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Diagnosing diabetic retinopathy (DR) is essential to keeping patients' vision intact. Since 

the fovea and optic disc (OD) are significant retinal factors, it is important to recognize them, 

but because these procedures are intricate, there is a risk of overfitting, complexity, and 

errors. Hence introduced the Intensified UNet framework (IUNetA), which locates using 

retinal images' optic disc and fovea to address DR. With a Wiener filter for noise reduction 

and skip connections for low-level image information, the architecture comprises of an 

encoder, decoder, skip connections, and a special Atrous Convolution Double Residual 

Block (ACDRB). To solve the semantic gap issue, a Cocktail Attention Block (CAB) is 

incorporated into the skip connection. Channel compression is achieved via a 1x1 

convolution layer. In order to alleviate the vanishing gradient issue, the decoder block uses 

encoded feature maps to retrieve segmented object information. The tangent function is then 

used to calculate the final output. Especially, the analysis is carried out by IDRID dataset, 

the IUNetA attains the accuracy as 99.9%, IoU attained 89.17%, Sensitivity attained 90% 

and Dice Similarity Coefficient (DSC) attained 99.14% when compared to Prior models. 

Thus, the overall architecture is accurately segmented and localized the optic disc and fovea 

in the DR. 
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1. INTRODUCTION

Globally, diabetic retinopathy (DR) is an extremely typical 

reason for vision degradation. It ranks among the most 

prevalent factors in avoidable blindness and vision disability 

[1]. For the screening and identification of several retinal 

disorders, including DR, Macular Edoema (ME), age-related 

macular degeneration (AMD), and glaucoma, it is crucial to 

understand the conditions of the optic disc (OD) and fovea (the 

macula centre) in the retinal image [2, 3]. The OD is the area 

where the vasculature starts, collects, or converges because it 

is the most significant component in the retina [4]. Although 

the OD size changes from person to person, the disc's width 

(80-100 pixels) remains fairly constant for a typical fundus 

image [5]. Additional retinal components, such as the macula 

and fovea can be easily located by using the OD as a landmark 

[6]. 

Anatomical structure location can aid in the automated 

recognition of additional functional structures. For instance, 

OD localization has historically been employed as an indicator 

for identifying the fovea [7]. The macula is the region of the 

fundus that has the highest number of cones, the visual 

system's color receptors. It looks darker than the remainder of 

the retinal backdrop [8]. The enormous fundus image area 

makes it difficult to identify OD and fovea centres with 

accuracy. In human pose estimation tasks, N heat maps 

representing the human body's main joints are produced by a 

Convolutional Neural Network (CNN) after training, which 

can be linked to the issue of locating the centres of the OD and 

fovea [9]. The detection of the OD allows for the estimation of 

other factors, such as vessel breadth or tortuosity, based on its 

location and radius. The vessels must typically be near to the 

OD when quantifying key characteristics from an image of the 

fundus in order to be taken into account for parameter 

computation. Identifying the right or left eye from whence the 

image was taken would also be possible using OD detection 

[10]. 

For the purpose of identifying DR-related lesions in the 

color retinal fundus images, researchers have created a number 

of automatic algorithms over the past two decades [11]. 

Divided the OD and fovea into segments using automatic 

methods has been suggested in numerous studies. Many 

various types of methods depending on active contour, 

watershed transformation, morphological operation, template, 

etc. have been proposed as a result of extensive research into 

methods for searching the FOVEA and OD [12]. Previous 

research used the linear regression to locate the OD's location 

in retinal pictures. A simple approach that combined pre-

processing and dictionary matching was used in the research. 

But it displayed a poorer result [13]. 

Additionally, a number of localization techniques using the 

binary mask's geometric centre as their centre after first 
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segmenting the OD and Fovea. However, the effectiveness of 

these Conventional methods largely depends on the binary 

mask's representation of the object's form [14]. The model is 

trained using only a few ground facts and the bounding-box 

level labels in the conventional approach. However, in 

completely supervised semantic segmentation, a lot of effort is 

required to label the ground truth [15]. The segmentation of 

OD and OC is necessary to determine the Cup to Disc Ratio 

value, but conventional methods require more time and don't 

produce reliable results. In order to effectively identify 

glaucoma, automated OC and OC segmentation is crucial [16]. 

The earlier techniques use polar transformation as the initial 

step with unknown values. They cannot take advantage of all 

supervisory signals integrating the extracted features because 

the hyper parameter is not the best for effective training and 

segmentation assessment [17]. Hence, a novel framework is 

necessary to develop for mitigate the difficulties in the DR. 

The significant contribution of the work is enumerated as 

follows 

• Important retinal indicators, the OD and fovea can be

difficult to locate because of overfitting, complexity, and

errors. An Intensified U-Net framework is proposed to

tackle this issue.

• The preprocessed data is supplied into the Intensified U-

Net architecture (IUNetA) after the dataset has been

preprocessed using a Wiener filter to eliminate speckle

noise. IUNetA is composed of an encoder, decoder, and

skip connection.

• The Atrous convolution double residual block (ACDRB)

is used in the encoder block to replace the convolution

layer. The SE block highlights important channels on

multi-channel feature maps, whereas the cocktail

attention block (CAB) combines the encoder and decoder

feature maps.

• The final output is derived from the tangent function

rather than the sigmoid function, and the decoder block

retrieves segmented object information from the encoding

feature maps. Localizing the OD and fovea in the DR is

made easier with this method as it offers a wider range for

faster learning and evaluation.

