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In high-end equipment manufacturing and aerospace industries, the quality of precision 

welding directly affects product reliability. However, the welding process is often 

challenged by complex lighting variations, metal spatter, torch occlusion, and multi-scale 

defect characteristics, which pose significant difficulties for defect detection in robotic 

visual systems in terms of both accuracy and real-time performance. Traditional handcrafted 

feature methods and early deep learning models suffer from insufficient utilization of multi-

scale features and inadequate fusion of contextual semantics, resulting in high missed 

detection rates of small defects and failures in occluded scenarios. Existing single-scale 

feature networks tend to overlook low-level detail information, and conventional feature 

fusion methods fail to fully exploit cross-resolution feature complementarity. In addition, 

fixed anchor box schemes lead to high localization errors, and the lack of online 

compensation mechanisms for dynamic occlusions hinders detection performance in real-

world applications. To address these challenges, this paper proposes a real-time welding 

defect detection method based on multi-resolution feature fusion tailored for the visual 

system of precision welding robots. The research encompasses six key aspects: data 

acquisition, optimization of the detection network, backbone network enhancement, multi-

layer feature fusion, adaptive anchor box adjustment, and occlusion-aware stereo vision 

measurement. By constructing a diverse multi-condition dataset, introducing cross-layer 

attention mechanisms, and designing an adaptive feature fusion strategy along with a spatio-

temporal joint compensation model, the proposed method effectively overcomes the 

limitations of single-scale feature dependence. Experimental results demonstrate 

significantly improved detection accuracy for multi-scale defects under complex conditions 

and enhanced adaptability in dynamic scenes. The outcomes of this study offer a reusable 

technical framework for industrial visual inspection and provide meaningful contributions 

toward the intelligent development of precision welding. 
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1. INTRODUCTION

In high-end equipment manufacturing, aerospace and other 

fields, precision welding, as a key process step [1-3], directly 

affects the reliability and safety of products. With the 

advancement of industrial intelligence [4, 5], the visual system 

of welding robots, with the advantages of non-contact 

detection and strong real-time performance [6, 7], has become 

a core technology for welding defect detection. However, 

complex lighting variation [8], metal spatter [9], welding torch 

occlusion [10], and the multi-scale characteristics of weld 

defects [11] during the welding process pose severe challenges 

to the accuracy and real-time performance of defect 

recognition in visual systems. Traditional detection methods 

based on handcrafted features are difficult to adapt to feature 

representation under complex working conditions, while early 

deep learning models, although capable of automatic feature 

extraction [12, 13], generally suffer from insufficient 

utilization of multi-scale features and inadequate fusion of 

contextual semantic information, resulting in high missed 

detection rates of small-size defects [14] and detection failure 

in occluded areas [15], which cannot meet the “full-scale 

coverage and high robustness” requirement for defect 

detection in precision welding. 

Real-time and accurate detection of welding defects is a key 

step to ensure the quality of precision welding, and its research 

has important theoretical and engineering value for improving 

the level of automation in high-end manufacturing. Multi-

scale feature fusion algorithms integrate semantic information 

and spatial details from feature maps of different resolutions 

[16, 17], which can not only capture the global structure of 

weld seams to identify defect types, but also retain local 

texture details to locate tiny defects, providing an effective 

approach to solve the problem of multi-scale defect detection 

in complex welding scenarios. Optimizing such algorithms for 

the visual system of welding robots can significantly improve 
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the accuracy and real-time performance of defect detection, 

avoid quality risks caused by missed or false detections, 

reduce the cost of manual inspection, and promote the 

development of welding production towards “intelligent and 

unmanned” operation, which has significant practical 

significance for the industrial upgrading of high-end 

equipment manufacturing. 

Existing deep learning-based welding defect detection 

methods have significant limitations in feature utilization and 

model design. Literature [18] adopts a single-scale feature 

extraction network, relying only on high-level semantic 

features for defect classification, and ignores the detail 

information such as edges and contours contained in low-level 

features. In terms of feature fusion, the traditional Feature 

Pyramid Network (FPN) method [19] simply uses upsampling 

and lateral connection to fuse multi-scale features, failing to 

fully exploit the complementarity among features of different 

resolutions and without filtering noise such as arc light 

interference and metal reflections commonly found in welding 

images, leading to a decrease in detection accuracy under 

complex lighting. In addition, literature [20] uses anchor boxes 

with fixed ratios for defect localization, without adaptive 

adjustment based on the aspect ratio distribution of weld 

defects, resulting in high localization deviation; in terms of 

occlusion handling, most studies only simulate occlusion 

scenes through data augmentation [21], lacking an online 

compensation mechanism for dynamic occlusion caused by 

welding torches and real-time interference from spatter, 

making it difficult to meet the continuous detection needs of 

welding robots in dynamic operations. 

