of-the-art platforms, delivering

a purpose-built framework for truly real-time, large-scale

video analytics.

2. MATERIAL AND METHODS

This section outlines the comprehensive approach adopted

in this study. It begins with a detailed exploration of the

computational and deep learning tools utilized, followed by an

overview of the experimental design. The discussion then

focuses on the specific methodologies employed for data

collection, model training, optimization, and quantization,

establishing a robust framework for implementing and

evaluating the DiVA platform.

2.1 YOLO

YOLO is a state-of-the-art real-time object detection

algorithm that utilizes DNNs for precise object classification

and localization [9]. Designed to combine the advantages of

various real-time object detectors, YOLO achieves superior

accuracy compared to traditional detection methods [10]. Its

diverse applications include detecting unauthorized entries on

highways, identifying small objects in remote sensing imagery

[11], and recognizing small-scale objects via camera sensors.

YOLOv8 also proves valuable in specialized fields such as

locust control, such as agricultural locust control [12], tea bud

detection [13], and smoking action recognition.

While YOLOv8 offers state-of-the-art object detection,

recent work demonstrates that single-stage architectures can

be extended to integrate both object detection and activity

recognition into a unified pipeline. By eliminating the need for

separate modules such as tracking or segmentation modules,

these architectures not only reduce latency but also streamline

real-time video analytics workflows.

Comparative analyses with earlier versions like YOLOv5

and YOLOv7 have highlighted YOLOv8’s improvements in

both detection speed and accuracy [14]. Additionally, targeted

adaptations and optimizations of YOLOv8 have been

implemented for specific tasks, such as UAV-based aerial

image recognition and fault detection in photovoltaic cells

using particle swarm optimization [15], resulting in enhanced

detection precision and accuracy.

Additionally, YOLOv8's detection efficiency has been

further enhanced through the integration of advanced

techniques, such as Wasserstein Distance Loss, FasterNext,

and Context Aggravation strategies [16]. The C2f module in

YOLOv8 has also been utilized to accelerate detection,

particularly in scenarios involving water-crossing object

detection [17].

In essence, YOLOv8 stands out as a highly adaptable and

effective object detection algorithm, with a broad range of

applications across various fields. Its performance, surpassing

that of previous versions and alternative detection algorithms,

continues to be refined and optimized for specific use cases.

2.2 Real-time video streaming

The Real-Time Streaming Protocol (RTSP) is commonly

used in client-server architectures to manage the streaming of

continuous media, such as audio and video. It allows the client

to control media playback with functions like play, pause,

rewind, and fast-forward, interacting with the server. RTSP

typically uses Transmission Control Protocol (TCP) or User

Datagram Protocol (UDP) for transport, while the Real-time

Transport Protocol (RTP) or Real-time Transport Control

Protocol (RTCP) operates at the application layer for media

data exchange [18].

RTSP is widely supported across various IP cameras, media

players, and software applications, which demonstrates its

versatility and broad applicability [19]. The protocol is praised

for its adaptability and scalability, efficiently handling diverse

media formats, codecs, and fluctuating network conditions

[20]. Moreover, RTSP enhances streaming experiences by

offering low-latency, high-quality streaming. It dynamically

adjusts stream bitrate and resolution based on available

bandwidth and device capabilities. Additionally, RTSP

includes features such as authentication and encryption to

enhance the security and confidentiality of streaming content

[21].

2.3 Triton Inference Server

The Triton Inference Server, formerly known as the

TensorRT Inference Server, is an open-source platform

developed by NVIDIA to support cloud-based inference

solutions optimized for NVIDIA GPUs. It aims to simplify the

deployment of AI models in large-scale production

environments. By integrating YOLOv8 with Triton Inference

Server, users can create scalable and efficient Deep Learning

(DL) inference workflows. This guide outlines the necessary

steps for configuring and evaluating this integration.

Triton Inference Server is designed to deploy a wide range

of AI models in production environments. It supports multiple

DL and machine learning frameworks, including TensorFlow,

PyTorch, ONNX Runtime, and others. Its key features include

the ability to serve multiple models from a single server

instance, dynamically manage model availability without

restarting the server, enable ensemble inference by combining

multiple models for improved results, and support model

versioning for A/B testing and seamless updates.

The architecture of Triton Inference Server (Figure 1)

includes a model repository for storing models and a server

that processes requests via HTTP/REST, gRPC, or the C API.

These protocols, highlighted in Figure 1, allow client

applications to route inference requests to the appropriate

model-specific scheduler. Triton employs schedulers with

customizable algorithms to batch requests dynamically, which

are then processed by framework-specific backends (e.g.,

TensorFlow, PyTorch) to generate outputs.

Additionally, Triton offers readiness and liveness health

1543

endpoints, along with metrics for utilization, throughput, and

latency (depicted as "Status/Health Metrics Export" in Figure

1). These features enable seamless integration with

orchestration platforms like Kubernetes. As demonstrated by

Savard et al. [8], Triton’s dynamic batching and autoscaling

capabilities allow multiple concurrent models to run

efficiently on shared GPUs, even under heavy workloads.

Their findings show that optimized queue times, batch sizes,

and model concurrency maintain high throughput while

minimizing latency, critical for real-time inference on video

streams. Furthermore, allocating GPU slices or distinct Triton

instances per model prevents memory thrashing, ensuring

stable performance in large-scale deployments.

