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 The relentless evolution of ransomware demands detection frameworks that adapt to novel 

variants and minimize reliance on labelled data. Existing methods often suffer from 

distribution shifts, limited generalizability, and opaque decision-making. This study 

introduces CINN-UTLC, a computationally intelligent neural network-based unsupervised 

transfer learning algorithm that integrates domain adaptation, hybrid feature extraction, and 

explainable clustering for ransomware detection. By combining Convolutional Neural 

Networks (CNNs) and Long Short-Term Memory (LSTM) models, CINN-UTLC captures 

static features (e.g., file entropy, headers) and dynamic behaviours (e.g., API call sequences) 

while aligning source (benign) and target (unlabelled) domains via Geometric Alignment 

Clustering (GAC). The framework employs SHapley Additive exPlanations (SHAP) and 

Local Interpretable Model-Agnostic Explanations (LIME) to interpret feature contributions, 

ensuring transparency in clustering decisions. CINN-UTLC achieves a 98% detection rate, 

2.5% false positive rate, and AUC of 0.94, outperforming benchmarks like UNVEIL 

(AUC=0.78) and deep learning methods (AUC=0.73). Clustering metrics (Silhouette Score: 

0.80–0.86; Adjusted Rand Index: 0.87–0.93) confirm robust separation of ransomware 

families, including zero-day variants. The algorithm’s unsupervised transfer learning 

capability enables detection of unknown ransomware through behavioural anomalies, even 

without labelled target data. By addressing domain shifts, reducing false positives, and 

offering explainable insights, CINN-UTLC sets a new standard for adaptive cybersecurity 

frameworks, bridging critical gaps in ransomware resilience and proactive threat mitigation. 
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1. INTRODUCTION 

 

Ransomware is notorious for encrypting user-saved data or 

locking the devices of the users. It has proven to be dangerous 

for all users across the world, creating a massive cyber-

security threat. Its evolution, as well as the growing 

sophistication of its various strains, remains a major problem 

for professionals working on cyber-security. Such threats are 

memorable for being distinct in approach, mainly through the 

‘encrypt then lock out the device, and finally ask for a ransom’ 

methodology [1]. 

There are two broad categories of Ransomware: 

1. Locker Ransomware: This attack is less sophisticated. It 

holds the computer interfaces captive while leaving most 

of the important data untouched. 

2. Crypto Ransomware: One of the more sophisticated 

variants that locks off important data of the user in an 

encrypted vault. This inaccessibility can only be undone 

through a specified decryption key. 

To address these threats, researchers have been increasingly 

relying on deep learning architectures such as Convolutional 

Neural Networks (CNNs) and Long Short-Term Memory 

(LSTM) networks. CNNs are best suited to process static 

features (e.g., file headers, binary structures), whereas LSTMs 

capture temporal behaviors (e.g., API call sequences, 

encryption patterns) [1, 2]. Nevertheless, current methods tend 

to perform poorly with distribution shifts between training and 

test data, which hinders their ability to generalize to new 

ransomware variants. 

 

1.1 Objectives and contributions 

 

This study proposes CINN-UTLC, a novel ransomware 

detection framework that employs computational intelligence 

and unsupervised transfer learning. The key objectives include: 

1. Using Computational Intelligence for Ransomware 

Detection with Transfer Learning: We develop an 

algorithm that incorporates computational intelligence 

principles within a transfer learning framework, 

improving adaptability across varying data distributions. 

2. Hybrid CNN-LSTM Approach: By combining CNNs 

for static feature extraction and LSTMs for dynamic 

analysis, the model effectively detects patterns unique to 

ransomware behavior. 

3. Unsupervised Clustering for Anomaly Detection: Our 

algorithm eliminates the need for labeled data in the target 

domain, making it suitable for real-world ransomware 

detection scenarios. 

To bring forward our approach, results, and consequences, 

the paper is structured as follows. Section 2 explains 
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moderation and containment measures in ransomware 

detection. Section 3 elaborates on the proposed transfer 

learning methodology. Section 4 details the experimental 

setup and dataset. Section 5 presents evaluation results and 

comparisons with benchmark methods. Finally, Section 6 

concludes the paper with future research directions. 

 

 

2. BACKGROUND 

 

2.1 Computational intelligent algorithms for ransomware 

detection 

 

In the ever-evolving landscape of cybersecurity, the threat 

of ransomware has emerged as a formidable challenge, 

wreaking havoc on individuals, organizations, and critical 

infrastructure worldwide. As the sophistication of ransomware 

attacks continues to escalate, researchers have turned to 

computational intelligence techniques to develop robust and 

adaptive countermeasures. This paper presents a 

comprehensive review of the current state-of-the-art in 

ransomware detection and classification strategies, with a 

particular focus on the application of machine learning and 

neural network - based approaches. Computational 

Intelligence (CI) refers to the design, development, and 

application of algorithms inspired by biological and linguistic 

processes. Traditionally, CI has been built on three 

foundational pillars: Neural Networks, Fuzzy Systems, and 

Evolutionary Computation. Over time, however, the field has 

grown significantly, incorporating a wide range of nature-

inspired approaches. The synergy between Computational 

Intelligence and Deep Learning continues to drive innovation, 

making CI an essential component of cutting-edge 

technological advancements [3]. 

Transfer learning is another powerful approach that has 

been applied to ransomware detection, as it allows models to 

adapt to changes in the ransomware landscape, ensuring 

resilience and robustness in the face of novel threats [4]. 

Furthermore, a clustering-based approach has been explored, 

where ransomware samples are grouped based on their 

behavioral similarities, facilitating more efficient 

classification and identification of distinct ransomware 

families.  

By harnessing the power of computational intelligence, 

researchers and cybersecurity professionals can stay one step 

ahead of the evolving ransomware threat, protecting critical 

systems and safeguarding sensitive data.  

In this research paper we have proposed a neural network 

based transfer learning clustering technique to detect the 

ransomware attacks. 

 

2.2 Neural network in ransomware detection 

 

Artificial Neural Networks (ANNs) are inspired by the 

structure and function of the human brain. These powerful 

parallel-processing systems learn from examples and make 

generalizations, much like how humans learn from experience. 

In recent years, deep learning has emerged as a breakthrough 

in ransomware detection, allowing machines to perform 

complex classification tasks with remarkable accuracy. 

Among the various deep learning models, Convolutional 

Neural Networks (CNNs) and Long Short-Term Memory 

(LSTM) networks have proven highly effective in analyzing 

ransomware characteristics. CNNs specialize in processing 

structured, high-dimensional data, making them ideal for 

extracting static features from ransomware samples, such as 

file headers, binary structures, and entropy distributions. By 

identifying suspicious patterns in file attributes, CNNs enable 

early-stage detection of ransomware before execution [2, 4]. 

On the other hand, LSTMs excel at sequential data analysis, 

making them particularly useful for detecting dynamic 

ransomware behaviors. LSTMs analyze API call sequences, 

encryption routines, and system modifications in real time, 

enabling a deeper understanding of malware execution 

patterns. This ability to capture temporal dependencies allows 

LSTMs to detect ransomware activities that traditional 

methods may overlook [5]. 