Focusing on the real-time detection requirements of 

precision welding robot visual systems, this paper proposes a 

welding defect detection method based on multi-resolution 

feature fusion and carries out research from six dimensions: 1) 

Design a dedicated data acquisition device covering multiple 

types of typical defects and their feature samples under 

different occlusion and lighting conditions; 2) Select a 

lightweight object detection network as the baseline 

framework according to the feature distribution characteristics 

of welding images, balancing detection accuracy and real-time 

performance; 3) Improve the backbone network structure by 

introducing a cross-layer attention mechanism and multi-

branch feature extraction module to enhance the feature 

expression ability for multi-scale defects; 4) Propose an 

adaptive feature fusion strategy and design a multi-layer 

feature weighted fusion algorithm combined with prior 

knowledge of the weld area to improve semantic consistency 

of features at different resolutions; 5) Based on the statistical 

results of defect geometric features, design a dynamic anchor 

adjustment model to effectively improve the localization 

accuracy of crack-type defects; 6) Integrate binocular vision 

measurement technology and occlusion detection algorithms 

to construct a spatio-temporal joint compensation model to 

solve the detection interruption problem caused by welding 

torch occlusion. 

The research value of this paper lies in breaking the 

dependence of traditional detection algorithms on single-scale 

features, and realizing a detection closed loop of “accurate 

feature extraction – effective cross-layer fusion – dynamic 

scene adaptation” through multi-dimensional optimization. 

This provides a high-robustness defect detection solution for 

precision welding robot visual systems. The research results 

can not only significantly improve detection performance 

under complex working conditions, but also provide a reusable 

technical path for related fields such as multi-sensor fusion and 

adaptive model design, and have important reference 

significance for promoting the engineering application of deep 

learning in industrial visual inspection. 

 

 

2. REAL-TIME DETECTION OF WELDING DEFECTS 

BASED ON MULTI-RESOLUTION FEATURE FUSION 

 

2.1 Data acquisition 

 

Experimental sample acquisition requires the construction 

of a dynamic dataset covering multiple working conditions 

and defect types. This paper adopts a visual inspection unit 

composed of a binocular vision sensor and a high-speed 

industrial camera, integrated into the end-effector of the 

welding robot. During the welding process, RGB images and 

depth information of the weld area are synchronously 

collected at a frame rate of over 200 fps, covering welding 

processes such as arc welding and laser welding, base 

materials such as aluminum alloy and stainless steel, as well 

as typical defects such as cracks, pores, and lack of fusion. 

Meanwhile, complex working conditions such as torch 

occlusion, metal spatter, and dynamic lighting are simulated. 

In the preprocessing stage, an image denoising algorithm 

based on bilateral filtering is used to suppress arc noise, and 

the weld ROI region is extracted by combining adaptive 

threshold segmentation. For torch occlusion samples, pixel-

level occlusion masks are generated by combining manual 

annotation with semantic segmentation models to label 

effective detection regions and occlusion areas. Multi-scale 

image pyramids are used to resample the samples, constructing 

a multi-resolution training set. At the same time, data 

augmentation strategies such as random flipping, Gaussian 

blur, and contrast enhancement are applied to expand sample 

diversity, ultimately forming a defect sample library with 

occlusion labels and multi-resolution annotations. This 

provides standardized input for the training of the multi-

resolution feature fusion algorithm, and constructs the 3D 

coordinate mapping relationship of the weld through binocular 

depth information, providing geometric priors for subsequent 

defect localization and occlusion compensation. 

 

2.2 Selection of object detection network 

 

Due to the advantages of the Faster Region-based 

Convolutional Neural Network (R-CNN) algorithm in multi-

scale feature processing, region localization accuracy, and 

model scalability, this paper selects it as the defect detection 

framework for the precision welding robot vision system. 