The article is organized as follows for the remaining portion: 

The Introduction is covered in Section 1, the Related Works of 

the Existing Methods are illustrated in Section 2, the Proposed 

Method is presented in Section 3, the Results of the Proposed 

Method are discussed in Section 4, and the Article is 

concluded in Section 5. 

2. RELATED WORKS

Wang et al. [18] offered the U-net model, a classical CNN-

based coarse-to-fine deep learning framework, to precisely 

recognize the OD. The segmentation outcomes from the 

complete image were divided into two distinct groups after the 

grayscale vessel density maps and colour fundus images were 

used to independently train this network. A region of the local 

image (disc candidate area) was found by combining the 

outcomes using an overlap approach, and for further 

segmentation, it was then added to the U-net model. Due to the 

impact of parapapillary atrophy, subjective bias, and vessel 

density maps, the OD's position is not sufficiently indicated in 

the ground truth for the OD in color fundus images. 

Bhatkalkar et al. [19] offered an entirely novel CNN design 

in order to precisely separate the OD in fundus images. The 

encoder and decoder are connected by means of a novel 

attention module, DeepLab v3+ and U-Net models' 

fundamental architectures are modified in order to achieve the 

highest level of accuracy. To improve the performance of 

these designs even more, employ conditional random fields 

that are fully related. However, adding attention gates to the 

U-Net architecture increases the computational complexity of

the model, which can lead to longer training times and higher

memory requirements.

Tang et al. [20] offered HBA-U-Net: a hierarchical 

bottleneck attention-enhanced U-Net backbone. In order 

emphasize retinal anomalies that might be crucial for 

segmentation of the OD and fovea in the degenerating retina, 

the network is made up of self-attention, channel attention, and 

relative-position attention are combined and improved in this 

unique bottleneck attention block. However, requires a large 

number of annotated images, which can be difficult to obtain 

in medical applications. This can lead to overfitting, where the 

model memorizes specific image features instead of learning 

to generalize to new images. 

Yadav et al. [21] offer a cascaded two-stage U-Net network 

with compressed versions of both networks for intra-retinal 

layer segmentation (CCU-INSEG). The division of retinal 

tissue from optical coherence tomography OCT B-scans is 

carried out by the first network. The second network 

accurately separates 8 intra-retinal layers. The model size as 

well as parameters in the first and second networks are reduced 

by 392 and 26 times, respectively, through the compression of 

U-Net. Even so, the technique achieves nearly identical

accuracy to U-Net without requiring more processing power

or Storage resource limitations. Introduced Laplacian-based

outlier identification using adaptive non-linear interpolation

for layer surface cavity filling during the post-processing step.

However, the generalizability, controlling longitudinal data,

and particular restricted situations of retinal features are still

limited.

Bengani et al. [22] proposed a new deep learning model that 

makes use of semi-supervised learning and transfer learning to 

autonomously segment the OD in images of the retinal fundus. 

The Kaggle dataset for DR contains a significant number of 

unlabeled fundus images, which are used to train a 

convolutional autoencoder (CAE) to autonomously acquire 

features. By recreating the input images, the autoencoder (AE) 

becomes a pre-trained network as it gathers more 

characteristics from the unlabeled images. Next, a network for 

segmentation is created using the pre-trained autoencoder 

network. Next, utilizing retinal fundus images and the 

corresponding OD ground truth images from the DRISHTI 

GS1 and RIM-ONE datasets, the segmentation network is 

trained using transfer learning. However, the pre-trained CAE 

model could not be used to perform other tasks, such as 

segmenting the vessels or the fovea or identifying illnesses. 

Wang et al. [23] offered a deep learning technique for 

macula fovea identification on ultra-wide field fundus (UWF) 

images. Using approaches based on U shape network (U-Net) 

and Fully Convolutional Networks (FCN), 1800 training 

fundus images (before increasing process), 400 validation 

images (before amplifying process), and 100 test images 

(before amplifying process) are employed. The fovea was 

marked by three qualified ophthalmologists. The investigation 

of a technique comes from the anatomical perspective. This 

method is based on the spatial arrangement of the OD centre 

and macula fovea in the UWF. Based on the expertise of 

ophthalmologists, a set of criteria for this technique are 
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established and proven to be efficient. There are probably a 

few variations among the OD-fovea distance guidelines for 

UWF with various eye diseases, however, taking into account 

the high max error and the degree of dispersion of this 

technique. 

Bilal et al. [24] proposed a novel, two-stage structure for 

automatic DR classification. Two distinct U-Net models were 

used in the initial phase to segment the OD and blood vessels 

(BV) during preprocessing. The improved retinal images 

obtained from the OD and BV extraction process are then fed 

into the transfer learning-based model VGGNet in the second 

step, which detects DR by detecting biomarkers for retinal 

haemorrhages (HM), exudates (EX), and microaneurysms 

(MA). However, it has not enhanced the classification 

performance and cannot be used to diagnose other eye 

illnesses like cataracts and glaucoma. 

David et al. [25] offered an enhanced design known as U-

Net to segment retinal vessels. By incorporating the traditional 

U-Net incorporates a substantial square and a multiscale input 

layer in order to increase image segmentation accuracy, the 

offered traditional U-Net enables the use of all available 

spatial setting information. Retinal vessel segmentation is the 

process of separating the arteries in retinal images. Dense 

image values can be used to measure blood artery density. The 

real worth of eye blood vessels for medical diagnostics is 

being built, in large part, through the use of data augmentation 

and analytics. The automated segmentation of retinal arteries 

by the proposed method shows a lot of promise. However, the 

supplied picture may have noise sensitivity, which might result 

into inaccuracies in the segmentation results. 