By integrating CNNs for static feature extraction and 

LSTMs for behavioral analysis, ransomware detection 

frameworks can achieve higher accuracy, generalization, and 

robustness. This hybrid approach is particularly useful for 

detecting zero-day ransomware variants, where traditional 

rule-based detection methods fail. 

 

 

3. PROPOSED APPROACH 

 

This section defines the problem, explains the notation, and 

details our proposed method for ransomware malware 

detection. We present our transfer learning-based clustering 

algorithm, designed to group ransomware samples, distinguish 

between different ransomware families, and subsequently 

categorize these families using prior knowledge. 

 

3.1 Problem statement and notation 

 

A labeled source dataset 𝒟ₛ = {(𝑥ᵢˢ, 𝑦ᵢˢ)} ᵢ₌₁ᴺs, where 𝑥ᵢˢ are 

input features and 𝑦ᵢˢ are corresponding labels. An unlabeled 

target dataset 𝒟ₜ = {𝑥ⱼᵗ}ⱼ₌₁ᴺt, where only input features are 

available. Our computational intelligence based transfer 

learning clustering algorithm aims to cluster the input feature 

vectors 𝑥𝑗 ∈ R𝑑 from 𝐷𝑡, leveraging the source domain 𝐷𝑠 as 

a guide. The goal is to train a classifier that can generalize well 

on the target domain while minimizing the distribution shift 

between domains. 

 

3.2 Proposed Computationally Intelligent Neural 

Network-Based Unsupervised Transfer Learning 

Algorithm for Ransomware Detection (CINN-UTLC) 

 

The proposed CINN-UTLC (Computationally Intelligent 

Neural Network-Based Unsupervised Transfer Learning 

Clustering) framework integrates domain adaptation, neural 

feature extraction, and unsupervised clustering to detect 

ransomware variants, including zero-day threats. The process 

begins with domain adaptation to align feature distributions 

between source and target domains. This is achieved through 

a Transformation Function (FTr), which merges source S and 

target T data into a unified set U and partitions it into 2D sub-

areas using Greedy Agglomerative clustering (GAC). Sub-

areas are balanced by oversampling or under sampling based 

on the source-to-target ratio ηk, ensuring equitable 

representation. Principal Component Analysis (PCA) further 

aligns subspaces by projecting source data onto the target 

domain’s principal components (𝒙𝑖
𝑠 = (𝑷𝑘

𝑠 )𝑇𝒙𝑖
𝑠𝑷𝑘

𝑡 ), reducing 

domain-specific noise. Next, neural feature extraction 

leverages pre-trained CNN and LSTM models to capture static 

and dynamic ransomware behaviours. The CNN processes 
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binaries to extract spatial patterns (e.g., entropy maps, file 

headers), while the LSTM analyzes temporal sequences (e.g., 

API call traces). These features are fused into a unified matrix 

A, enabling a holistic representation of ransomware 

characteristics. For transfer learning and clustering 

initialization, domain adaptation layers fine-tune the fused 

features A to minimize domain shift, while k-means initializes 

cluster centroids Cρ for static features, Cγ for dynamic 

behaviors. The framework then enters a joint optimization 

loop, minimizing a hybrid loss function: that combines 

reconstruction loss (to preserve feature fidelity) and cluster 

entropy regularization (to sharpen cluster separability). During 

each iteration, samples are assigned to the nearest centroids ρi 

for static clusters, γj for dynamic clusters, followed by 

backpropagation to update neural network weights and 

centroid recalculation.  The final output includes cluster 

assignments (ρ, j), which categorize ransomware families 

based on feature similarities, and a domain-adapted detection 

model optimized for real-world deployment. By unifying 

transfer learning, neural networks, and unsupervised 

clustering, CINN-UTLC addresses domain shift challenges, 

handles unlabeled target data, and detects novel ransomware 

variants with high accuracy, making it a robust tool for 

evolving cybersecurity threats. Figure 1 shows overview of the 

CINN-UTLC Algorithm Process. 

 

 
 

Figure 1. Schematic overview of the CINN-UTLC algorithm 

process 

 

The proposed neural network architecture is a hybrid model 

that brings together the strengths of Convolutional Neural 

Networks (CNNs) and Long Short-Term Memory (LSTM) 

networks to tackle the complex problem of ransomware 

detection. The CNN component focuses on analysing static 

data, such as file headers, binary patterns, and other structural 

details of ransomware. CNNs are particularly good at spotting 

patterns in structured data, making them perfect for identifying 

signs of encryption or suspicious file structures without 

needing manual intervention. By using convolutional layers to 

pull out these features and pooling layers to simplify the data, 

the CNN ensures that the most important patterns are captured 

efficiently. Meanwhile, the LSTM component takes on the 

task of analysing dynamic data, such as sequences of API calls, 

file system activities, and network traffic generated during 

ransomware execution. LSTMs are ideal for this job because 

they excel at handling sequential data and remembering long-

term dependencies, which helps the model detect patterns in 

ransomware behavior, like the order of encryption routines or 

changes to the system registry. The outputs from the CNN and 

LSTM components are then combined through fully 

connected layers, which merge the spatial and temporal 

features to create a complete picture of the data. 

These layers use Transformation functions to add 

complexity and dropout layers to prevent overfitting, ensuring 

the model can generalize well to new data. The final 

decision—whether a file is ransomware or benign—is made 

using a softmax or sigmoid activation function, depending on 

the type of classification needed. To make the model even 

more adaptable, a transfer learning component is included. 

This allows the model to use knowledge from previously seen 

ransomware families to detect new and emerging variants. The 

CNN and LSTM components are first trained on a large 

dataset of known ransomware, helping the model learn general 

patterns. Then, the model is fine-tuned on smaller datasets of 

new or unknown ransomware, ensuring it stays effective 

against the latest threats. This hybrid approach not only 

combines the best of static and dynamic analysis but also 

ensures high accuracy and scalability. By incorporating 

transfer learning, the model becomes highly flexible, capable 

of detecting zero-day ransomware variants even when labeled 

data is scarce. This makes the proposed architecture a 

powerful and practical tool for real-time ransomware detection, 

helping organizations stay ahead in the ever-evolving world of 

cybersecurity. 

The following algorithm describes a CNN-UTLC 

(Computationally Intelligent Neural Network-Based 

Unsupervised Transfer Learning Algorithm) for ransomware 

detection, involving domain adaptation, feature extraction, 

and joint optimization. This algorithm incorporates both 

Convolutional Neural Networks (CNN) and Long Short-Term 

Memory (LSTM) networks to perform the transfer learning 

tasks. In terms of high-level objectives, this algorithm is 

designed to work on data from two different domains source 

and target and to transfer knowledge learned from the source 

domain to the target domain for ransomware detection. Here's 

a breakdown of the steps: 

 

Algorithm 1: CNN-UTLC 

Require: 

Source data: S = {x₁ˢ , ..., xₘˢ}, Target data: T = {x₁ᵗ, ..., 

xmᵗ} 

Pre-trained CNN/LSTM models, hyperparameters K, φ, 

feature dimension d 

Step 1: Transformation Function (FTr) for Domain 

Adaptation 

1.  Combine domains: U = S ∪ T 

2.  Apply GAC to partition U into 2d sub-areas {C₁, ..., 

C₂d} 
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3.  Balance sub-areas via oversampling/undersampling 

based on ηₖ = |S ∩ Cₖ| / (|T ∩ Cₖ| + ε) 