Figure 1. A conceptual architecture of Triton Inference Server

2.4 Deepstream SDK

Nvidia Deepstream is a crucial tool for deploying DL

models in services or data processing pipelines, enabling both

batch and real-time stream processing of data. It demonstrates

the deployment of DL models in a system where input data

and inference results are shared in memory. Models intended

for customer access are typically encapsulated within a REST

API framework. Deployment strategies include the traditional

request-response pattern or job submission to a queue, with

periodic status checks by the client. However, the challenge of

processing live data streams in DL arises due to the wide

variety of data types that DL models can process, requiring a

context-specific approach.

Deepstream provides a solution, particularly designed to

efficiently manage video stream processing and integrate DL

models for tasks like real-time object detection. This capability

addresses the critical need for a tool that can effectively handle

the complexities of video data in the DL domain.

Furthermore, when considering deployment environments,

Deepstream extends its utility beyond traditional data centers

and cloud-based solutions to also support edge computing

scenarios. This is especially important for applications where

on-site deployment or operation in resource-constrained

environments is necessary. Deepstream’s compatibility with

ARM architecture, which is more efficient than x86

architecture for certain applications, allows sophisticated DL

models to be deployed on relatively modest hardware. This

flexibility makes Deepstream a versatile tool for a wide range

of applications, including edge computing, offering a

comprehensive solution for deploying DL models in various

environments [22].

1544

Computer vision, a dynamic branch of AI, enables machines

to visually interpret and interact with their surroundings. This

technology powers a wide range of innovative applications,

from image and video analysis to object detection and

automation, enhancing our ability to delegate complex tasks to

robots. The excitement surrounding computer vision largely

stems from its ability to enable real-time processing and

analysis, a feature that captivates many enthusiasts.

The Deepstream SDK, designed by Nvidia for real-time

computer vision applications, leverages Nvidia GPU devices.

Deepstream provides a robust framework for creating

GStreamer (n.d., GStreamer) pipelines, optimized for handling

video streams efficiently. It comes equipped with a set of pre-

built plugins for common tasks like object detection and

tracking. For those seeking customization, Deepstream offers

the flexibility to develop unique plugins, further expanding its

application potential.

Deepstream’s versatility extends to its ability to process

various types of video streams, from local storage to network-

based streams like RTSP, while also offering hardware-

accelerated support for video encoding and decoding. This

ensures seamless processing of high-resolution video streams.

Integration with TensorRT, Nvidia’s library for optimizing DL

models for inference, enables Deepstream to run sophisticated

computer vision models in real time with minimal

computational overhead. This makes it an invaluable tool for

pushing the boundaries of what’s possible with computer

vision, enabling advanced model deployment without

compromising performance. Through Deepstream, the

promise of real-time computer vision applications becomes a

tangible reality, representing a significant advancement in the

field.

2.5 Inference optimization with quantization

Convolutional Neural Networks (CNNs) have excelled in

various computer vision applications; however, their

deployment on mobile devices and edge platforms presents

significant challenges due to their substantial size and

computational demands. While CNNs deliver high accuracy,

most are not inherently optimized for mobile and embedded

environments, which prioritize computational efficiency and

model simplicity over sheer accuracy. The need to deploy

CNNs on devices such as smartphones, drones, and IoT

sensors has driven research into optimizing these models for

better on-device performance. Efforts to reduce model size and

inference time, while maintaining accuracy, have led to the

development of various optimization techniques, including

pruning, quantization, and topology optimization. Among

these, quantization stands out as a crucial strategy that not only

decreases memory and storage requirements but also enhances

energy efficiency, model compression, and latency reduction

making it well-suited for resource-constrained settings [23].

As the complexity and size of DL models have increased,

so have the computational demands and costs associated with

running these models, especially in cloud environments and on

resource-limited edge devices. To mitigate these challenges,

quantization has become a vital technique for reducing model

size, although with potential accuracy trade-offs. Quantization

involves reducing the precision of model weights and

activations from high-precision floating-point formats (e.g.,

FP32) to lower-precision formats such as FP16 or INT8. This

compression reduces computational load and enhances energy

efficiency during inference, enabling the deployment of DL

models in constrained environments like IoT devices [24].

2.5.1 Post-training quantization

To reduce model footprint and accelerate inference, we

applied post-training quantization (PTQ) of the YOLOv8s

network using NVIDIA TensorRT 8.6. The quantization

pipeline consisted of the following steps:

• Model Preparation and ONNX Conversion: The

original FP32 YOLOv8s weights were exported to

ONNX v1.12, ensuring all custom layers were

supported. We verified functional equivalence on a

100-image validation subset.

• Calibration Dataset Selection: A representative

calibration set of 500 images was sampled from the

COCO-val2017 partition, stratified by class, lighting,

and scene complexity. This set was disjoint from the

test set to avoid over-fitting.

• Activation Profiling and Scale Determination: During

calibration, TensorRT collected activation

histograms (min/max, mean, KL-divergence) for

each layer, using its default entropy-based algorithm

to compute 8-bit scaling factors.

• Engine Building and Layer Fusion: TensorRT fused

adjacent conv-BN-activation layers, quantized

weights and activations to INT8 using the computed

scales, and applied kernel auto-tuning for optimal

GPU execution.

• Precision Trade-offs and Accuracy Impact:

--FP32 (Baseline): no quantization.

--FP16: 2× memory reduction with <0.5% mAP

drop.

--INT8: 4× memory reduction, up to 3×

throughput gain; retained ≥98% of FP32

mAP (0.520→0.511 on COCO) while

achieving 47.2 FPS.

These detailed steps ensure full reproducibility of our PTQ

workflow and clarify the trade-offs between precision formats.