Skouta et al. [26] proposed a modified CNN-U-Net 

architecture for the detection of retinal HM in fundus images. 

For segmentation and identification of potential locations with 

retinal HM, the proposed U-Net was trained using a GPU and 

the IDRiD dataset. Then utilized preprocessing to increase the 

data and improve the quality of images, which are crucial for 

describing the intricate features needed for the segmentation 

task. However, DR becomes regenerative if the HM become 

more complicated. 

Xiong et al. [27] anticipated a weak label based Bayesian 

U-Net that uses annotations based on the Hough transform to 

separate the ODs in fundus images. In order to do this, develop 

a probability graphical model and investigate a Bayesian 

strategy using the U-Net framework. Estimating the OD filter 

and updating the weights of the Bayesian U-Net are done as 

part of the model's optimization using the expectation-

maximization method, respectively. However, the 

segmentation precision attained is still less accurate than that 

of models taught using expert-manually annotated ground 

truth labels. 

As a result, retinal characteristics are still restricted, the 

OD's position is not sufficiently highlighted, and the 

computational cost of adding attention is increased by the need 

for a large number of annotated images, which can lead to 

overfitting. It is impossible to segment the arteries, the fovea, 

or diagnose diseases effectively, as variations in the OD-Fovea 

distance guidelines for different eye diseases and the lack of 

enhanced classification further complicate the diagnosis. HM 

are complex, segmentation precision is lower, and noise in the 

input image causes errors. Furthermore, prior methods such as 

hierarchical bottleneck attention blocks, cascaded two-stage 

networks, and weak-label-based models face challenges like 

generalizability, noise sensitivity, and excessive 

computational complexity. These limitations emphasize the 

necessity for a robust and efficient approach that not only 

addresses the segmentation and localization of retinal features 

like the OD and fovea but also enhances the overall accuracy 

and adaptability of DR detection. Hence, a novel IUNetA 

framework is proposed to overcome these challenges by 

mitigating overfitting, improving segmentation precision, and 

optimizing computational efficiency. 

 

 

3. OD AND FOVEA SEGMENTATION BASED ON U-

NET FRAMEWORK 

 

3.1 Basic U-Net 

 

The U-Net architecture is a popular and effective paradigm 

for segmenting medical images. It has a U-shaped design made 

up of an encoder path and a symmetric decoder path. The 

model can record both local information and information 

about the overall context because of this U-shaped design 

which is shown in Figure 1. Convolutional and pooling layers 

are utilized in the encoder route to gradually downscale the 

input image, which aids in the process of extracting prominent 

features and gathering contextual data. Each down-sampling 

step shrinks the feature maps' spatial size while increasing 

their depth. To enable data to move from the encoder to the 

decoder, skip connections are introduced. The relevant layers 

among the encoder and decoder routes are directly connected 

by these links. The encoder's superior resolution 

characteristics can be obtained by the decoder due to skip 

connections and act as a shortcut for the gradient flow during 

training. The decoder path performs up-sampling of the feature 

maps using deconvolution layers or up-sampling followed by 

convolutional layers. The feature maps' spatial resolution is 

gradually restored by this procedure while retaining the 

contextual information learned by the encoder. Skip 

connections combine the feature maps of the encoder and 

decoder; this refines the segmentation outcome. Figure 1 

illustrates the U-Net architecture [28]. 

 

 
 

Figure 1. U-Net architecture 
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3.2 Intensified U-Net framework 

 

The retina's MA, HM, hard EX, and soft EX are indicative 

of DR, a major cause of blindness or visual impairment. 

Important anatomical features for diagnostic evaluations on 

fundus pictures of the eyes include the OD and fovea. 

Researchers have solved segmenting these structures' 

challenges which can result in overfitting, computational 

complexity, and inaccuracies by utilizing machine learning 

and deep learning techniques. It is challenging to distinguish 

the OD and fovea precisely because of their proximity to other 

retinal structures. To address these challenges, an intensified 

U-Net framework has been proposed, which involves using a 

Wiener filter to preprocess the information in order to 

eliminate speckle noise, extract features, and locate the OD 

and fovea. The ACDRB is used by the encoder and decoder in 

the Proposed IUNetA in place of the convolution layer. The 

encoder and decoder also include a skip connection. While 

skip connections integrate low-level picture information from 

the encoder unit with high-level image features from the 

decoder unit, the ACDRB retrieves dense features without 

raising parameters. To address the problem of semantic gaps, 

the skip connection is coupled with the CAB. On maps of 

features with many channels, the SE block is used to highlight 

key channels, giving a higher weight to channels with 

significant semantic information. Channel compression is 

achieved via a 1×1 convolution layer. From the encoding 

feature maps, the decoder block retrieves segmented object 

information; each segment includes the ACDRB and the up-

sampling layer. Rather than using the sigmoid function, which 

has gradient limits and may result in vanishing gradient issues, 

the final output is obtained via the tangent function. The 

tangent function has a wider range for faster learning and 

grading, making it more useful for localizing the OD and fovea. 