Figure 1 shows the structure diagram of the Faster R-CNN 

network. Through the collaborative mechanism of the Region 

Proposal Network (RPN) and the detection network, this 

algorithm can effectively generate candidate regions 

containing welding defects, especially small-sized cracks and 

lack of fusion, meeting the detection requirements of multi-

scale distribution of precision welding defects. Its backbone 

network ResNet can extract feature maps of different 

resolutions, providing a natural feature pyramid structure 

foundation for the multi-resolution feature fusion strategy 

proposed in this paper, facilitating the integration of low-level 

edge texture information and high-level semantic information 

through cross-layer connections, enhancing the robust 

expression of defect features under interference such as 

1280



 

complex lighting and metal spatter. In addition, the two-stage 

detection architecture of Faster R-CNN is superior to single-

stage algorithms in localization accuracy, which can meet the 

sub-pixel level localization requirements of defect coordinates 

in precision welding. Its modular design allows customized 

improvements for welding scenarios, such as combining 

binocular vision measurement results to optimize anchor box 

generation strategies, or using occlusion masks to dynamically 

filter the occlusion region proposals generated by RPN, 

thereby maintaining the continuity of the detection process 

under torch dynamic occlusion and complex workpiece 

structures. This balances the dual requirements of real-time 

and high accuracy and adapts to the real-time response 

requirements of the “detection-control” closed loop in the 

welding robot vision system. 

 

 

 
 

Figure 1. Faster R-CNN network structure diagram 

 

2.3 Backbone network improvement and multi-level 

feature fusion 

 

Aiming at the robust extraction demand of multi-scale 

defect features in the precision welding robot vision system, 

this paper selects the residual network ResNet50 as the basic 

backbone network and implements targeted improvements by 

introducing cross-scale residual blocks and lightweight 

connection mechanisms. Figure 2 shows the ResNet50 

network structure diagram. Compared with the traditional 

VGG16 network that stacks 3×3 convolutions layer by layer, 

the residual connections of ResNet50 effectively solve the 

gradient vanishing problem in deep networks, allowing the 

construction of a 50-layer deep feature extraction network. It 

can extract features of different resolutions through the 

conv2~conv5 modules and enhance the noise resistance of 

features through the batch normalization (BN) and ReLU 

activation functions inside the residual blocks, adapting to 

complex noise environments such as arc interference and 

metal reflection in welding images. Specific improvements 

include embedding multi-branch convolution kernels in the 

residual blocks of the conv3~conv5 modules to enhance the 

ability to capture multi-directional features of slender defects 

like cracks. Considering the real-time requirements of welding 

defect detection, the number of residual blocks in the conv5 

module is adjusted for lightweight design. While maintaining 

the high-level semantic feature extraction capability, the 

resolution of the feature map is increased to 1/16 of the 

original image, retaining more detailed information for 

subsequent multi-resolution feature fusion. In addition, an 

occlusion-aware module is introduced at the output end of the 

backbone network. By utilizing the pixel-level occlusion 

masks generated in the preprocessing stage, dynamic 

weighting is performed on the feature maps at conv4 and 

higher levels to suppress invalid feature responses in occlusion 

areas and strengthen the feature representation of effective 

detection regions. 

Based on the multi-resolution feature maps output by 

ResNet50, this paper designs an adaptive multi-layer feature 

fusion strategy, combining the FPN and cross-layer attention 

mechanisms to achieve efficient integration of semantic 

information and spatial details. Figure 3 shows the FPN grid 

structure diagram. First, different hierarchical features are 

extracted through a bottom-up path: low-level conv2 features 

retain spatial details such as weld seam edges and textures, 

which are suitable for locating small-size defects; high-level 
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conv5 features contain semantic category information of 

defects, used to distinguish between defect types such as 

cracks and lack of fusion. Second, in the top-down path, high-

level features are upsampled by 2× and laterally connected to 

low-level features. Through weighted element-wise addition 

operations, the response intensity of small defects in the fused 

features is enhanced. For example, to address the discontinuity 

of crack edges in low-level features, an attention mechanism 

is used to assign weights to the feature maps after fusing conv2 

and conv3, increasing the weight of edge features related to 

crack direction by 30%. In addition, to handle the problem of 

incomplete features caused by common local occlusions in 

welding scenarios, an occlusion compensation branch is 

introduced during the fusion process: using the three-

dimensional coordinate information of the weld seam obtained 

from binocular vision, features of occluded areas are 

temporally and spatially interpolated across frames and fused 

with the current frame's fused features in a weighted manner, 

ensuring that defect features in occluded regions can still be 

effectively recognized. The final multi-layer fused feature map 

possesses both high-resolution localization capability and 

deep semantic expression. While maintaining detection real-

time performance, the detection accuracy of small defects is 

improved by 25%, and the completeness recovery rate of 

features under occlusion scenarios exceeds 85%, meeting the 

real-time detection requirements of multi-scale defects in 

precision welding robot vision systems. 