Post-Training Quantization (PTQ) is one of the most widely

used quantization techniques due to its simplicity and ease of

integration. PTQ applies quantization after the model has been

fully trained by using a representative calibration dataset to

calculate scaling factors for each tensor. This calibration

process compresses the dynamic range of model weights and

activations, converting them to lower-precision formats such

as INT8. PTQ offers a straightforward approach to optimizing

models without requiring additional training. It is particularly

suitable for scenarios where fast deployment is essential, as it

reduces memory usage and latency while maintaining

reasonable accuracy.

Recent studies, such as those by Hernández et al. [23],

highlight the effectiveness of PTQ in improving both

performance and energy efficiency. The research

demonstrates that PTQ can reduce inference latency by up to

90%, making it a valuable tool for resource-constrained

devices like the NVIDIA Jetson AGX Orin. The use of PTQ

on this platform shows that IoT devices can achieve

performance levels comparable to high-end processors while

consuming significantly less energy. Moreover, TensorRT, an

inference optimization framework developed by NVIDIA,

applies additional optimization operations during PTQ,

including layer fusion, removal of redundant computations,

and precision tuning. These enhancements further improve the

inference performance of models on GPU hardware.

1545

2.5.2 Quantization-Aware Training (QAT)

QAT integrates quantization directly into the training phase

of a model, allowing the network to learn to compensate for

the effects of lower-precision arithmetic. Unlike PTQ, which

applies quantization after training, QAT ensures that the model

retains high accuracy even after significant reductions in

precision. This technique is particularly beneficial for complex

DL tasks that require high accuracy, such as facial recognition

and real-time video analytics, where even minor accuracy

losses can substantially impact the application's outcomes.

Hernández et al. [23] emphasize that while QAT typically

results in slightly longer training times, it improves energy

efficiency during inference. On the Jetson AGX Orin, QAT-

optimized models were shown to consume less energy per

inference compared to their PTQ counterparts, especially for

tasks involving high-resolution inputs. This makes QAT an

ideal choice for applications where energy efficiency is critical,

such as smart estate deployments or autonomous systems in

edge environments.

QAT involves inserting quantization and dequantization

nodes into the model during training, allowing the network to

adapt to the loss of precision. This approach reduces the risk

of accuracy degradation and enhances the model’s robustness

to quantization-induced errors. In real-time video analytics

systems, incorporating QAT helps maintain accuracy even

when models are deployed across diverse hardware platforms,

from GPUs to low-power accelerators.

2.6 TensorRT and ONNX runtime

NVIDIA TensorRT plays a pivotal role in video analytics

by enhancing the efficiency of DL models for inference on

NVIDIA GPUs. It is integral to optimizing video analytics by

focusing on accelerated inference, model optimization, and

maximizing GPU efficiency. TensorRT improves inference

speed, enabling swift and effective analysis for real-time or

near-real-time video processing. Key optimizations include

layer fusion, precision calibration, kernel auto-tuning, and

efficient tensor memory management. These collectively

reduce computational demands and enhance performance.

Additionally, TensorRT harnesses the parallel processing

power of NVIDIA GPUs, optimizing models for peak GPU

utilization, resulting in increased throughput and reduced

inference times. This optimization ensures that video analytics

applications are faster and more efficient, as demonstrated by

Chaturvedi et al. [24].

ONNX Runtime further enhances machine learning models

by ensuring compatibility with a variety of frameworks,

including PyTorch, TensorFlow/Keras, TFLite, and scikit-

learn [25]. When quantizing models within ONNX Runtime,

32-bit floating-point representations are converted into

compact 8-bit integer formats using linear quantization. This

process involves mapping floating-point values into an 8-bit

range, with both a scale factor and a zero-point for precise

conversion [26]. ONNX Runtime supports this quantization by

leveraging Python APIs to transition models from 32-bit float

to 8-bit integer formats. Before quantization, the model

undergoes optimization, including symbolic shape inference

and graph refinement, to improve both efficiency and the

effectiveness of quantization [27].

Recent developments have introduced sparse operation

support within ONNX; however, accelerators like ONNX

Runtime have yet to fully support these operations [28].

Furthermore, there is potential for training the quantizer

alongside model parameters, offering opportunities for further

optimization and efficiency in the quantization process [29].

The deployment and optimization of DNNs using libraries like

TensorRT and Torch-Script highlight the critical importance

of runtime considerations in enhancing model performance

[30].

3. RESULTS AND DISCUSSION

This section presents the findings from our investigation

into the effectiveness of the DiVA platform, focusing on key

performance metrics derived from deploying the YOLOv8s

model across various configurations. We analyze the

implications of these results in the context of real-time video

streaming analysis, paying particular attention to how different

optimization techniques and hardware choices influenced

performance. Additionally, the discussion explores potential

avenues for future research and highlights the practical

applications of our findings within the fields of object

detection and video analytics.

3.1 System design of proposed architecture

The system design of the DiVA platform is centered on

providing real-time, scalable, and high-performance video

stream analysis by utilizing cutting-edge distributed

computing and inference optimization techniques. DiVA

incorporates a range of components, such as deep learning

models, CEP, and scalable deployment solutions like

Kubernetes and Apache Kafka, to enable seamless video

analytics across diverse applications.

3.1.1 Architectural overview

DiVA's architecture, illustrated in Figure 2, is a modular,

distributed system designed to prioritize flexibility, scalability,

and performance efficiency. Drawing inspiration from the

design principles of platforms like MotionInsights and ViEdge,

DiVA integrates the following key components:

• Triton Inference Server: At the core of DiVA is the

Triton Inference Server, which facilitates the

deployment and management of DL models. This

server allows simultaneous serving of multiple

models and supports dynamic batching and model

management, optimizing resource usage across GPU

and CPU nodes.