Thus, the overall architecture is segmented and localized the 

OD and fovea in the DR. Figure 2 depicts the process flow of 

the IUNet architecture. The Wiener filter will be discussing in 

the Below section. 

 

 
 

Figure 2. Process flow of the IUNetA 

 

3.2.1 Wiener filter 

A low-pass filter called the Wiener filter can be used in 

many situations to improve signals that have been weakened 

by noise. The statistical method used to develop the filter 

makes the assumption that the signal and noise are stationary 

linear stochastic processes with well-defined spectral 

properties. This approach achieves an ideal balance in the 

tradeoff between bias and variance, which leads to its higher 

performance. Alternatively stated the Wiener filter is an 

adaptive filter that determines the neighborhood's mean and 

variance before applying less smoothing when variation is 

high and more smoothing when variation is low. 

The error between the original signal and the predicted 

signal is reduced by the filter. The error measure for an 

uncorrupted picture 𝑖 and an estimated image 𝑖̂ is as follows is 

given by Eq. (1): 

 

𝑒2 = 𝐸{(𝑖 − 𝑖)̂2} (1) 

 

where, the argument's anticipated value is denoted by 𝐸{. }. 

Consequently, the task of determining the quadratic error 

function's minimum simplifies the process of generating an 

estimated image. In order to do this, the frequency domain is 

employed, and the subsequent presumptions are made: The 

noise and image have no correlation, a zero mean, and a linear 

function that diminishes the intensity levels in the estimated 

picture. The error function's minimum is provided when these 

requirements are met is given as Eq. (2): 

 

�̂�(𝑎, 𝑏) = [
𝐻∗(𝑎, 𝑏)𝑆𝑖(𝑎, 𝑏)

𝑆𝑖(𝑎, 𝑏)|𝐻(𝑎, 𝑏)|2 + 𝑆𝑖(𝑎, 𝑏)
] 𝐺(𝑎, 𝑏) (2) 

 

where, �̂�(𝑎, 𝑏)  is the frequency domain estimated image, 

𝐻(𝑎, 𝑏) is the degradation function transform, 𝐺(𝑎, 𝑏) is the 

deteriorated image transform,  𝐻∗(𝑎, 𝑏)  is the complex 

conjugate of 𝐻(𝑎, 𝑏) , and 𝑆𝑖(𝑎, 𝑏) = |𝐻(𝑎, 𝑏)|2  is the non-

degraded image power spectrum. The magnitude of the 

complex value squared is the result of multiplying a complex 

value by its conjugate, according to the filter's general 

principle. Consequently, the Eq. (3) is given by: 

 

�̂�(𝑎, 𝑏)

= [
1

𝐻(𝑎, 𝑏)

 |𝐻(𝑎, 𝑏)|2

|𝐻(𝑎, 𝑏)|2 +
𝑆𝜂(𝑎, 𝑏)

𝑆𝑖(𝑎, 𝑏)
⁄

] 𝐺(𝑎, 𝑏) 
(3) 

 

where, the noise power spectrum is represented by 𝑆𝜂(𝑎, 𝑏) =

1688



 

|𝑁(𝑎, 𝑏)|2 . Since the power spectrum of the non-degraded 

picture is often unknown, the expression 
𝑆𝜂(𝑎, 𝑏)

𝑆𝑖(𝑎, 𝑏)
⁄  is 

substituted by a constant K. Images that have suffered from 

constant power additive noise can be improved with the 

Wiener filter while they are being processed digitally. The 

Wiener filter is often preferred for noise reduction due to its 

adaptive nature, which allows it to adjust based on the local 

characteristics of the image, providing effective noise removal 

without sacrificing important details. Unlike the Gaussian 

filter, which applies uniform smoothing across the entire 

image and may blur edges, the Wiener filter smooths areas 

with less variation while preserving high-variation regions. 

This makes it more effective in scenarios where noise 

characteristics are not uniform, particularly in the presence of 

additive white Gaussian noise (AWGN). The bilateral filter is 

capable of preserving edges better than the Gaussian filter, 

which is computationally more expensive and may not 

perform as well in high-noise conditions. Wiener filter 

outperforms the Gaussian filter in terms of noise reduction 

while maintaining the quality of the image. Additionally, 

while the bilateral filter is useful for edge preservation, its 

computational cost and lower efficiency in dealing with noise 

across varying regions make the Wiener filter a more practical 

choice for many applications. Therefore, the Wiener filter's 

ability to balance noise reduction and computational efficiency, 

especially in diverse noise environments, justifies its selection 

over other preprocessing techniques. Its parameters, including 

the noise's power and the neighborhood's size, effectively 

eliminate noise in the DR image. The IUNetA will be 

discussing in the upcoming section. 

 

3.2.2 IUNetA 

The IUNet-A architecture comprises an encoder, a decoder, 

and skip connections, where conventional convolution layers 

are replaced by the proposed ACDRB modules. The encoder 

block extracts multi-scale contextual features by progressively 

encoding the raw input images. The ACDRB incorporates 

max-pooling, batch normalization, and a ReLU layer to extract 

dense features without increasing the number of parameters. 

The contracting path (on the left) and the expanding path (on 

the right) of ACDRB have the equal number of residual blocks. 