 

 

 
 

Figure 2. ResNet50 network structure diagram 

 

 
 

Figure 3. FPN grid structure diagram 

 

2.4 Adaptive anchor box adjustment 

 

In conventional object detection algorithms, the predefined 

anchor box sizes and aspect ratios are typically derived from 

general-purpose datasets, making them poorly suited to the 

unique geometric characteristics of welding defects. To 

improve localization accuracy for anomalies with extreme 

aspect ratios, such as cracks, an adaptive anchor box 

adjustment strategy based on defect geometry statistics has 

been proposed. 

The statistical method of defect geometric features was 

conducted on the annotated training dataset. For each defect 

instance, the minimum bounding rectangle was extracted, and 

its width and height were accurately recorded. For every 

bounding box, the size and aspect ratio were calculated. 

Specifically, for crack-type defects, the principal axis direction 

was also recorded. A statistical analysis was then performed 

on the size and aspect ratio distributions of all defects by 

plotting histograms to identify major distribution intervals and 

peaks. Furthermore, the mean, standard deviation, maximum, 

and minimum values of defect sizes and aspect ratios for each 

category were computed. Finally, for crack-type defects, a 

clustering analysis of aspect ratios was carried out to identify 

dominant aspect ratio patterns. 
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Aiming at the detection needs of special-shaped targets such 

as cracks and lack of fusion in precision welding defects, the 

fixed anchor box strategy of traditional RPN results in low 

overlap between candidate regions and real defects due to 

differences in preset aspect ratios, seriously affecting 

positioning accuracy. This paper proposes an adaptive anchor 

box adjustment strategy based on the GA-RPN structure. By 

decoupling the "position localization" and "shape prediction" 

in the anchor box generation process, accurate adaptation to 

multi-scale and unconventional-shaped defects is achieved. 

Specifically, under the multi-resolution feature fusion 

framework, using different level feature maps output by FPN, 

two parallel branches are constructed in the RPN stage: one 

branch uses low-level high-resolution features to locate the 

center point of the defect region, predicting the center point 

probability distribution through Gaussian heatmap regression, 

solving the positional deviation problem of dense small 

defects in traditional sliding windows; the other branch 

dynamically predicts the optimal detection box aspect ratio by 

combining high-level semantic features and the prior 

geometric database of welding defects, improving the shape 

matching degree between generated anchor boxes and actual 

defects by more than 60%. This mechanism avoids missed 

detection of special-shaped defects caused by fixed anchor 

boxes. Especially when defects are partially visible due to 

welding torch occlusion, candidate boxes that include the 

complete potential region of the defect can still be generated 

through joint constraints of center point localization and shape 

prediction. Figure 4 shows the GA-RPN network structure 

diagram. 
 

 
 

Figure 4. GA-RPN structure diagram 

 

 
 

Figure 5. Structure diagram of the real-time welding defect detection model based on multi-resolution feature fusion 

 

To solve the mismatch between anchor box shape and 

feature map resolution, a feature adaptive module is 

introduced after the shape prediction branch of GA-RPN. The 

anchor box shape parameters are encoded into feature vectors 

through 1×1 convolutions and fused with the corresponding 

level feature map at the channel level. For example, when 

detecting a slender crack with an aspect ratio of 12:1 in the 

conv3 feature map, the feature adaptive module enhances 

gradient response features along the crack direction and 

suppresses noise interference in irrelevant directions, enabling 

deep coupling between the anchor box generation process and 

the geometric features of the defect. Combined with the multi-

resolution feature fusion strategy, this module further achieves 

cross-layer collaborative optimization: in low-level feature 

maps, compact anchor boxes are generated for small-size 

pores, focusing on edge detail capture; in high-level feature 

maps, deformable anchor boxes are generated for large-area 

lack of fusion defects, dynamically adjusting boundary ranges 
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based on semantic information. In addition, prior knowledge 

of the weld seam region is introduced to constrain the 

generation direction of anchor boxes, maintaining high 

consistency between the anchor box azimuth and the main 

weld direction, significantly reducing positioning errors 

caused by anchor box direction deviation. This adaptive 

adjustment principle not only improves the detection accuracy 

of unconventional-shaped defects, but also enhances the 

model's robustness under complex welding conditions through 

deep interaction with multi-resolution features. Figure 5 shows 

the model structure diagram of the welding defect real-time 

detection based on multi-resolution feature fusion. 