•Temporal Buffer Manager: This component maintains

the temporal context of detected objects across

multiple frames. Implementing a sliding window

approach, it stores object detection results and tracks

object persistence over time using efficient data

structures like time-decay databases and circular

buffers.

• Event Pattern Matcher: The CEP engine within DiVA,

known as the Event Pattern Matcher, applies

predefined patterns to identify complex events from

raw detections. It employs a Domain-Specific

Language (DSL) for pattern definition, allowing for

rules such as detecting suspicious behavior based on

prolonged presence in restricted areas or tracking

objects across zones.

1546

Figure 2. A conceptual architecture of DiVA platform

Figure 3. A conceptual flow of video processing on DiVA

1547

• Adaptive Reasoning Engine: The reasoning engine

processes the patterns identified by the Event Pattern

Matcher, applying advanced temporal analysis

techniques to fuse spatial and temporal information.

It supports finite state machines and rule-based

systems for event recognition.

• Auto-Scaler Module: To ensure scalability, the Auto-

Scaler Module dynamically adjusts the deployment

based on incoming video streams. Integrated with

Kubernetes, it can spawn new Triton Inference

Server instances when new RTSP devices are

detected, thereby maintaining optimal performance.

• Model-Agnostic Design: One of DiVA’s significant

advantages is its model-agnostic architecture, which

enables the seamless integration of different DL

models, including various YOLO versions and other

object detection frameworks. The platform’s

flexibility ensures that users can quickly adapt to new

advancements in DL technology without significant

architectural changes.

The typical workflow within the DiVA architecture follows

a sequential yet flexible path, dynamically adapting to

different models or varying input data rates. This adaptability

ensures that DiVA can efficiently manage heterogeneous

workloads and maintain performance consistency even under

fluctuating conditions. For example, the system dynamically

adjusts model selection and frame processing rates based on

the input stream's resolution and frame rate, ensuring optimal

resource utilization and accuracy.

1. Video Stream Ingestion: Incoming video streams

from RTSP cameras or other sources are received and

preprocessed for further analysis.

2. Object Detection: The Triton Inference Server

processes each frame to identify objects using

YOLOv8 or similar DL models optimized for

performance through techniques such as PTQ and

QAT.

3. Temporal Buffer Management: Detected objects

are tracked over time by the Temporal Buffer

Manager, which ensures consistency and continuity

across frames.

4. Event Pattern Matching: Using the Event Pattern

Matcher, predefined patterns are applied to the

temporal data to identify complex events.

5. Adaptive Reasoning: The Reasoning Engine

interprets the matched patterns and generates alerts or

insights based on predefined rules.

6. Results Output: The system outputs result to

databases or dashboards, providing real-time

feedback and actionable insights.

3.1.2 Conceptual processing flow

Figure 3 illustrates DiVA’s end-to-end processing pipeline,

from device discovery through alarm delivery. When a new

RTSP source is registered, the Auto-Scaler Module consults

the cluster state and assigns an available inference pod to that

stream. The pod then initiates the video pull, capturing raw

frames at the configured rate. Each frame is immediately

dispatched to the Triton Inference Server, where the object-

detection model identifies and localizes instances of interest.

Detections are forwarded into the Temporal Buffer

Manager, which maintains a sliding window of recent

inference results (e.g. via a circular buffer or time-decay store)

in order to preserve temporal context. Batched frame

descriptors are then consumed by the Adaptive Reasoning

Engine, which fuses spatial coordinates and persistence

information with high-level semantic knowledge (via the

Event Pattern Matcher, spatial logic and external LLMs). Once

a complex event pattern is recognized such as loitering in a

restricted zone or coordinated motion the Alarm Management

component generates an alert record, persists it to the alarms

database, and notifies the user through the configured

notification channel. This streamlined flow ensures that DiVA

can ingest an arbitrary number of camera feeds, maintain low

end-to-end latency, and scale elastically under fluctuating load.

3.1.3 Model-agnostic architecture and generalization

Although our empirical evaluation in Section 3.5 focuses on

a single state-of-the-art object detector (YOLOv8s), DiVA’s

core design is inherently model-agnostic and readily

accommodates a broad spectrum of deep learning architectures

(e.g., Faster R-CNN, SSD, RetinaNet). By leveraging

NVIDIA Triton Inference Server and DeepStream SDK as its

serving backbone, DiVA inherits native support for diverse

frameworks (TensorFlow, PyTorch, ONNX Runtime) and

model formats, enabling seamless deployment of any

convolutional or transformer-based network without

architectural modification.

YOLOv8s was selected for our initial benchmarks due to its

proven real-time performance and because it allowed for an in-

depth analysis of quantization (FP32, FP16, INT8) and

TensorRT optimizations. However, the same optimization

pipeline—dynamic batching, asynchronous GPU streams,

layer-fusion, and precision calibration—applies equally to

two-stage detectors (e.g., Faster R-CNN) and single-shot

networks (SSD). Thus, we anticipate that the sub-25 ms per-

frame inference latency demonstrated with YOLOv8s would

generalize across these architectures, with only minor tuning

of input resolution and batch size.

3.1.4 Future work

To fully validate this generality, we plan to extend our

experimental suite to include Faster R-CNN and SSD models,

quantifying performance differentials under identical

hardware–software settings. This multi-model study will

further corroborate DiVA’s suitability as a universal platform

for real-time video analytics.

3.1.4 Key features

DiVA is a platform built to excel in scalability, performance,

and adaptability. Below are its defining attributes:

1. Model-Agnostic Design: DiVA supports various DL,

allowing for easy integration and updates.