4.  Align subspaces: 

                          x̄ᵢ = (Pₖˢ)ᵀ xᵢᴾₖ  ∀ xᵢ ∈ S ∩ Cₖ 

5.  Output aligned data S̃, T̃ 

Step 2: Neural Feature Extraction 

6.  Extract static features: Astatic ← CNN(S̃ ∪ T̃) 

7.  Extract dynamic features: Adynamic ← LSTM(S̃ ∪ T̃) 

8.  Fuse features: A ← Concat (Astatic, Adynamic) 

Step 3: Transfer Learning and Clustering 

Initialization 

9.   Initialize domain adaptation layers for A 

10.   Initialize centroids Cp, Cγ via k-means on A 

Step 4: Joint Optimization 

Define loss: 

L = ||A - Decoder (Cluster Assign (A))||² + φ · (LCE(ρ) + 

LCE(γ)) 

Loop: 

11.   While |Lepoch - Lepoch-1| > φ do: 

12.   Assign clusters: 

13.   For i = 1 to m do: 

14.         ρ(i) ← argminₖ ||Aᵢ - Cp,ₖ||²                (Static 

clusters) 

15.   For j = 1 to n do: 

16.         γ(j) ← argminₗ ||Aⱼ - Cγ,ₗ||²               

(Dynamic clusters) 

17.   Update CNN/LSTM weights via backpropagation 

on L 

18.   Update centroids: 

19.                 Cp ← (1/|ρₖ|) Σ Aᵢ for i ∈ ρₖ, 

20.                 Cγ ← (1/|γₗ|) Σ Aⱼ for j ∈ γₗ 
21.   End while 

 

1) Transformation Function (FTr) 

To improve this, we divide the features from the source and 

target domains into different sub-areas with their dimensions. 

We use the transformation function rTF to do this. Our 

technique ensures there’s a balanced number of data points in 

each sub-area for both the source and target domains. By 

employing the Greedy Agglomerative Clustering (GAC) 

method [6], we perform a statistical analysis to find out the 

total number of clusters needed. Our goal is to pull in most of 

the target domains from each sub-area to help shape the rTF
function, ensuring a balance of data from both the source and 

target domains. 

Let’s use {𝑥1
𝑠𝑟𝑐 , 𝑥2

𝑠𝑟𝑐 , 𝑥3
𝑠𝑟𝑐, . . . . . . , 𝑥𝑚

𝑠𝑟𝑐} to represent data 

from the source domain and {𝑥1
𝑡𝑟𝑔

, 𝑥2
𝑡𝑟𝑔

, 𝑥3
𝑡𝑟𝑔

, . . . . , 𝑥𝑚
𝑡𝑟𝑔

}  for 

the target domain. The following equation represents how we 

partition the feature spaces of the source and target domains 

into distinct sub-areas:  

 

𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒𝐹𝑇𝑟 =
∑  𝑚

1 𝑥𝑖

𝑛
 (1) 

 

Sometimes, domains might have noise specific to them even 

though they share the same sub-areas. In such cases, we 

identify these shared sub-areas and adjust the source data to 

match the target data. We use a method called Subspace 

Alignment to find the main components in each domain. After 

identifying these components, we match the source data with 

𝐾 and then proceed with the transformed source data. Eq. (1) 

shows how the feature space is divided into 2𝑛 sub-areas. 

The equation uses 𝑥={𝑥1,…, 𝑥𝑖 ,…, 𝑥𝑛 } as a random vector 

for a particular feature set. Here, 𝑥𝑗
𝑖 is the 𝑖𝑡ℎ

 dimension of the 

vector 𝑥i. 

Here 𝑛 variations can be obtained by comparing 𝑥𝑖 with 𝑥0, 

where 𝐾 is the total number of clusters determined by the GAC 

method [5]. Moreover, 𝑥𝑖 refers to the combined features in 

both the source and target domain feature spaces. We can 

determine the balance of data in each sub-area by the number 

of target domain data in a given sub-area. 

To select data from the source domain, we first calculate the 

source data for each sub-area. Then, we use these data points 

to determine the number of points in every sub-area, which 

helps to shape the 𝐹𝑇𝑟 function. Additionally, some data from 

the target domain’s specific sub-area will closely match with 

data from the source domain’s related sub-area. As a result 

𝐹𝑇𝑟  forms a subset that transforms features from both the 

source and target domains linearly. 

 

3.3 CINN-UTLC clustering 

 

The clustering process in CINN-UTLC combines domain 

adaptation, neural feature fusion, and iterative optimization to 

identify ransomware patterns. First, the algorithm merges 

source (benign) and target (unlabeled) data into one combined 

dataset, which is divided into 2d sub-regions by Geometric 

Alignment Clustering (GAC). The sub-regions are balanced 

through oversampling/undersampling according to the source-

to-target sample proportion ηk to avoid domain imbalance. 

Subspace alignment also aligns the distributions further by 

transforming source and target data into common subspaces 

with the aid of transformation matrices (𝑃𝑘
𝑠, 𝑃𝑘

𝑡) and alleviates 

domain shift. Then, static features (e.g., file organization) and 

dynamic features (e.g., runtime) are extracted by pre-trained 

CNN and LSTM models, respectively, and then combined into 

a common representation A. Clustering is initialized with k-

means to form two groups of centroids: Cρ (static clusters, 

source-oriented) and ρi (dynamic clusters, target-oriented). 

The model jointly optimizes a hybrid loss function consisting 

of reconstruction loss (ensuring cluster assignments retain 

feature structure) and cluster consistency loss (aligning static 

and dynamic clusters through cross-entropy). Iteratively, 

samples are classified into the nearest centroids, model 

weights are updated through backpropagation, and centroids 

are recomputed until convergence. This two-cluster approach 

combined with domain-invariant feature learning allows the 

algorithm to cluster ransomware samples in the target domain 

by identifying departures from benign source patterns, even in 

unsupervised scenarios. 

 

3.3.1 Cluster interpretation   

The clustering mechanism in CINN-UTLC is based on 

unsupervised learning principles, grouping samples with 

similar behavioral traits. The formed clusters provide key 

insights into different ransomware families: 

Cluster A (Crypto Ransomware): 

• Characterized by high entropy values and frequent 

CryptEncrypt API calls, indicating strong encryption activity. 

• Samples in this cluster predominantly belong to Crypto 

ransomware families such as WannaCry and DirtyDecrypt and 

Trojanransom. 

Cluster B (Locker Ransomware): 

• Exhibits frequent registry modifications and access control 

changes, typical behaviors of Locker ransomware. 

• Includes ransomware families like WinLocker, 

RansomwareLock, VitLock and Nullbyt which primarily 
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restrict user access rather than encrypting files. 

Cluster C (Benign Samples): 

• Displays a balanced mix of API calls with low entropy 

values, representing typical system and application behavior. 

• Contains non-malicious samples that may perform 

encryption or registry modifications for legitimate reasons, 

such as compression tools or backup software. 

Cluster D (Noval/Unknown Samples): 

• Identifying its unique behavioral patterns (e.g., custom 

encryption and C2 communication). 

These interpretations allow for a meaningful classification 

of ransomware families, reinforcing the effectiveness of 

CINN-UTLC in unsupervised anomaly detection. 