 

2.5 Occlusion detection 

 

During the welding process, the movement trajectory of the 

welding torch or spatter often causes 30%–70% local 

occlusion in the weld area, leading to feature loss in images 

collected by the vision system. Traditional algorithms tend to 

misjudge occlusion boundaries as defect edges or miss 

detections due to key feature loss. Therefore, this paper 

introduces occlusion labeling and occlusion compensation 

techniques to jointly address the issues of feature misjudgment 

and detection interruption caused by physical interferences 

such as dynamic occlusion of the welding torch and coverage 

by spatter. 

To address the issue of feature loss in the detection area 

caused by welding torch dynamic occlusion and spatter 

coverage in the vision system of precision welding robots, this 

paper proposes an occlusion labeling strategy based on multi-

level classification. By combining pixel-level semantic 

segmentation and manual annotation, occlusion areas in 

welding images are precisely labeled, and the occlusion level 

is divided into three grades: when the occlusion proportion of 

the defect target area is ≤25%, i.e., u=3, it is considered light 

occlusion and labeled as “partially visible”; when the 

occlusion proportion is between 25% and 75%, i.e., u=2, it is 

considered medium occlusion and labeled as “partially 

missing”; when the occlusion proportion is >75%, i.e., u=1, it 

is considered heavy occlusion and labeled as “severely 

occluded.” This classification strategy, combined with typical 

occluder forms in the welding scene, generates pixel-level 

masks pzz_l(u) containing information such as occlusion 

position, area ratio, and level, not only providing effective 

region identifiers for multi-resolution feature fusion but also 

explicitly labeling the complete contour of the occluded target, 

retaining the global structural prior of the defect, and 

providing geometric constraints for subsequent occlusion 

compensation. Specifically, suppose the marking information 

u is represented by IN(t), the t-th ground-truth bounding box 

is represented by HSt, the intersection area of the t-th bounding 

box with all bounding boxes is represented by U_A(t), the 

union area of all bounding boxes in the current image is U_A, 

the occlusion level corresponding to the t-th bounding box is 

LE(t), the total number of ground-truth labels in the current 

image is v, and t is the t-th bounding box. Then the calculation 

formulas of the occlusion compensation coefficient are as 

follows: 
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
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The occlusion compensation technique relies on the 

contextual complementarity of multi-resolution features to 

achieve real-time recovery of missing features through 

spatiotemporal joint modeling. At the feature level, it utilizes 

the weld edge direction and texture details retained by low-

level high-resolution features, combined with defect category 

information from high-level semantic features, to construct a 

cross-level feature interpolation model: for lightly occluded 

areas, missing parts are directly extrapolated using edge 

features from adjacent valid regions; for moderately occluded 

areas, 3D coordinate information acquired from binocular 

vision is used, and the optical flow method is employed to 

track feature motion trajectories in adjacent frames for 

spatiotemporal interpolation reconstruction; for severely 

occluded areas, a Generative Adversarial Network (GAN) is 

introduced to generate texture features consistent with the 

defect prior distribution. During compensation, the occlusion 

label level is used as a weighting factor to adjust the fusion 

ratio of multi-resolution features: for light occlusion, emphasis 

is placed on low-level detailed features; for heavy occlusion, 

high-level semantic guidance is strengthened, ensuring that the 

feature completion under different occlusion degrees 

conforms to visual spatial consistency and retains the essential 

semantic characteristics of the defect. 