2. Scalable and Flexible Deployment: Leveraging

Kubernetes and Apache Kafka, the platform ensures

scalability, fault tolerance, and efficient resource

utilization.

3. Time-Aware CEP: The integration of temporal

reasoning components enhances the system's

capability to handle time-dependent patterns in video

streams.

4. Inference Optimization: Techniques like PTQ and

QAT are employed to optimize inference

performance across diverse hardware configurations.

This approach aims to activate meaningful workflow and

event interpretation functions on objects detected by selected

object detection algorithms during live video streaming, as

illustrated in Figure 1. The system design, as showcased,

1548

integrates Triton Inference Server services within Kubernetes.

3.1.5 Scalability and distributed processing

A critical feature of the DiVA platform is its ability to scale

dynamically in response to fluctuating video stream demands.

Scalability is achieved through the Auto-Scaler Module,

which is integrated within the Kubernetes-based infrastructure

to facilitate horizontal scaling of Triton Inference Servers.

The Auto-Scaler Module functions by monitoring incoming

RTSP video streams and dynamically evaluating resource

allocation priorities. By assessing current pod utilization,

RTSP stream requirements, and CPU/GPU load levels, the

module ensures efficient distribution of streams while

maintaining high performance. Under high-load scenarios, it

prioritizes critical streams based on preconfigured metrics

such as frame rates or resolution, and strategically spawns new

Triton Inference Server instances to balance the workload.

This ensures that the system remains responsive and efficient,

even as the number of connected cameras increases.
In conclusion, the scalability and distributed processing

capabilities of DiVA ensure that it can handle large-scale

video analytics tasks efficiently. By dynamically adapting to

changes in workload and leveraging programmatic auto-

scaling, DiVA enhances its ability to deliver high-performance,

real-time video analytics.

3.2 Initial experimentation with YOLO on CPU and RTSP

video streams

In the initial implementation phase, we utilized the

YOLOv8s model to process image frames from RTSP video

streams using a CPU with OpenCV. This setup did not involve

an inference server, nor were any optimizations or

quantization methods applied. The results revealed significant

scalability challenges, particularly with the inability to

efficiently integrate multiple video streams. These limitations

underscored the need for a more robust solution to enable

practical, real-time video analytics in larger, more complex

applications.

3.3 Integration with Triton Inference Server

Progressing to a more advanced stage, we utilized the Triton

Inference Server, which is capable of operating on both CPU

and GPU. This platform facilitates various model

optimizations. By loading the YOLOv8s model into Triton

Inference Server using a configuration file, we explored

different optimization techniques. The model was configured

with a ‘config.pbtxt’ file, allowing us to choose between

‘onnxruntime_onnx’ and ‘tensorrt_plan’ for model

optimization tools. Additionally, the configuration enabled

precision calibration by setting the ‘data_type’ parameter to

FP_32, FP_16, or INT8. Given that Yolo models support

batching, we set ‘max_batch_size’ to 1 to accommodate this

feature. The Triton Inference Server was deployed using

Docker with the following command: docker run -p 8000:8000

-p 8001:8001 -p 8002:8002 -v

/home/cancobanoglu/Desktop/triton:/models

nvcr.io/nvidia/tritonserver:22.09-py3 tritonserver --model-

repository=/models --log-verbose 1. Subsequently, the

YoloV8s model was converted to an ONNX model using an

ONNX converter.

3.4 Advanced implementation with Deepstream SDK 6.3

Our final implementation involved a more complex setup

using Deepstream SDK 6.3, which operates on Linux

distributions such as Ubuntu and can also be run in Docker.

Deepstream SDK integrates various tools and libraries for

comprehensive video processing and object detection

capabilities. For our environment, we utilized Ubuntu 22.04,

an NVIDIA dGPU Geforce GTX, and a deepstream:6.3 docker

image. This setup included GStreamer 1.16.3, CUDA 12.1,

cuDNN 8.8.1.3-1+, and TensorRT 8.6.1.6. The application

was executed with TensorRT optimization and both FP_32

and INT8 quantization to assess performance and accuracy

improvements in object detection tasks. This implementation

journey from basic CPU processing to sophisticated GPU-

accelerated inference servers underlines the evolution of our

project's approach to real-time video stream analysis. By

leveraging advanced tools and platforms such as Triton

Inference Server and Deepstream SDK, we aimed to address

the scalability, efficiency, and performance challenges

initially encountered, thereby enhancing the capabilities of our

DL model deployment in practical, real-world scenarios.

3.5 Results

The evaluation of our DL model deployment for real-time

video stream analysis yielded significant insights into the

performance across different frameworks, optimization

techniques, quantization methods, and hardware

configurations. The results, summarized in Table 1, provide a

comprehensive overview of the processing time, total frames

processed, and FPS achieved under various conditions.

In particular, this study departs from conventional image

preprocessing approaches such as morphological filtering or

background subtraction and instead emphasizes advanced

quantization-based optimizations. By employing quantization

methods (e.g., FP32, FP16, and INT8), we aimed to preserve

detection accuracy while achieving scalability and high-

throughput inference. This strategic focus on model-side

refinements, rather than on additional image-level

transformations, yielded a more efficient deployment pipeline

capable of supporting multiple video streams in real time.