Every step of the contracting path has an ACDRB, and down 

sampling is done using a 2×2 max pooling layer with a step 

size of 2. To ensure that minimize the size of the image without 

losing any important information, the convolution layer uses a 

predefined kernel to execute the convolution process. The 

kernel's receptive field determines the resultant layer of 

convolution. The region that the kernel sees to produce the 

output is known as the receptive field. Eq. (4) provides the 

discrete convolution process is given below: 

 

(𝐹 ∗ 𝑘)(𝑞) = ∑ 𝐹(𝑢)𝑘(𝑣)

𝑢+𝑣=𝑞

 (4) 

 

Discrete functions, like F and K, are frequently represented as 

sequences. The values of these functions at indices u and v, 

respectively, are denoted as 𝐹(𝑢)  and 𝑘(𝑣) . These two 

functions' convolution is represented by (𝐹 ∗ 𝑘)(𝑞). 

By using the predetermined gaps in the convolution 

procedure, an Atrous convolution aims to expand the receptive 

field. Let " 𝑚 
∗ "be the convolution operator for the dilation 

factor of "𝑚". As a result, Eq. (5) gives the dilated convolution 

operation. 

(𝐹 ∗ 𝑘𝑚
 )(𝑞) = ∑ 𝐹(𝑢)𝑘(𝑣)

𝑢+𝑚𝑣=𝑞

 (5) 

 

A kernel of size i×i is expanded to a size of i+(i-1) (r-1) in 

Atrous convolution, where r is the Atrous rate. By enabling 

flexible multiscale information aggregation, it maintains the 

same resolution. The kernels' ability to expand their field of 

view and include a broader background is made possible by 

Atrous convolution. While Atrous convolution produces dense 

feature extraction, ordinary convolution produces sparse 

feature extraction. It is feasible to extract dense features 

without adding more parameters because, even as the filter 

size grows, only non-zero values will be computed. With the 

same number of parameters needed as a regular convolution, 

dilated convolutions allow exponentially larger receptive 

fields without sacrificing resolution. The receptive field grows 

with the square of the rising rate when the Atrous convolution 

rate is increased exponentially on subsequent layers. With the 

Atrous convolution rate's exponential growth, accuracy may 

be increased on both a qualitative and quantitative level. The 

research findings suggest that the network performs better 

when the Atrous convolution rate is consistently set to 2 on all 

levels. With an Atrous rate of 2, substitute the Atrous 

convolutional layer for each of the conventional convolutional 

layers. Figure 3 shows the ACDRB is given below: 

 

 
 

Figure 3. ACDRB 

 

Meanwhile, skip connections have been added to combine 

high-level image features from the decoder unit along with 

low-level image information from the encoder unit. In order to 

eliminate the semantic gap problem proposed the CAB is 

concatenated with the conventional skip connection which 

aggregates the feature map of the encoder and decoder. Up 

sampling using transposed convolution Regaining the image's 

spatial information is the purpose of transposed convolution. 

Convolution can be used to carry out the transposed 

convolution procedure. The transposed convolutional layer 

spreads out each point in the input picture over the output 

image to carry out the up sampling process. Up sampling is 

applied in the transposed convolution between the input 

image's rows and columns, as well as by padding the same. Eq. 

(6) provides the dimension of the output image produced by 

the transposed convolution: 

 

𝑜𝑢𝑡 = (𝑛 − 1) × 𝑠𝑡𝑟𝑖𝑑𝑒 + 𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒
− 2 × 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 

(6) 

 

where, 'n' is the input picture size. For instance, an output 
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image of 32×32 will be produced if the input image has the 

dimensions 16×16, stride=2, padding=same, and kernel size of 

2×2. Therefore, the transposed convolution layer in the 

suggested design doubles the size of the output picture to that 

of the input image concatenating with the feature maps from 

the contracting path that are weighted by CAB. Additionally, 

a 1×1 convolution layer is used for channel compression. The 

encoded feature maps yield the segmented object information 

using a decoder block. As a consequence, the up-sampling 

layer and ACDRB are included in each unit of the decoder 

block. The final output is taken from the tangent function 

instead of using Sigmoid function limits in the gradients at the 

function's extreme ends are extremely small because the input 

values are compressed by the sigmoid function into a small 

range between 0 and 1. As a result, backpropagation may 

encounter the vanishing gradient problem, in which the 

gradients are too fragile and slow to converge or even prohibit 

the neural network from effectively learning. So, utilize the 

tangent function which increasing its potential value and it 

provides a larger range for quicker learning as well as grading, 

it will be more effective to localize the OD and fovea. The 

CAB will be discussing in the below section. 

 

3.2.3 CAB 

For feed-Forward CNNs, an attention module called a CAB 

can be incorporated to enhance representation performance. In 

CAB, which consists of a series of channels and spatial 

modules with squeeze and excitation that have been 

strategically created to highlight the relative aspects, several 

attentional module types are represented in addition to 

traditional attentional modules. Eventually, unimportant 

features are suppressed along the channel and spatial axes, 

respectively. Also, recent research revealed that deep CNNs' 

performance may be greatly enhanced by the channel attention 

method. Nonetheless, the majority of techniques aimed at 

improving performance invariably make the model more 

complicated. the squeeze and excitation block's 

dimensionality reduction process by using 1D convolution in 

the Efficient Channel Attention (ECA) module, which 

significantly decreases the model's complexity while 

preserving exceptional performance. Figure 4 depicts the CAB 

is shown above. The section that follows will discuss the 

IUNetA's findings. 