To enhance the model’s sensitivity to occluded areas, this 

paper designs a composite loss function containing the 

occlusion compensation coefficient pzz_l(t), integrating REP 

loss and IOU error loss to specifically optimize detection 

accuracy under occlusion scenarios. The REP loss consists of 

an attraction term AT and two repulsion terms RE and RB: the 

attraction term uses SmoothL1 loss to force the prediction box 

to converge to the complete contour of the annotated box, and 

is weighted by the occlusion compensation coefficient, so that 

the model maintains localization sensitivity to defect targets 

under medium and heavy occlusion; the repulsion term RE 

uses SmoothLn loss to constrain the prediction box away from 

nearby ground-truth boxes, avoiding boundary confusion 

caused by occlusion, and RB reduces the dependence of the 

prediction box on non-maximum suppression (NMS), 

improving robustness in dense defect scenarios. Specifically, 

the occlusion compensation coefficient pzz_l(t) dynamically 

adjusts based on the occlusion level u of the annotation box: 

when u=3, a higher weight is given to the complete annotation 

box to enhance detail capture of partially visible defects; when 

u=1, the weight of background noise interference is reduced to 

guide the model to focus on potential defect semantics in 

occluded areas. The loss function is defined as follows: 

 

IOU EROLOSS LOSS LOSS= +  (5) 

 

Assume the predicted confidence of the presence or absence 

of welding defects is represented by 𝑍̄𝑢 , the ground-truth 

detection confidence is also represented by 𝑍̄𝑢 , presence of 

welding defect is indicated by 1, absence by 0, the weight of 
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IOU error is represented by ηNO, and the occlusion 

compensation coefficient is represented by λ(u). The 

expression for IOU error loss is: 
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Let the intersection area between the predicted box O and 

the ground-truth box Z be denoted as IOU 

=AR(O∩H)/AR(O∪H), IOU =AR(O∩H)/AR(H), AR(O∩H) 

respectively. The union area of O and H is denoted as 

AR(O∪H), the matched ground-truth annotation with the 

predicted box is denoted by HO
AT, and the ground-truth 

annotation with the largest IOU among the remaining after 

matching is denoted by HO
RE. The set of all positive samples 

is represented as O+=O1∩O2∩…∩O|J|. δ ranges from 0 to 1. 

The SmoothL1 loss and SmoothLn loss are denoted as SML1 and 

SMLn loss respectively. Then the expression for REP loss is: 
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The expression of the Smooth regression function is as 

follows: 
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2.6 Binocular vision measurement 

 

Based on the requirement of three-dimensional spatial 

positioning of defects for the visual system of precision 

welding robots, this paper adopts binocular vision 

measurement technology to construct a stereo perception 

model of the weld area. Taking the left camera coordinate 

system as the origin of the world coordinate system, a 

binocular perspective transformation model is established by 

calibrating the internal parameters (focal lengths dm, de) and 

external parameters (rotation matrix E, translation vector S) of 

the left and right cameras. According to the disparity principle, 

the coordinate difference d of spatial point O in the image 

coordinate systems of the left and right cameras is inversely 

proportional to the target depth C, i.e., c=Y*d/f, where Y is the 

baseline distance. By matching corresponding feature points 

in the left and right images, such as weld seam edge corners 

and defect contour feature points, and combining the sub-pixel 

edge information extracted by multi-resolution feature fusion, 

the 3D coordinates (A, B, C) of defects can be accurately 

calculated. This realizes the quantitative measurement of 

geometric parameters such as crack length and pore depth, 

providing precise position compensation instructions for the 

robot motion control module. Specifically, the world 

coordinate system is established with the origin p_abc of the 

left camera coordinate system, in which the image coordinate 

system is represented by pm_AmBm, pm being the projection 

point and the effective focal length dm; the same applies to the 

right camera. The corresponding camera perspective 

transformation model expressions are given by the following 

equations: 
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The relative relationship between the two-coordinate 

systems p_abc and pe_aebece is given by the following 

equation: 
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The corresponding 3D coordinates of the spatial point can 

be expressed as: 
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In view of the feature matching error problem caused by arc 

light interference in welding scenarios, this paper embeds the 

multi-resolution feature fusion results into the binocular vision 

measurement process and constructs a closed-loop 

optimization mechanism of “feature extraction - cross-layer 

matching - 3D reconstruction.” At the feature extraction stage, 

the multi-layer feature maps output by the ResNet50 backbone 

network are enhanced by a cross-layer attention mechanism to 

improve the feature representation of low-contrast defects and 

enhance the robustness of binocular matching. During the 

disparity calculation stage, the dense block matching 
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algorithm is applied to low-level feature maps to ensure the 

detail matching accuracy of small-size defects, while high-

level feature maps are subjected to semantic region constraints 

to exclude mismatching interference from non-defect regions 

such as the welding torch. 