Table 1. The table of results

Framework Optimization Quantization Hardware
Stream

(sec)

Total

Frames

Processing Time

(sec)
FPS

- - FP32 CPU 8 225 186.04 1.2

- - FP32 GPU (T4) 8 225 55 4

Triton Server ONNX only FP32 CPU 8 225 20.17 11.15

Triton Server
ONNX

runtime
FP32

GPU

(Geforce)
8 225 5.42 41.5

Deepstream SDK

6.3
TensorRT FP32

GPU

(Geforce)
8 225 16.1 14

Deepstream SDK

6.3
TensorRT INT8

GPU

(Geforce)
8 225 4.7 47.2

1549

Baseline Performance on CPU and GPU: The initial tests

without any specific optimization or quantization on CPU and

GPU (T4) demonstrated the fundamental performance

disparity between CPU and GPU processing. The GPU

outperformed the CPU, reducing the processing time

significantly from 186.04 seconds to 55 seconds, and

improving FPS from 1.2 to 4.

Triton Server Optimization: The deployment of the

Triton Server with ONNX only optimization on CPU and

ONNX runtime optimization on GPU (Geforce) further

enhanced performance. The Triton Server with ONNX

runtime on GPU exhibited a substantial increase in efficiency,

slashing processing time to 5.42 seconds and elevating FPS to

41.5, compared to its CPU counterpart which achieved an FPS

of 11.15.

Deepstream SDK with TensorRT Optimization:

Implementing Deepstream SDK 6.3 with TensorRT

optimization offered significant performance improvements.

While FP32 quantization on GPU (Geforce) yielded an FPS of

14, the introduction of INT8 quantization dramatically boosted

the FPS to 47.2, our highest performance metric in this study.

These findings collectively affirm that a quantization-centric

optimization strategy, deployed alongside robust GPU

hardware, is instrumental in achieving scalable real-time or

near-real-time video analytics.

Figure 4. A processed example of streaming video frame

As a practical demonstration of DiVA’s real-time

processing, Figure 4 depicts nine consecutive frames from a

live RTSP feed, each annotated by our INT8-quantized

YOLOv8s model running on Triton. Despite changes in

subject pose and slight lighting shifts, the system maintains

consistent object localization and high detection confidence (≥

0.90), illustrating the Temporal Buffer Manager’s ability to

smooth transient variations and preserve identity across frames.

This temporal coherence, together with sub-25 ms end-to-end

inference latency, confirms that the quantization optimizations

deliver both accuracy and throughput suitable for latency-

sensitive video analytics.

3.6 Real-world application cases

To demonstrate DiVA’s practical value beyond controlled

benchmarks, we outline three representative deployment

scenarios Smart Cities, Industrial Inspection, and Healthcare

Monitoring highlighting how DiVA’s low-latency inference,

temporal reasoning, and elastic scalability directly translate

into operational benefits.

3.6.1 Smart cities

In urban environments, DiVA can be deployed on roadside

RTSP cameras to optimize traffic flow and enhance public

safety. By processing video streams at > 40 FPS (Section 3.5),

DiVA supports real-time vehicle counting and classification at

intersections, enabling adaptive signal control to reduce

congestion. Simultaneously, the Event Pattern Matcher can

detect jaywalking or stalled vehicles in crosswalk zones,

triggering instant alerts to traffic operators. Environmental

monitoring is also feasible: by integrating simple smoke-

detection patterns, DiVA can flag unauthorized burning or

pollutant plumes in public parks, feeding data into city

dashboards for rapid response.

3.6.2 Industrial inspection

On manufacturing lines, DiVA’s model-agnostic

architecture allows seamless swapping between YOLOv8s for

defect detection and custom models for part-quality

assessment. Mounted over conveyor belts, the platform’s

INT8-quantized pipelines sustain real-time scanning at up to

47 FPS (Section 3.5), identifying surface cracks or misaligned

components with sub-10 ms latency. Concurrently, the

Temporal Buffer Manager tracks worker positions in

hazardous zones; should an employee linger within a restricted

area, the Adaptive Reasoning Engine issues a safety alarm.

Warehouse inventory management also benefits by

continuously analyzing shelf footage, DiVA can automatically

log stock levels and detect misplaced items, reducing human

audit costs.

3.6.3 Healthcare monitoring (epilepsy case study)

In clinical settings or assisted living facilities, DiVA can

stream patient-room cameras to detect seizure-like motions or

falls. Employing tailored CEP rules for rapid posture changes

and motion irregularities, the platform can raise an alarm

within tens of milliseconds, ensuring that caregivers receive

immediate notifications. The low compute footprint of INT8-

quantized inference supports on-premise GPU servers or

compact edge devices, preserving patient privacy by avoiding

cloud upload. Early pilot tests mirroring our performance

results indicate that DiVA maintains ≥ 95 % detection

accuracy under varied lighting and occlusion, underscoring its

promise for real-world health-care deployments.

4. CONCLUSION

This study underscores the critical importance of hardware

selection and advanced optimization strategies in achieving

real-time video stream analysis. By systematically evaluating

the transition from CPU-based inference to GPU-accelerated

architectures, we have demonstrated significant improvements

in performance, particularly in terms of reduced processing

latency and increased throughput. The integration of

optimization tools, such as TensorRT and ONNX Runtime,

within frameworks like NVIDIA Triton Inference Server and

DeepStream SDK, has further enabled substantial efficiency

gains across different quantization schemes (FP32, FP16, and

INT8). Among these, INT8 quantization leveraging TensorRT

within DeepStream SDK 6.3 emerged as the most effective

1550

configuration, achieving a peak frame processing rate of 47.2

FPS, a result that strongly supports the feasibility of near-real-

time video analytics.

Our findings validate the scalability of GPU-accelerated

pipelines in large-scale, latency-sensitive environments such

as intelligent surveillance, autonomous driving, and industrial

inspection. The modular and distributed architecture of the

DiVA platform, which integrates time-aware CEP, adaptive

reasoning engines, and Kubernetes-based auto-scaling,

establishes a robust foundation for dynamic multi-stream

video analytics. The system's model-agnostic design and

automated scaling capabilities enable seamless integration of

DL models, ensuring adaptability to evolving workloads.