To understand which features drive cluster formation, we 

leverage SHapley Additive exPlanations (SHAP) and Local 

Interpretable Model-Agnostic Explanations (LIME) to 

analyze feature importance. SHAP Analysis: SHAP values 

help quantify feature contribution to clustering decisions. 

Analysis reveals that CryptEncrypt API calls and high entropy 

values are the top contributing factors for Crypto ransomware 

detection. Registry modifications and mutex object creation 

significantly impact Locker ransomware identification. LIME 

Analysis: LIME generates local explanations, highlighting key 

feature interactions. It confirms that ransomware samples 

using multiple cryptographic APIs and abnormal file system 

behaviors have a higher likelihood of being clustered as 

ransomware. By integrating SHAP and LIME, CINN-UTLC 

offers interpretable clustering decisions, improving 

ransomware detection reliability and reducing false positives. 

 

 

4. EXPERIMENTAL RESULTS 
 

This section delves into the datasets used, specifically 

emphasizing ransomware data. We aim to highlight the 

efficacy of our proposed transfer learning method that 

considers both static and dynamic ransomware characteristics. 

Our experiments confirmed the robustness and scalability of 

the designed algorithm. We conclude with an analysis of the 

static and dynamic ransomware attributes vital for our 

methodology, shedding light on their significance across 

different ransomware groups. 

 

4.1 Experimental setup  

 

The experiments were carried out on a high-performance 

computing setup designed to ensure optimal performance and 

accuracy. The system configuration included an Intel Core i9-

10900K processor running at 3.70 GHz, 32 GB of DDR4 

RAM, and an NVIDIA GeForce RTX 3090 GPU. The 

operating environment was Ubuntu 20.04 LTS, with Python 

3.8 as the primary programming language. 

The CINN-UTLC algorithm was implemented using 

Python, leveraging libraries such as Scikit-learn, TensorFlow, 

NumPy, and Pandas. For visualization and plotting, R was 

employed, offering clear and insightful graphical 

representations. The main objective of these experiments was 

to evaluate the algorithm's performance under different data 

distribution shift scenarios between the source and target 

domains, ensuring its robustness and adaptability. 

 

4.2 Data description 

 

For our study, we curated a dataset using a blend of 

ransomware samples from regularly updated public databases 

and specialized online forums sharing ransomware instances 1. 

The amassed dataset comprises 10,185 ransomware samples, 

representing 406 distinct groups. With the aid of VirusTotal2, 

we confirmed that 6,599 of these samples are active and 

belong to 37 modern ransomware groups. Additionally, our 

dataset includes 15,000 benign samples that proved 

instrumental during the training phase. These benign instances, 

mirroring certain ransomware actions like file compression 

and encryption, are sourced from real-world tasks and 

executable applications [7]. 

 

 
 

Figure 2. t-SNE visualization comparing training and testing data 
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We divided the dataset into three separate portions for 

transfer learning, distributing ransomware groups among them. 

Benign samples are evenly shared across all three subsets. 

Some of the prominent ransomware categories in our data are: 

• Locker ransomware: Locks victims’ devices or files, 

demanding a ransom to regain access. 

• Crypto ransomware: Utilizes strong encryption to hold 

victims’ files hostage until a ransom is paid. 

• Scareware: Misleads victims with fake alerts, seeking 

ransom without any actual file lock or encryption. 

• Ransomware - as - a- Service (RaaS): Allows malicious 

actors to initiate their ransomware attacks without needing 

deep technical expertise. 

• Fileless ransomware: Operates without traditional files, 

manipulating native or third-party system tools maliciously. 

• Double extortion ransomware: Combines data 

encryption with the threat of exposing the victim’s sensitive 

data unless a ransom is paid. 

• Coin miner malware: Taps into the victim’s 

computational power to mine digital currencies. 

To better understand our data’s structure, we used the t-

distributed Stochastic Neighbor Embedding (t-SNE) 

algorithm, a tool designed for compressing high-dimensional 

data into a 2D. By applying t-SNE, we can observe how data 

groupings form or differ when visualized in a compact 

dimension. 

In our study, t-SNE first visualized our training data (Crypto 

ransomware) in a 2D setting. This was followed by visualizing 

the test data (Locker ransomware) in the same space. The 

comparison, as displayed in Figure 2, demonstrates distinct 

data distributions between the two datasets.  

The t-SNE method allows us to project high-dimensional 

feature spaces into a lower-dimensional representation, 

enabling us to visualize the clustering patterns of ransomware 

families. t-SNE showcased how closely related ransomware 

families cluster together while maintaining distinct boundaries 

from others, thereby demonstrating the algorithm's ability to 

effectively segregate and identify unique ransomware 

malware behaviours. 

 

4.3 Comprehensive ransomware feature analysis: Static 

and dynamic aspects 

 

In the current research, we combine both static and dynamic 

attributes associated with effective ransomware attacks. Each 

category of features presents unique benefits. While the static 

attributes of ransomware are independent of specific program 

operations and might enable preemptive detection, dynamic 

attributes emphasize the recognition of predefined behavioral 

patterns. 

 

4.3.1 Static features of ransomware 

This section elucidates our strategy for harvesting static 

attributes and converting them into numerical values suitable 

for our algorithmic model. We employed a static analysis 

technique on ransomware file characteristics emphasizing 

aspects like file header scrutiny and the examination of 

import/export functionalities. Among the static attributes 

gathered are Portable Executable Feature Vectors (PE), 

Entropy Attributes, and String-based attributes. It is pivotal to 

highlight that these string attributes denote printable strings 

found within infected file samples, shedding light on the 

inherent nature of the file, either malicious or benign. These 

string features could be indicative of file names, details of 

exploited system resources, or even signatures from repetitive 

coding segments. The extraction of these strings was 

accomplished through the GNU strings command [8]. 

To transmute these string attributes into numerical values 

apt for our dataset, the bag-of-words technique was employed 

[9]. Specifically, after collating the strings, binary attribute 

vectors were devised. Each unique string was represented as a 

binary attribute. If present, the value would be 1; if absent, 0. 

 

4.3.2 Dynamic ransomware features 

Features based on the run-time behavior of the executable 

are selected from the analysis records generated in the host 

device after executing the example inside a controlled 

environment. We formed all the records by presenting the 

examples including both benign and ransomware examples in 

Cuckoo Sandbox. Reports produced by the Cuckoo sandbox 

are exported into JSON format. The main idea is that 

polymorphic ransomware will still share common behaviors at 

runtime. Note that we included benign samples to have similar 

behavior in our training process such as encryption or 

compression tools. Here we provide some examples of 

collected dynamic features: API Call Monitoring, Monitoring 

File System Activity, and Mutex Monitoring To identify 

behavioral patterns in ransomware, we analyze sequences of 

API calls using a technique called "API-call-grams," inspired 

by language-processing methods. As we increase the length of 

these sequences (n-grams), we observe that even files from the 

same category share fewer identical patterns, which helps 

distinguish subtle differences. Here’s how we structure the 

data: starting with raw API call logs from each file, we break 

them into n-gram sequences. These sequences are then filtered 

to remove rare or insignificant patterns, retaining only those 

that occur frequently enough to be meaningful. The final step 

organizes these refined sequences into a structured table, 

where each row represents a file and its unique behavioral 

"fingerprint" based on the retained API-call-grams. This 

approach balances specificity and relevance to improve 

detection accuracy. 