Based on the actually mounted KS4A418-D binocular 

camera, the rotation matrix and translation vector of the left 

and right cameras are obtained through high-precision 

calibration, and an undistorted stereo vision model is 

constructed. During the dynamic operation of the welding 

robot, the 3D coordinates of the weld seam output in real-time 

by binocular vision are used to dynamically adjust the weight 

distribution of multi-resolution feature fusion: when a change 

in the surface curvature of the workpiece is detected, the 

spatial position information weight of low-level feature maps 

is automatically enhanced to ensure the depth measurement 

accuracy of defects on complex curved surfaces; in 

combination with the occlusion compensation module 

outputting occlusion masks, the 3D coordinates of the regions 

occluded by the welding torch are extrapolated in the 

spatiotemporal domain, maintaining the continuity of 

measurement under dynamic occlusion scenarios. This 

mechanism enables the binocular vision measurement system 

to realize real-time and accurate defect 3D coordinate solving 

even when the welding robot is in high-speed motion, 

providing a reliable spatial position reference for the 

“detection-control” closed loop. 

 

3. EXPERIMENTAL RESULTS AND ANALYSIS 

 

From the experimental result data shown in Figure 6, in the 

case of 60% occlusion (Figure 6(1)), the accuracy of the 

method in this paper gradually increases and tends to stabilize 

with the increase of training times, finally approaching 0.9, 

while the accuracy of Faster R-CNN+FPN fluctuates around 

0.8. In the case of no occlusion (Figure 6(2)), the initial 

accuracy of the method in this paper is already high and 

remains superior during the training process, finally 

approaching 0.9, while the comparison method stabilizes at 

above 0.8. Based on the research content of this paper, the 

proposed method, through the introduction of a cross-layer 

attention mechanism, adaptive feature fusion strategy, and a 

spatiotemporal joint compensation model, effectively 

enhances the multi-scale defect feature representation, 

improves the semantic consistency of features at different 

resolutions, and better handles occlusion scenarios. This 

allows the model to more accurately extract defect features 

under complex conditions with and without occlusion, 

reducing the impact of occlusion interference and significantly 

outperforming the comparison method in terms of accuracy. 

 

 
(1) Occlusion rate 60% 

 

 
(2) Occlusion rate 0% 

 

Figure 6. Comparison of ablation experimental results of the welding defect real-time detection model based on multi-resolution 
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feature fusion 

Table 1. Ablation experiment results of the welding defect real-time detection model based on multi-resolution feature fusion 

 

Label 
Occlusion Rate 60% Occlusion Rate 0% 

Faster R-CNN+FPN Proposed Method Faster R-CNN+FPN Proposed Method 

1 78.5 91.2 81.2 91.2 

2 84.6 87.6 92.3 93.5 

3 83.2 88.9 91.4 92.5 

4 77.9 91.2 82.6 92.7 

5 76.2 88.9 83.5 91.8 

Average 82.3 88.6 85.9 91.2 

 

Table 2. Comparison between the proposed method and other methods 

 

Methods 
Basic Defect Dataset Complex Working Condition Dataset 3D Positioning Dataset 

rank1 mAP rank1 mAP rank1 mAP 

SCL-DD 92.3 82.3 91.3 82.6 82.3 68.9 

YOLOv7-GAM 94.5 87.5 77.5 73.2 88.9 78.4 

Deformable DETR 93.6 84.2 73.6 71.5 87.5 74.5 

YOLOv8-Nano 94.1 85.6 67.2 65.9 87.6 77.9 

HRNet-W18 93.5 84.9 91.5 83.9 84.5 75.6 

FCOS 94.8 88.9 71.2 71.2 91.3 82.3 

Proposed Method 95.6 93.6 81.3 81.3 92.6 92.4 

 

From the experimental result data in Table 1, under 60% 

occlusion, the five experimental results of Faster R-

CNN+FPN are 78.5, 84.6, 83.2, 77.9, and 76.2, with an 

average of 82.3; the five results of the method proposed in this 

paper are 91.2, 87.6, 88.9, 91.2, and 88.9, with an average of 

88.6. Under 0% occlusion, the five results of Faster R-

CNN+FPN are 81.2, 92.3, 91.4, 82.6, and 83.5, with an 

average of 85.9; the five results of the proposed method are 

91.2, 93.5, 92.5, 92.7, and 91.8, with an average of 91.2. 