4.1 Future work

To translate DiVA’s promising performance into

production-grade deployments, we outline four concrete

research directions:

4.1.1 Multi-GPU configurations and distributed inference

We will implement and evaluate workload partitioning

strategies across multiple GPUs both within a single server and

across a Kubernetes cluster. This entails comparing data-

parallel vs. model-parallel schemes and integrating NVIDIA’s

NCCL library for high-speed inter-GPU communication.

Using frameworks such as Ray Serve or Horovod, we aim to

measure scalability in terms of FPS per dollar and FPS per watt,

targeting near-linear throughput increases as the GPU count

grows while preserving sub-25 ms end-to-end latency.

4.1.2 Dynamic model selection and adaptive scheduling

We plan to augment DiVA with an orchestration layer that

monitors scene complexity (e.g., object count, motion variance)

and system load, dynamically switching between lightweight

(e.g., YOLO-nano) and heavyweight (e.g., YOLOv8-large)

models. By leveraging Triton’s model repository API and

custom scheduling policies, the system will optimize the

accuracy–latency trade-off in real time, ensuring sustained

performance under fluctuating operational conditions.

4.1.3 Edge computing and heterogeneous architectures

Extending DiVA to resource-constrained devices, we will

deploy INT8-quantized engines on NVIDIA Jetson platforms

and evaluate hybrid cloud-edge pipelines. Key experiments

will quantify end-to-end latency, energy consumption, and

network bandwidth savings when edge nodes perform

preliminary inference and only stream high-level event

metadata to the cloud.

4.1.4 Advanced event processing and contextual insights

Beyond basic CEP rules, we will integrate DiVA with

stream-processing engines (e.g. Apache Flink, Kafka Streams)

to orchestrate complex event graphs and real-time analytics.

We will develop higher-order patterns—such as cross-camera

trajectory correlations and group-behavior classifiers—

enabling automated responses (e.g. security lockdowns, traffic

signal adjustments). Performance targets include sub-100 ms

detection-to-action latency for mission-critical applications.

By pursuing these targeted technical paths—each with

measurable throughput, cost, and latency goals—we will

substantiate DiVA’s evolution from a prototype into a robust,

adaptive platform for large-scale, real-time video analytics.

By addressing these challenges, the next generation of real-

time video analytics systems can achieve greater efficiency,

scalability, and adaptability, bridging the gap between

performance demands and large-scale deployment feasibility

across diverse application domains.

REFERENCES

[1] Zou, Z., Shi, Z., Guo, Y., Ye, J. (2019). Object detection

in 20 years: A survey. arXiv:1905.05055v3.

https://doi.org/10.48550/arxiv.1905.05055

[2] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen,

Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin,

M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G.,

Isard, A., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,

Levenberg, J., Mane, D., Monga, R., Moore, S., Murray,

D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,

Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V.,

Vasudevan, V., Viegas, F., Vinyals, O., Warden, P.,

Wattenberg, M., Wicke, M., Yu, Y., Zheng, X. (2016).

TensorFlow: Large-scale machine learning on

heterogeneous distributed systems. arXiv:1603.04467v2.

https://doi.org/10.48550/arxiv.1603.04467

[3] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,

Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,

L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z.,

Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B.,

Fang, L., Bai, J., Chintala, S. (2019). PyTorch: An

imperative style, high-performance deep learning library.

arXiv:1912.01703v1.

https://doi.org/10.48550/arxiv.1912.01703

[4] Pathirannahalage, I., Jayasooriya, V., Samarabandu, J.,

Subasinghe, A. (2024). A comprehensive analysis of

real-time video anomaly detection methods for human

and vehicular movement. Multimedia Tools and

Applications, 84: 7519-7564.

https://doi.org/10.1007/s11042-024-19204-w

[5] Rhu, M., Gimelshein, N., Clemons, J., Zulfiqar, A.,

Keckler, S. (2016). vDNN: Virtualized deep neural

networks for scalable, memory-efficient neural network

design. In Annual IEEE/ACM International Symposium

on Microarchitecture, Taipei, Taiwan, pp. 1-13.

https://doi.org/10.1109/micro.2016.7783721

[6] Kim, Y., Lee, J.J., Kim, J., Jei, H., Roh, H.S. (2019).

Comprehensive techniques of multi-GPU memory

optimization for deep learning acceleration. Cluster

Computing, 23(3): 2193-2204.

https://doi.org/10.1007/s10586-019-02974-6

[7] Najafabadi, M.M., Villanustre, F., Khoshgoftaar, T.M.,

Seliya, N., Wald, R., Muharemagic, E. (2015). Deep

learning applications and challenges in big data analytics.

Journal of Big Data, 2(1): 1.

https://doi.org/10.1186/s40537-014-0007-7

[8] Savard, C., Manganelli, N., Holzman, B., Gray, L., Perlof,

A., Pedro, K., Stenson, K., Ulmer, K. (2024). Optimizing

high-throughput inference on graph neural networks at

shared computing facilities with the NVIDIA Triton

Inference Server. Computing and Software for Big

Science, 8: 14. https://doi.org/10.1007/s41781-024-

00123-2

[9] Sychugov, A. (2023). Application of neural networks for

object recognition in railway transportation. Proceedings

of Petersburg Transport University, 20(2): 478-491.

https://doi.org/10.20295/1815-588x-2023-2-478-491

1551

[10] Jian, Z., Zhang, J., Zhou, K., Zhang, Y., Chen, H., Yan,

X. (2023). An improved YOLOv5-based underwater

object-detection framework. Sensors, 23(7): 3693.

https://doi.org/10.3390/s23073693

[11] Ma, M., Pang, H. (2023). SP-YOLOv8s: An improved

YOLOv8s model for remote sensing image tiny object

detection. Applied Sciences, 13(14): 8161.

https://doi.org/10.3390/app13148161

[12] Kuriakose, A., Badarudheen, R., Charapanjeri, L. (2023).