 

4.3.3 Cumulative outcomes for ransomware detection using 

CINN-UTLC 

 

 
 

Figure 3. ROC 
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This section is dedicated to elucidating the comprehensive 

results derived from our CINN-UTLC approach, emphasizing 

its efficacy in ransomware detection in comparison with other 

advanced methods. Figure 3 provides a visual representation, 

specifically the Receiver Operating Characteristic (ROC) 

curve, delineating the comparative performance between our 

CINN-UTLC approaches. 

Figure 3 Comparative ROC of CINN-UTLC against other 

established techniques and two contemporary ransomware 

detection algorithms: UNVEIL [10] and Deep Learning [11]. 

This curve compares the True Positive Rate (TPR) and the 

False Negative Rate (FNR) of each method, offering insights 

into their capability to identify ransomware intrusions. Our 

CINN-UTLC methodology achieved an Area Under the Curve 

(AUC) of 0.94, thereby surpassing UNVEIL (AUC=0.78) and 

Deep Learning (AUC=0.73). Table 1 represents predominant 

ransomware categories as identified by CINN-UTLC. 

Figure 4 presents an evaluation of our CINN-UTLC 

algorithm’s performance metrics across various ransomware 

families, identified as (A-K). Specifically, the metrics 

highlighted include the Detection Rate (DR), Precision Rate 

(PR), and Recall Rate (RE). The CINN-UTLC algorithm 

exhibited remarkable consistency and accuracy, achieving 

average values of DR=98%, PR=97%, and RE=98% across all 

identified ransomware families. 
 

Table 1. Predominant ransomware categories identified by 

CINN-UTLC 
 

Predominant Ransomware Categories as Identified by CINN-

UTLC 

A DirtyDecrypt 1130 E WannaCry 1822 

B TrojanRansom 1039 F VirLock 1032 

C RansomwareLock 1172 G NullByte 893 

D LockCrypt 429    

 

 

 
 

Figure 4. Performance metrics of the CINN-UTLC methodology across various ransomware families 

 

 
 

Figure 5. Illustration of the WannaCry ransomware family cluster as detected by CINN-UTLC 
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Supplementing the results above, Figure 5 graphically 

illustrates the cluster formation specific to the WannaCry 

ransomware family, showcasing the robustness of our 

methodology in effective categorization. 

This cumulative assessment underscores the enhanced 

proficiency and reliability of our CINN-UTLC approach, 

emphasizing its potential utility in advancing cybersecurity 

measures against ransomware threats. The CINN-UTLC 

approach showcased superior proficiency in ransomware 

detection, achieving an AUC of 0.92, surpassing leading 

methods UNVEIL and Deep Learning.  

Performance metrics across ransomware families remained 

consistently high, with DR, PR, and RE averaging around 98%. 

The method efficiently categorized predominant ransomware 

families, exemplified by the detailed cluster formation of the 

WannaCry family. Overall, CINN-UTLC promises enhanced 

cybersecurity measures against evolving ransomware threats. 

 

4.4 Feature extraction 

 

We performed feature extraction to create meaningful 

profiles of ransomware samples. By methodically gathering 

both static and dynamic features, they aimed to capture the 

comprehensive behaviour patterns of ransomware, enhancing 

the effectiveness of behavioral analysis. Table 2 represents the 

feature extraction methods for ransomware detection. 

 

Table 2. Feature extraction methods for ransomware detection 

 
Feature 

Type 

Feature Extraction 

Method 
Description Tools Used 

Static 

Features 

File Signatures and 

Metadata 

To understand how an executable file behaves, the process digs into its core structure 

by examining elements like headers, code segments, and connections to external 

libraries. This helps uncover details such as the file's format, whether it's designed for 

32-bit or 64-bit systems, and which resources it depends on to function. 

Specialized PE 

parsing tools 

String Analysis 
Extracts printable strings from binary files to detect ransomware-related patterns, such 

as ransom notes or encryption keys. 
strings command 

Dynamic 

Features 

API Call Monitoring 
Log sequences of API calls to analyze file system interactions, process creation, and 

network activity. Captures temporal sequences as n-grams. 

Secure sandbox 

environment 

Behavioral Tracing 
Tracks core ransomware behaviors, including file encryption, registry modifications, 

and network communication. Generates behavioral reports. 
Cuckoo Sandbox 

 

 
 

Figure 6. Assessment results for the CINN-ULTC algorithm across three ransomware datasets 

 

4.5 Unsupervised transfer learning clustering outcomes 

 

Table 2 enumerates the outcomes from our cross-domain 

clustering using various metrics: 

• Adjusted Rand Index (ARI): Gauges the congruence 

between deduced cluster labels and the actual labels. The table 

exhibits an ARI score, statistically significant with a p value 

of 0.5 as ascertained by a pairwise t-test. The shown ARI score 

averages all collected values. 

• Normalized Mutual Information (NMI) Score: 

Assessed in line with the ARI score, presenting a value of 0.92. 

• Cluster Area Under the Curve (AUC): This necessitates 

the construction of a confusion matrix, with the (i,j)th cell 

signifying the count of samples in cluster i genuinely 

belonging to class j. Each ti aligns with a diagonal segment of 

a similar matrix. Here, cluster labels are optimized to 

maximize the sum of diagonal elements. 

• Purity of Clusters (P): Indicates the ratio of the most 

recurrent sample label to the cluster’s total samples. It is 

procured as the weighted average of each cluster’s purity. The 
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gold standard values for ARI, NMI, and purity are 1. Our 

research yielded an average clustering AUC of 97.5%, with 

ARI, NMI, and purity values being 0.92, 0.92, and 0.86, 

respectively. The efficiency of the CINN-UTLC algorithm in 

preserving accurate and consistent clustering results as the 

number of clusters varies is shown graphically in Figure 6. 

This aids in comprehending how flexible and resilient the 

suggested method is under various clustering conditions. 

The performance evaluation of the CINN-UTLC across 

different ransomware dataset combinations illustrates its 

stability and consistency. Specifically, it exhibited impressive 

accuracy, with AUC values mainly between 0.92 and 0.98. 

The combinations A + C and C + B achieved an exceptional 

AUC of 0.97.  

Figure 6 presents the assessment results for the ULTC 

Algorithm across Three Ransomware Datasets. In terms of 

cluster quality, the ARI values ranged from 0.90 to 0.99, with 

C + B standing out at 0.99. NMI values consistently ranged 

between 0.90 and 0.95. Purity levels across different 

combinations remained steady, fluctuating between 0.86 and 

0.88. These results underscore the powers of the proposed 

CINN-UTLC in effectively classifying ransomware datasets, 

positioning it as a significant asset for cybersecurity research. 

 

4.6 Quantitative analysis of clustering quality 

 

To demonstrate the effectiveness of the CINN-UTLC 

algorithm in detecting a wide range of ransomware families, 

we expanded our clustering analysis to include seven 

prominent ransomware families: DirtyDecrypt, 

TrojanRansom, RansomwareLock, LockCrypt, WannaCry, 

VirLock, and NullByte. Each family was analyzed based on 

its unique static and dynamic features, and the clustering 

results were evaluated using quantitative metrics such as 

Silhouette scores, Adjusted Rand Index (ARI), and 

Normalized Mutual Information (NMI).5.5.1 Clustering 

Cohesion and Separation (Silhouette Score Analysis). The 

Silhouette score measures how well samples are clustered, 

with values ranging from -1 to 1, where higher values indicate 

better separation between clusters. Table 3 presents the 

clustering quality metrics for each ransomware family. 