 

 
 

Figure 4. CAB 

 

Conversely, in ECA, average-pooling alone is utilized to 

aggregate spatial data; in contrast, max-pooling gathers 

additional crucial information regarding distinguishing object 

features in order to deduce a more precise channel-wise 

attention. Thus, to get more precise channel-wise attention, use 

both average pooling and maximum pooling while 

aggregating the geographical information. 

Traditionally, input features 𝐹𝜖𝑅𝐻×𝑊×𝐶  using average-

poling and max-pooling on a channel basis can produce, 

𝐹𝑀𝑃𝜖𝑅1×1×𝐶  and 𝐹𝐴𝑃𝜖𝑅1×1×𝐶  correspondingly, for example, 

at the c -th channel of the Eqs. (7) and (8) is given below: 

 

𝐹𝑀𝑃
𝑐 = 𝑀𝑎𝑥 (𝐹𝑐(𝑖, 𝑗)), 0 < 𝑐 < 𝐶 < 𝑖 < 𝐻, 0 < 𝑗

< 𝑊 
(7) 

 

𝐹𝐴𝑃
𝑐 =

1

𝐻 × 𝑊
 ∑ ∑ 𝐹𝑐(𝑖, 𝑗)

𝑊

𝑗=1

𝐻

𝑢=1

, 0 < 𝑐 < 𝐶 (8) 

 

where, 𝑝𝑐(. ) denotes the c-th channel's pixel value at a certain 

location, 𝑀𝑎𝑥 (. ) yields the maximum number, and H, W, and 

C stand for the height, width, and number of channels of the 

input feature F, respectively. A shared weight 1D 

convolutional layer receives the two descriptors after which it 

creates a channel attention map 𝑀𝑐𝜖𝑅1×1×𝐶 . After that, CAB 

merging the feature vectors using channel-wise addition that 

were produced by the common 1D convolution. To put it 

briefly, the channel attention map is determined by Eq. (9): 

 

𝑀(𝐹) = tan (𝐶𝑜𝑛𝑣1𝐷(𝐹𝐴𝑃) + 𝐶𝑜𝑛𝑣1𝐷(𝐹𝑀𝑃)) (9) 

 

where, the tangent function is shown by tan (. ) and the 1D 

convolutional layer is represented by Conv1D (). 

In CAB used the spatial and channel attention with squeeze 

and excitation that reduced the computational complexity. The 

SE block, which has demonstrated strong optimization 

performance on several DCNNs, is a standard channel 

attention block that might include each channel's importance. 

Due to the SE block's popularity, it is now used to emphasize 

crucial channels on multi-channel feature maps. To make it 

easier to recognize, the channels with important semantic 

information are given a larger weight. 

 

3.3 Localization 

 

This subsection presents the qualitative and quantitative 

results for optic disk (OD) and fovea center localization using 

retinal images. The optic disk, the visible portion of the optic 

nerve head within the retina, is characterized by its oval shape 

and brightness compared to the surrounding retina. 

Pigmentation variations in normal eyes can cause differences 

in the appearance of the optic disk. In fundus images, many 

blood vessels intersect the optic disk, making it a crucial 

landmark for retinal analysis. Accurate localization of the 

optic disk is essential for distinguishing it from other retinal 

structures, such as EX and cotton wool spots. Optic disk 

localization involves finding the approximate center of the 

disk or enclosing it within a specific region, such as a circle or 

square. This task is complicated by distractors, such as the 

edges of blood vessels or large exudate lesions. Early methods 

localized the optic disk by identifying the largest cluster of 

bright pixels. These intensity-based algorithms were simple, 

fast, and effective in normal retina images with few 

pathologies. However, they struggled in images with yellow 

or white lesions, as intensity changes in these areas could 

mimic the brightness of the optic disk. For the proposed 

approach, a 2D heat map with a Gaussian-shaped intensity 

distribution is used for localization, with the peak of the heat 

map positioned at the center of the optic disk (OD) and the 

fovea. The IUNetA model is trained as a regression network 

using these heat maps, where the predicted OD and fovea 

center coordinates are determined by computing the argmax of 
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the pixel values in the predicted heatmap. This approach offers 

a shape-independent localization method, which overcomes 

the limitations of earlier methods that were susceptible to noise, 

low contrast, and artifacts. 

To address challenges presented by complex retinal images, 

the proposed IUNetA employs the ACDRB and CAB for 

reliable feature extraction and improved localization accuracy. 

The model is trained using 2D heatmaps centered on the 

ground-truth coordinates of the optic disk (OD) and fovea 

centers. Since the datasets provide only the coordinates of the 

OD and fovea centers, spherical 2D Gaussian heatmaps are 

generated and centered on these coordinates to train IUNetA. 

These heatmaps feature a bell-shaped intensity distribution, 

with the center representing the maximum intensity at the 

given coordinate. The intensity decreases following a 

Gaussian distribution, extending to ±3σ, where σ is the 

standard deviation of the Gaussian distribution. 

 

 

4. RESULTS AND DISCUSSION 

 

Performance measures, comparison analysis, and the proposed 

architecture for findings are provided in this section. The 

proposed models were trained on various platforms using 

Python and Tensorflow together with the Keras Applications 

DL modules. There are 516 images with a resolution of 

4288x2848 in the IDRiD collection. Retinal specialists at an 

eye facility in Nanded, Maharashtra, India, took these images. 

Pixel-level annotation for common DR abnormalities such as 

MA, soft exudates (SE), hard exudates (EX), OD and HM has 

produced a binary mask for a few colored fundus pictures. In 

addition, each of the 516 images has its DR severity graded. 