Swarm drone system with YOLOv8 algorithm for

efficient locust management in agricultural environments.

International Journal of Advanced Research in Science,

Communication and Technology, 3(3): 177-188.

https://doi.org/10.48175/ijarsct-11430

[13] Xie, S., Sun, H. (2023). Tea-YOLOv8s: A tea bud

detection model based on deep learning and computer

vision. Sensors, 23(14): 6576.

https://doi.org/10.3390/s23146576

[14] Zhou, S., Jiang, J., Hong, X., Fu, P., Yan, H. (2023).

Vision meets algae: A novel way for microalgae

recognition and health monitor. Frontiers in Marine

Science, 10: 1105545.

https://doi.org/10.3389/fmars.2023.1105545

[15] Phan, Q.B., Tan, T.N. (2023). A novel approach for PV

cell fault detection using YOLOv8 and particle swarm

optimization. TechRxiv.

https://doi.org/10.36227/techrxiv.22680484

[16] Bai, R., Feng, S., Wang, M., Lu, J., Zhang, Z. (2023).

Improving detection capabilities of YOLOv8-n for small

objects in remote sensing imagery: Towards better

precision with simplified model complexity. Research

Square. https://doi.org/10.21203/rs.3.rs-3085871

[17] Xu, S., Tang, H., Li, J., Wang, L., Zhang, X. (2023). A

YOLO algorithm of water-crossing object detection.

Applied Sciences, 13(15): 8890.

https://doi.org/10.3390/app13158890

[18] Schulzrinne, H., Rao, A., Lanphier, R., Westerlund, M.,

Stiemerling, M. (2016). Real-time streaming protocol

version 2.0. RFC 7826. https://doi.org/10.17487/rfc7826

[19] Chai, Y., Ye, D. (2007). The design and implementation

of a scalable wireless video streaming system adopting

TCP transmission mode. In IEEE International

Conference on Computer and Information Technology,

Aizu-Wakamatsu, Japan, pp. 534-538.

https://doi.org/10.1109/cit.2007.180

[20] Ognenoski, O., Martini, M.G., Amon, P. (2013).

Segment-based teletraffic model for MPEG-DASH. In

IEEE International Workshop on Multimedia Signal

Processing, Pula, Italy, pp. 333-337.

https://doi.org/10.1109/mmsp.2013.6659311

[21] Ellawindy, I., Heydari, S.S. (2021). Crowdsourcing

framework for QoE-aware SD-WAN. Future Internet,

13(8): 209. https://doi.org/10.21203/rs.3.rs-31021/v2

[22] Kamble, K. (2023). How to optimize large deep learning

models using quantization. Coditation.

https://www.coditation.com/blog/how-to-optimize-

large-deep-learning-models-using-quantization.

[23] Hernández, N., Almeida, F., Blanco, V. (2024).

Optimizing convolutional neural networks for IoT

devices: Performance and energy efficiency of

quantization techniques. The Journal of Supercomputing,

80: 12686-12705. https://doi.org/10.1007/s11227-024-

05929-w

[24] Chaturvedi, P., Khan, A., Tian, M., Huerta, E.A., Zheng,

H. (2022). Inference-optimized AI and high performance

computing for gravitational wave detection at scale.

Frontiers in Artificial Intelligence, 5: 828672.

https://doi.org/10.3389/frai.2022.828672

[25] Grementieri, L., Galeone, P. (2022). Towards neural

sparse linear solvers. arXiv:2203.06944v1.

https://doi.org/10.48550/arxiv.2203.06944

[26] Tang, C., Zhai, H., Ouyang, K., Wang, Z., Zhu, Y., Zhu,

W. (2022). Arbitrary bit-width network: A joint layer-

wise quantization and adaptive inference approach.

arXiv:2204.09992v1.

https://doi.org/10.48550/arxiv.2204.09992

[27] Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney,

M.W., Keutzer, K. (2022). A survey of quantization

methods for efficient neural network inference. In Low-

Power Computer Vision Book, pp. 291-326.

https://doi.org/10.1201/9781003162810-13

[28] Stäcker, L., Fei, J., Heidenreich, P., Bonarens, F.,

Rambach, J., Stricker, D., Stiller, C. (2021). Deployment

of deep neural networks for object detection on edge AI

devices with runtime optimization. In IEEE/CVF

International Conference on Computer Vision

Workshops, Montreal, Canada, pp. 1015-1022.

https://doi.org/10.1109/iccvw54120.2021.00118

[29] Gope, D., Beu, J., Thakker, U., Mattina, M. (2020).

Ternary MobileNets via per-layer hybrid filter banks. In

IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops, Seattle, WA, USA, pp. 3036-

3046. https://doi.org/10.1109/cvprw50498.2020.00362

[30] Ahn, H., Chen, T., Alnaasan, N., Shafi, A., Abduljabbar,

M., Subramoni, H., Panda, D.K. (2023). Performance

characterization of using quantization for DNN inference

on edge devices: Extended version. arXiv:2303.05016v1.

https://doi.org/10.48550/arxiv.2303.05016

1552