 

Table 3. The clustering quality metrics for each ransomware 

family 

 
Ransomware 

Family 

Silhouette 

Score 

Adjusted 

Rand 

Index 

(ARI) 

Normalized 

Mutual 

Information 

(NMI) 

Purity 

DirtyDecrypt 0.84 0.91 0.90 0.87 

TrojanRansom 0.82 0.89 0.88 0.86 

RansomwareLock 0.85 0.92 0.91 0.88 

LockCrypt 0.83 0.90 0.89 0.87 

WannaCry 0.86 0.93 0.92 0.89 

VirLock 0.81 0.88 0.87 0.85 

NullByte 0.80 0.87 0.86 0.84 

Benign Samples 0.82 0.90 0.89 0.86 

 

4.6.1 Quantitative metrics for all families 

The clustering quality for each ransomware family was 

evaluated using the following metrics. 

These results presented in Table 3 confirm that the CINN-

UTLC framework effectively differentiates ransomware 

families, achieving a high RansomwareLockdegree of 

clustering accuracy. 

 
 

Figure 7. t-SNE visualization of all seven ransomware 

families 

 

Figure 7 represents the t-SNE visualization of all seven 

ransomware families and benign samples, each represented by 

a distinct color. This plot clearly illustrates how different 

ransomware families form separate clusters based on feature 

similarities. 

 

4.6.2 Domain adaptation success (Distribution alignment 

score) 

To evaluate the success of unsupervised transfer learning, 

we measured the DAS, which quantifies how well the source 

and target domain features align. Table 4 presents the DAS. 

 

Table 4. DAS 

 

Metric CINN-UTLC 
Baseline (Direct 

Classification) 

DAS 0.91 0.68 

Reduction in Feature Shift 

(%) 
72% -- 

 

A higher DAS (0.91) indicates that the CINN-UTLC 

method successfully aligns the feature distributions across 

different ransomware families, improving transferability and 

detection accuracy. 

 

4.7 Detection of unknown ransomware families 

 
One of the key strengths of the CINN-UTLC algorithm is 

its ability to detect unknown ransomware families through its 

unsupervised learning and transfer learning framework. 

Unlike supervised methods that rely on labeled data, CINN-

UTLC leverages behavioral patterns and feature alignment to 

identify ransomware variants that were not present in the 

training data. This capability is critical in real-world scenarios, 

where new ransomware families emerge frequently. 

CINN-UTLC groups ransomware samples based on their 

behavioral and static features without requiring labeled data. 

This allows the algorithm to identify novel clusters that may 

represent unknown ransomware families. For example, if a 

new ransomware variant exhibits behaviors similar to those of 
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known families (e.g., file encryption or registry modifications), 

it will be grouped into an existing cluster. If its behavior is 

unique, it will form a new cluster, flagging it as a potential 

unknown family. The algorithm aligns feature distributions 

between the source (known ransomware) and the target 

(unknown ransomware) domains, enabling it to generalize to 

unseen variants. For example, if a new ransomware family 

shares some features with WannaCry (e.g., network 

propagation), CINN-UTLC can detect it by leveraging 

knowledge from the source domain. By focusing on runtime 

behaviors (e.g., API call sequences, file system interactions), 

CINN-UTLC can detect ransomware even if its static features 

(e.g., file headers) are obfuscated or unknown.  

We tested CINN-UTLC on a novel ransomware variant 

(referred to as "X-Ransom") that was not included in the 

training data. The variant exhibited unique behaviors, such as: 

• File encryption using a custom algorithm. 

• Registry modifications to disable system recovery. 

• Network communication with an unknown C2 server. 

CINN-UTLC successfully detected X-Ransom by: 

(1) Identifying its unique behavioral patterns (e.g., custom 

encryption and C2 communication). 

(2) Grouping it into a new cluster, flagging it as a potential 

unknown family. 

(3) Achieving a detection rate of 94% and a false positive 

rate of 2.1% for this variant. 

Figure 8 t-SNE visualization successfully separates 

ransomware families, including Novel/X-Ransom. The 

clusters are well-defined, ensuring clear differentiation 

between families. 

 

 
 

Figure 8. t-SNE visualization of Ransomware Families including noval /X- ransomware families 

 

4.7.1 Experimental validation 

To validate the algorithm's ability to detect unknown 

ransomware families, we experimented using a hold-out 

dataset containing previously unseen ransomware variants. 

The results are summarized in Table 5. 

 
Table 5. Performance matrix for unknown ransomware 

detection 

 

Metric 
Known  

Families 

Unknown 

 Families 

Detection Rate (DR) 98% 92% 

False Positive Rate (FPR) 1.3% 2.5% 

Silhouette Score 0.85 0.80 

Adjusted Rand Index (ARI) 0.92 0.88 

CINN-UTLC achieved a detection rate for unknown 

ransomware families, demonstrating its ability to generalize to 

unseen variants. 

False Positive Rate (FPR): The low FPR (2.5%) indicates 

that the algorithm rarely misclassifies benign samples as 

ransomware, even when dealing with unknown families. 

Silhouette Score and ARI: The high scores for unknown 

families (0.80 and 0.88, respectively) confirm that the 

algorithm effectively groups them into meaningful clusters. 

 

4.7.2 Comparison with baseline methods 

We compared CINN-UTLC with baseline methods (e.g., k-

means, hierarchical clustering) to evaluate their ability to 

detect unknown ransomware families. The results are 

summarized in Table 6. 
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Table 6. Comparison with baseline methods 

 
Method Detection 

Rate 

(Unknown) 

False 

Positive Rate 

(Unknown) 

Silhouette 

Score 

(Unknown) 

CINN-UTLC 93% 2.5% 0.80 

k-means 75% 5.8% 0.65 

Hierarchical 

Clustering 

70% 6.2% 0.62 

 

CINN-UTLC outperformed baseline methods, 

demonstrating its superior ability to detect unknown 

ransomware families with high accuracy and low false 

positives. The Proposed Algorithm is capable of flagging 

novel clusters for further investigation by cybersecurity 

experts. This capability positions CINN-UTLC as a proactive 

defense mechanism against zero-day ransomware attacks. 

 

 

5. EVALUATION AGAINST BENCHMARK 

ALGORITHMS 

 

5.1 Comparative analysis of transfer learning approaches 

 

The uniqueness of our Unsupervised Clustering algorithm 

using Transfer Learning (CINN-UTLC) is underscored by its 

comprehensive consideration of both static and dynamic 

ransomware characteristics. In contrast to other transfer 

learning approaches, our method leverages a richer feature set 

that enhances the detection process. This section provides a 

deeper comparative analysis of the CINN-UTLC against other 

established transfer learning methods. 

 

5.1.1 Comparison with existing transfer learning methods 

Existing transfer learning methods often rely on transferring 

knowledge from one domain to a related target domain. 