The dataset has two folders: One folder as segmentation 

comprises of 295 images for training and 149 images for 

testing and another folder as localization, which consists of 

413 for training and 103 for testing. The dataset split ratio for 

proposed IUNetA is trained and tested as 60:40 for 50 epochs. 

With a batch size of 32 and a learning rate of 0.0001, the 

neural networks were trained using the Adam optimizer 

without the inclusion of decay techniques. The dimension of 

the input image is 256×256 pixels with kernel size as 3. The 

loss was computed using the dice coefficient, one of the often-

used loss functions in U-Net. 

Figure 5 depicts a preprocessed image that has undergone 

noise reduction using a Wiener filter. Wiener filters take signal 

and noise properties into account while estimating the original, 

noise-free picture from a noisy version. The filter's efficacy is 

determined on the amount of noise and the quality of the image. 

Figure 6 displays the Segmented image for OD using the 

proposed IUNetA. When contrast to pixels that are falsely 

positive or falsely negative, the IUnetA generates an OD mask 

that has a very high count of actual positive pixels. This 

illustrates the accuracy of the segmented OD border when 

compared to the datasets' real OD boundaries. The segmented 

OD results qualitatively demonstrate that the skip connection 

that is being suggested to make up for the encoder's lost spatial 

information prevents the OD borders from displaying blocky 

or checkerboard results. With extremely few false-positive and 

false-negative areas, the IUNetA can reliably extract the OD 

borders even when several types of lesions are present in 

certain pictures. 

Figure 7 depicts the OD centre localization using the 

proposed IUNetA. With the great spatial resolution of the 

original fundus images, the outcomes are typically considered 

adequate for centre localization. Intensified U-Net locates the 

optic disc centre in retinal pictures with accuracy. To capture 

finely detailed patterns and features, it makes use of several 

layers and feature extraction. The network detects the optic 

disc centre even in poor or weakened images by adjusting to 

noise, occlusions, and image quality. 

Figure 8 depicts the Fovea centre localization using the 

proposed IUNetA. The localization of the fovea centre with 

the IUNetA has produced remarkable outcomes. By using the 

sophisticated features of the IUNetA, the system is able to 

accurately and robustly identify the fovea center's precise 

position in retinal pictures. The reliability of fovea centre 

localization has been significantly improved by the IUNetA’s 

ability to capture minute details and complicated elements 

within the pictures, as well as its capability to manage complex 

fluctuations in image quality. 

 

 
 

Figure 5. Preprocessed image 
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Figure 6. Segmented image for OD 

 
 

Figure 7. OD centre localization 

 

 
 

Figure 8. Fovea centre localization 

 

To evaluate the model's performance using several 

measures, including sensitivity, IoU, DSC and accuracy. 

Using a range of measures, overfitting and inadequate 

parameter tuning were discovered after the model was 

constructed. The section below provides a description of the 

performance metrics. 

 

Accuracy: A statistics measure called accuracy that 

evaluates the accuracy to which the real or anticipated value 

coincides with the observed or predicted value. To calculate 

accuracy, multiply the outcome by 100 and divide the total 

number of forecasts by the number of accurate forecasts.  

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

Intersection over Union (IoU): Intersection over union is 

a frequently used measure in object identification algorithms 

to evaluate localization accuracy and compute localization 

faults. To calculate IoU, the overlap between the ground truth 

and anticipated annotations is divided by their union. By 

dividing the intersection of two sets by their union, the 

similarity between two sets is computed. 

 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

Sensitivity: The measure employed to evaluate a model's 

predictive power for true positives in each accessible category 

is called sensitivity. Sensitivity is calculated as the ratio of true 

positive results to the total of true positive and false negative 

results. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Dice Similarity Coefficient (DSC): The DSC measures the 

similarity between two sets, commonly used in segmentation 

tasks. It ranges from 0 (no overlap) to 1 (perfect overlap), 

calculated by taking twice the intersection of the sets divided 

by the sum of their sizes. This metric is crucial for evaluating 

segmentation accuracy, especially in medical imaging. 

 

𝐷𝑆𝐶 =
2 × 𝑇𝑃

2 ×  𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

The proposed IUNetA, which reduced the overfitting, 

complexity errors, and inconsistency enhanced the resolution 

that accuracy attained 99.9%, IoU attained 89.17%, sensitivity 

attained 90%, and a DSC attained 99.14%. Based on these 

performance metrics, the DR of the optic and fovea was 

accurately segmented and localized by the model. Table 1 

depicts the performance metrics of proposed method. 

Table 2 presents the performance analysis of the model by 
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varying the training and testing data split ratios, evaluated 

using accuracy, Intersection over Union (IoU), sensitivity, and 

Dice coefficient (DSC). The 90:10 split achieves the highest 

accuracy (99.9%) and DSC (99.14%), demonstrating superior 

overall performance, although it’s IoU (89.17%) and 

sensitivity (90%) are comparatively lower. The 80:20 split 

shows a strong balance across metrics, with an accuracy of 

98.08%, the highest IoU (97.45%), sensitivity (97.32%), and a 

DSC of 93.52%. The 70:30 split yields slightly lower accuracy 

(92.72%) but maintains a high IoU (93.72%) and DSC 

(93.42%), though its sensitivity (91.62%) is slightly reduced. 