However, our approach extends beyond this by integrating 

unsupervised clustering, which facilitates the detection of 

ransomware without labeled data in the target domain. This is 

particularly effective in cybersecurity, where new threats 

emerge rapidly, and labeled data may not be readily available. 

Additionally, traditional transfer learning methods may not 

account for the dynamic nature of ransomware. The proposed 

CINN-UTLC algorithm addresses this by incorporating 

dynamic features that capture the behavior of ransomware 

during execution. This enables the detection of zero-day 

ransomware threats, which may not exhibit known static 

signatures. 

 

5.2 Effectiveness of CINN-UTLC in Ransomware 

Detection 

 

The effectiveness of the CINN-UTLC algorithm in 

ransomware detection is demonstrated through extensive 

experiments. Our approach consistently outperformed 

conventional transfer learning methods in various 

performance metrics, including Detection Rate (DR), 

Precision Rate (PR), and Recall Rate (RE). We evaluate our 

proposed algorithm with the design of two different 

experiments. 
 

5.3 Experiment design 1 
 

In the first experiment, we compared our algorithm with 

other methods relevant to ransomware detection. These 

methods were chosen based on their widespread use and 

relevance in cybersecurity. A brief introduction to such 

methods is provided below. 

• SHA-256 [12]: SHA-256 is a cryptographic hash function 

used for ensuring data integrity and authentication. 

• AES [13]: The Advanced Encryption Standard, a 

symmetric encryption algorithm widely used for securing data. 

• RSA [14]: A public-key cryptographic algorithm is used 

for secure data transmission. 

• MD5 [15]: Although primarily a cryptographic hashing 

function, MD5 is used here to detect file changes. 

Ransomware typically modifies or encrypts files, and by 

monitoring changes in file hashes, MD5 can indirectly aid in 

identifying ransomware activities. This function helps verify 

data integrity and detect unauthorized file changes, which is 

crucial for identifying ransomware attacks. 

• BLAKE2 [16]: A cryptographic hash function is known 

for its high speed and security. 

In ransomware detection, these eminent algorithms have 

been adapted or integrated because of their innate 

cryptographic attributes. Collectively, they offer a foundation 

to craft signatures or heuristic patterns instrumental in 

identifying deviations or malicious payloads within data 

traffic. 

 

5.3.1 Comparative metrics 

To ensure a balanced evaluation, our analysis is structured 

around four cardinal metrics: False Positive Rate, False 

Negative Rate, Accuracy, and Detection Time. 

• False Positive Rate: This metric gauges the frequency of 

benign files being erroneously tagged as ransomware. A 

minimal rate is desired to ensure fewer false alarms. 

• False Negative Rate: Contrarily, this rate measures 

instances where genuine ransomware evades detection. 

Ensuring a low rate is crucial for effective ransomware 

detection. 

• Accuracy: An aggregate measure of an algorithm’s 

classification competence, calculated using the formula: 

 
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝐹𝑖𝑙𝑒𝑠
 

 

• Detection Time: Time taken by the algorithm to analyze 

and classify a file, ideally, the swifter, the better. 

 

5.3.2 Results interpretation 

 

Figure 9 provides a comprehensive evaluation of the 

efficacy of the algorithms based on selected performance 

indicators. 

Figure 9 compares various encryption and hashing 

algorithms—SHA-256, AES, RSA, MD5, BLAKE2, and the 

proposed CNN-UTLC—across four key performance metrics: 

False Positive Rate (FPR), False Negative Rate (FNR), 

Accuracy, and Detection Time. CNN-UTLC demonstrates the 

best overall performance with the lowest false positive rate 

(1%) and false negative rate (2%), indicating its superior 

ability to correctly classify files while minimizing errors. It 

also achieves the highest accuracy (97%), surpassing all other 

algorithms. In contrast, MD5 has the highest false positive rate 

(5%) and a relatively high false negative rate (5%), leading to 

lower reliability. AES has the worst false negative rate (6%), 

suggesting a higher likelihood of failing to detect threats, 

despite a decent accuracy of 95%. While SHA-256 and RSA 
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share similar error rates (2% FPR and 4% FNR), RSA suffers 

from the slowest detection time (250ms), making it the least 

efficient in terms of speed. BLAKE2 performs well with a 2% 

false positive rate and a lower false negative rate (3%), 

achieving 94% accuracy, but still falls short of CNN-UTLC. 

When considering detection time, CNN-UTLC (175ms) is 

faster than SHA-256 (200ms) and RSA (250ms) while 

maintaining better accuracy. AES (150ms) is the fastest, but 

its error rates are higher, making it less reliable than CNN-

UTLC. Overall, the proposed CNN-UTLC algorithm 

outperforms all others by maintaining a perfect balance 

between high accuracy, low error rates, and efficient 

processing time, making it the most effective choice for 

cybersecurity applications. Moreover, achieving an 

impressive 97% accuracy and a swift Response Time of 175 

milliseconds, CINN-UTLC effectively underscores its 

superiority. While the other algorithms showcase 

commendable metrics in specific areas, none approach the 

comprehensive effectiveness of CINN-UTLC. 

Moreover, achieving an impressive 97% accuracy and a 

swift Response Time of 175 milliseconds, CINN-UTLC 

effectively underscores its superiority. While the other 

algorithms showcase commendable metrics in specific areas, 

none approach the comprehensive effectiveness of CINN-

UTLC. 

 

 
 

Figure 9. Performance metrics of ransomware detection algorithms 

 

5.4 Experiment design 2 

 

In this experimental design, we have compared our 

proposed algorithm to a standard domain adaptation technique. 

The proposed CINN-UTLC method achieved higher accuracy 

in clustering and identifying ransomware families. This is 

attributed to the algorithm’s ability to discern subtle patterns 

in ransomware behaviour, which are often overlooked by other 

methods that focus solely on static feature transfer. To 

facilitate an in-depth understanding of our research’s 

comparative dynamics, we dissect the characteristics of 

established algorithms compared with our proposed CINN-

UTLC method. 

 

5.4.1 Performance metrics 

The performance of CINN-UTLC was benchmarked against 

the following transfer learning methods: 

• Domain Adversarial Neural Networks (DANN) [17]. 

• Transfer Component Analysis (TCA) [18]. 

• Joint Distribution Adaptation (JDA) [19]. 

The results, presented in Figure 9, the proposed method, 

CINN-UTLC, leverages a set of coupled constraints to align 

the feature distributions of the source and target domains 

effectively. Notably, CINN-UTLC achieves an average Area 

Under the Curve of 0.92, outperforming the performance of 

DANN (0.84), TCA (0.79), and JDA (0.81). Specifically, the 

method exhibits exceptional results in the key metrics of 

Detection Rate, Precision Rate, and Recall, with values around 

98% - significantly higher than the other techniques mentioned 

[20]. 

The key innovations of CINN-UTLC lie in its ability to 

handle the complex probability distribution discrepancies 
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across domains, as outlined in the survey of transfer adaptation 

learning. By jointly optimizing the shared weights between 

source and target models and adaptively adjusting the 

constituent loss weights, CINN-UTLC effectively learns a 

robust and transferable feature representation. The superior 

performance of CINN-UTLC has been extensively validated 

through experiments on multiple benchmark datasets, 

showcasing its significant advantages over existing transfer 

learning methods.  

Figure 10 presents a comparative analysis of our proposed 

Computationally Intelligent Neural Network-Based 

Unsupervised Transfer Learning Clustering (CINN-UTLC) 

algorithm against three baseline models: Domain Adversarial 

Neural Network (DANN), Transfer Component Analysis 

(TCA), and Joint Distribution Adaptation (JDA). The 

evaluation metrics considered are AUC Score, Detection Rate 

(DR), Precision Rate (PR), and Recall Rate (RE). 

• AUC Score Comparison (Top-Left): 

The AUC score represents the model’s ability to distinguish 

between ransomware and benign samples. CINN-UTLC 

achieves the highest AUC score, exceeding 0.95, 

demonstrating superior classification performance compared 

to the other methods. 

• Detection Rate (DR) Comparison (Top-Right): 

Detection rate (also known as True Positive Rate) reflects 

the model's ability to correctly identify ransomware instances. 

CINN-UTLC outperforms all other models, achieving an 

accuracy of approximately 98%, while other methods range 

between 83% and 90%. 

• Precision Rate (PR) Comparison (Bottom-Left): 

Precision measures the proportion of correctly classified 

ransomware instances among all predicted ransomware 

instances. CINN-UTLC maintains the highest precision, 

nearing 99%, significantly surpassing other approaches. 

• Recall Rate (RE) Comparison (Bottom-Right): 

The recall rate highlights the ability of the model to identify 

all ransomware samples without missing any. CINN-UTLC 

achieves the highest recall value (above 97%), confirming its 

robustness in detecting ransomware threats compared to 

DANN, TCA, and JDA. 

 

 
 

Figure 10. Comparative analysis of CINN-UTLC with other transfer learning methods 

 

5.4.2 Insights and discussion 

The comparative analysis reveals the CINN-UTLC 

algorithm’s unique ability to adapt to the evolving landscape 

of ransomware threats. Unlike other methods, CINN-UTLC’s 

unsupervised clustering component eliminates the need for 

labeled data in the target domain, which is a significant 

advantage in the fast-paced domain of cybersecurity. The 

algorithm’s integration of dynamic behavioral analysis further 

distinguishes it from other approaches, making it particularly 

adept at detecting sophisticated ransomware variants. 

 

5.5 Summary of findings 
 

Our extensive research and experimental efforts have 

culminated in the development of an advanced Unsupervised 

Clustering Algorithm using Transfer Learning (CINN-UTLC), 

specifically designed to combat the multifaceted threat of 

ransomware. The CINN-UTLC algorithm’s performance has 

been rigorously tested against traditional cryptographic 

algorithms and standard domain adaptation techniques, 

resulting in superior detection rates, precision, and swift 

response times. 
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6. CONCLUSION AND FUTURE DIRECTIONS 

 

6.1 Conclusion 

 

The escalating sophistication of ransomware necessitates 

adaptive detection frameworks that balance accuracy and 

transparency. This study proposes CINN-UTLC, an 

unsupervised transfer learning framework integrating CNNs 

and LSTMs to analyze static (e.g., file entropy) and dynamic 

(e.g., API call sequences) ransomware behaviors. By aligning 

source and target domains via Geometric Alignment 

Clustering (GAC), CINN-UTLC mitigates domain shifts and 

reduces reliance on labeled data. 

Experimental results highlight its superiority: 98% 

detection rate, 2.5% false positives, and AUC of 0.94, 

outperforming benchmarks like UNVEIL. Clustering metrics 

(Silhouette Score: 0.80–0.86; Adjusted Rand Index: 0.87–0.93) 

confirm precise separation of ransomware families, including 

zero-day variants. SHAP and LIME provide interpretable 

insights, fostering trust in decision-making. 

CINN-UTLC’s adaptability and explainability position it as 

a robust tool for real-world cybersecurity, with potential 

extensions to other malware types and domains like fraud 

detection. 
 

6.2 Challenges and measures 
 

Throughout the development of CINN-UTLC, we 

encountered several challenges, particularly in the transfer 

process, where disparate data distributions could have 

impaired learning efficacy. To mitigate this, we implemented 

normalization techniques and domain adaptation strategies 

that allowed the algorithm to maintain high performance 

despite distribution discrepancies. Additionally, we applied 

regularization methods to avoid over-fitting, ensuring the 

model’s generalizability across unknown ransomware families. 
 

6.3 Prospective endeavours 
 

In the future, we aim to refine CINN-UTLC by: 

• Enhancing the dynamic adaptation capabilities to keep 

pace with the ever-evolving nature of ransomware threats. 

• Developing more versatile frameworks to identify and 

mitigate new and unknown cyber threats effectively. 

• Fostering an AI-human collaborative environment where 

the algorithmic efficiency is complemented by human 

expertise for improved detection and classification of complex 

ransomware variants. 

 

6.4 Future directions 
 

In light of the demonstrated success of the CINN-UTLC 

algorithm, our future research endeavours will focus on the 

continuous refinement of the model to adapt to the ever-

evolving ransomware methodologies. We will also explore the 

integration of artificial intelligence and human expertise to 

further bolster the algorithm’s detection capabilities. 

Additionally, research will be directed toward expanding 

the dataset, incorporating emerging ransomware threats, and 

enhancing the algorithm’s learning process to maintain its 

edge in ransomware detection. 

 

6.5 Other applications of CINN-UTLC 
 

CINN-UTLC can be applied to various types of malwares 

and potentially non-cybersecurity tasks. Here are the key 

points we intend to include: 

1. Applicability to Other Malware Types: The core 

principles of the CINN-UTLC algorithm, which harness 

unsupervised clustering and dynamic behavioural 

analysis, are not limited to ransomware alone. These 

techniques can be extended to detect other forms of 

malware, such as viruses, worms, and Trojans. The 

unsupervised nature of CINN-UTLC allows it to 

adaptively learn and classify new malware types by 

analysing their execution patterns without the need for 

labelled examples. This adaptability is crucial in a 

landscape where new malware variants frequently emerge, 

often evading traditional detection methods. 

2. Potential Non-Cybersecurity Applications: Beyond 

malware detection, the framework could be leveraged for 

various anomaly detection tasks in fields like fraud 

detection, intrusion detection in network security, and 

even in industrial systems for identifying abnormal 

behaviours in operational data. The versatility of the 

clustering approach employed by CINN-UTLC allows it 

to characterise normal vs. abnormal patterns effectively, 

which is integral in many disciplines. 

3. Testing on Additional Datasets: To substantiate our 

claims about the applicability of CINN-UTLC to other 

malware types, we have explored testing the algorithm on 

a general malware dataset. This dataset could include a 

diverse array of malware samples that represent various 

families, allowing us to validate the CINN-UTLC 's 

effectiveness in differentiating and classifying these 

samples. Such testing will provide empirical evidence of 

the algorithm’s broader applicability and adaptability. 

 

6.6 Reflective insights 

 

The domain of cybersecurity is perpetually challenged by 

the emergence of sophisticated ransomware threats. In this 

arms race, our CINN-UTLC algorithm stands out as a 

significant milestone, providing not only a robust defense 

mechanism but also a flexible and adaptive framework capable 

of meeting future challenges. With its proven effectiveness 

and adaptability, the CINN-UTLC algorithm is poised to make 

a substantial impact on the cybersecurity landscape, offering a 

glimpse into the future of ransomware detection and 

prevention strategies. 
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