The 60:40 split performs well with an accuracy of 97.08%, an 

IoU of 92.53%, and a DSC of 95.32%, but its sensitivity 

(97.12%) is the highest among all splits. Overall, the 90:10 

split is the most accurate, while the 80:20 split offers the best 

IoU and sensitivity balance. 

To compare the performance metric as Accuracy, IoU, 

Sensitivity and DSC for the proposed architecture with Prior 

models such as Modified U-Net [26], End-to-End encoder-

decoder network (DRU-Net) [14], FFU-Net (Feature Fusion 

U-Net) [29], Deep Lab v3 [30], DR ResNet [31], and 

implemented U-Net. 

 

Table 1. Performance metrics of proposed architecture 

 
Metrics Performance (%) 

Accuracy 99.9 

Intersection Over Union (IoU) 89.17 

Sensitivity 90 

DSC 99.14 

 

Table 2. Performance analysis by varying training and 

testing data size 

 
Training 

and Testing 

Percentage 

Accuracy 

Intersection 

Over Union 

(IoU) 

Sensitivity 

Dice 

Coefficient 

(DSC) 

60:40 97.08 92.53 97.12 95.32 

70:30 92.72 93.72 91.62 93.42 

80:20 98.08 97.45 97.32 93.52 

90:10 99.9 89.17 90 99.14 

 

Table 3. Comparing the suggested architecture's performance 

to earlier models 

 

Models 
Accuracy 

(%) 

IoU 

(%) 

Sensitivity 

(%) 

DSC 

(%) 

Modified U-Net 98.68 76.61 80.49 86.51 

DRUNet 99.7 84.5 89.9 - 

FFU-Net - 84.14 87.55 91.3 

Deep lab v3 98 86 87 86 

DR ResNet+ 98.29 - - 98.98 

Implemented U-

Net 
98.93 62.01 65.87 97.98 

Proposed 

IUNetA 
99.9 89.17 90 99.14 

 

The Table 3 compares segmentation models based on 

accuracy, IoU, sensitivity, and Dice coefficient, highlighting 

the superior performance of the proposed IUNetA model, 

which achieves the highest metrics: 99.9% accuracy, 89.17% 

IoU, 90% sensitivity, and 99.14% Dice coefficient. While 

DRUNet also performs well with 99.7% accuracy, 84.5% IoU, 

and 89.9% sensitivity, and FFU-Net demonstrates strong 

segmentation abilities with 84.14% IoU, 87.55% sensitivity, 

and a Dice coefficient of 91.3%, they fall short of IUNetA. 

Deep Lab v3 achieves high IoU (86%), sensitivity (87%), and 

Dice (86%) but lower accuracy (98%). Models like Modified 

U-Net and Implemented U-Net exhibit good accuracy, but 

struggle with lower IoU and sensitivity, while DR 

ResNet+reports a high DSC (98.98%) but omits IoU and 

sensitivity. Overall, IUNetA stands out as the most effective 

model across all metrics. 

From the above analysis, in existing network Overfitting 

and computational complexity result from inadequately 

highlighting the position of the optic disc. Segmentation is 

impeded by limited retinal features and differences in OD-

Fovea distance standards. The proposed IUNetA utilize the 

Wiener filter to reduce the noise, and ACDR block consists of 

additional layer with CAB skip connection extracts the deep 

features that reduced the overfitting and complexity which 

segmented and localized the optic disc and fovea. The 

proposed IUNetA attained maximum accuracy, high IoU and 

Sensitivity when compared to prior models. The proposed 

IUNetA framework incorporates the Adam optimizer, which 

efficiently adjusts learning rates and accelerates convergence, 

making it well-suited for handling large-scale datasets and 

high-resolution images. The adaptive nature of Adam prevents 

stagnation in local minima and optimizes computational 

efficiency. Additionally, the use of ACDRB ensures effective 

feature extraction without significantly increasing memory 

requirements. To further enhance scalability, strategies such as 

batch normalization can be employed. These optimizations 

enable the architecture to maintain performance and accuracy 

even with extensive datasets and higher-resolution retinal 

images. Thus the proposed IUNetA outperforms better than 

existing networks which accurately segmented and localized 

the Optic disc and fovea in the DR. 

 

 

5. CONCLUSION 

 

In this article, the analysis of the Proposed IUNetA utilized 

IDRID dataset and initiates with the Wiener filter for 

preprocessing, which improves the quality of the retinal 

images by successfully removing small quantities of noise. 

Subsequently, the encoder and decoder units of the proposed 

IUNetA are strengthened by the ACDRB. With its 

sophisticated combination of batch normalization, ReLU 

layers, and max-pooling which maximized feature extraction 

while keeping the number of parameters adequate. In order to 

close the semantic gap between high-level and low-level 

picture features, proposed the CAB, that combines channel 

and spatial attention with a squeeze-and-excitation technique. 

The proposed IUNetA not only improves recognition but also 

lowers computing complexity. Furthermore, include a tangent 

function for the output in order to speed up learning and 

mitigate the vanishing gradient issue which was more effective 

to localize the optic disc and fovea. Notably the proposed 

architecture attained maximum accuracy of 99.99%, IoU of 

89.17% and Sensitivity of 90% when compared to prior 

models. Thus, the overall architecture which outperforms 

better also accurately segmented and localized the optic disc 

and fovea in the DR. In Future, explore sophisticated attention 

systems that can adjust to particular structures and aspects of 

images. Provide attention blocks that dynamically adjust to 

various image areas for improved feature extraction and 

localization.
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