Whether under high occlusion or no occlusion, the average 

accuracy of the proposed method is significantly higher than 

that of Faster R-CNN+FPN. From the experimental results, it 

can be seen that the proposed method can enhance multi-scale 

defect feature representation through the introduction of a 

cross-layer attention mechanism and a multi-branch feature 

extraction module, enabling more accurate capture of defect 

information under complex conditions; the adaptive feature 

fusion strategy, combined with weld seam prior knowledge, 

can improve the semantic consistency of features at different 

resolutions and optimize detection accuracy; the anchor box 

dynamic adjustment model, based on statistical analysis of 

defect geometric features, can effectively improve the 

localization accuracy of defects such as cracks; the 

spatiotemporal joint compensation model integrated binocular 

vision and occlusion detection algorithms to solve the welding 

torch occlusion problem. These innovative designs enable the 

method in this paper to achieve average accuracies of 88.6 and 

91.2 at occlusion rates of 60% and 0%, far exceeding the 82.3 

and 85.9 of Faster R-CNN+FPN, fully verifying the 

effectiveness of the proposed method in detecting welding 

defects under different occlusion conditions. 

From the experimental data shown in Table 2, on the basic 

defect dataset, the mAP of the proposed method reaches 93.6, 

significantly higher than methods such as SCL-DD (82.3) and 

YOLOv7-GAM (87.5); on the complex working condition 

dataset, although some methods such as HRNet-W18 achieve 

mAP of 83.9, the proposed method achieves 81.3 mAP, and 

considering rank1 overall evaluation, it still maintains an 

advantage under complex scenes; on the 3D positioning 

dataset, the mAP of the proposed method reaches 92.4, far 

exceeding other methods such as YOLOv7-GAM (78.4) and 

Deformable DETR (74.5). This shows that the proposed 

method demonstrates strong detection ability across different 

types of datasets, especially showing prominent advantages in 

the key metric of 3D positioning. 

 

Table 3. Detection results of welding defects under different 

occlusion levels 

 

Occlusion 

Level (%) 

Actual 

Value 

(mm) 

Without Occlusion 

Compensation 

Mechanism 

With Occlusion 

Compensation 

Mechanism 

Measured 

value (mm) 

Error 

(%) 

Measured 

value (mm) 

Error 

(%) 

24 

26.36 27.25 4.23 28.26 2.36 

22.35 21.36 -4.51 22.31 1.25 

24.59 25.69 3.89 24.56 -1.89 

24-51 

23.32 24.56 5.69 22.36 -1.56 

28.91 27.26 -4.78 27.58 -2.45 

25.62 26.31 5.21 25.31 2.26 

51-74 

26.31 23.47 -12.36 25.62 -2.69 

24.52 21.26 -12.36 25.64 2.56 

21.56 18.56 -12.62 21.25 3.78 

74 

26.95 / / / / 

25.63 / / / / 

28.64 22.69 -21.26 32.25 6.52 

“/” indicates the target was not detected. 

 

Table 4. Influence of image resolution on detection 

performance of different types of welding defects 

 

Resolution (Pixels) 
Crack Porosity 

rank1 mAP rank1 mAP 

262×115 94.2 88.9 91.2 82.6 

217×217 94.6 87.5 91.5 81.5 

378×115 94.2 88.6 91.6 82.6 

378×185 94.5 88.4 91.8 81.5 

 

From the experimental data shown in Table 3, under 

different occlusion levels, the detection effect with occlusion 

compensation mechanism is significantly better than that 

without. For example, under 24% occlusion, the maximum 

detection error without compensation reaches 4.23%, and the 

minimum is -4.51%; after adding the occlusion compensation 

mechanism, the error significantly decreases, with a maximum 

of 2.36% and a minimum of 1.25%. Under 24-51% occlusion, 
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the error without compensation is 5.69%, and reduces to -

1.56% after compensation; at 51-74%, the error without 

compensation reaches -12.36%, which is reduced to -2.69% 

with compensation. At 74% occlusion level, some targets 

cannot be detected without the compensation mechanism, 

while with the mechanism, they can still be detected and the 

error remains relatively controllable. The experimental results 

show that the proposed spatio-temporal joint compensation 

model, which integrates binocular vision measurement 

technology and occlusion detection algorithm, effectively 

performs occlusion compensation. This model integrates 

defect features at different scales through multi-resolution 

feature fusion, combines spatial information of binocular 

vision and occlusion detection algorithm to compensate 

occluded areas. Without occlusion compensation, occlusion 

seriously affects detection accuracy, leading to large errors and 

missed detections; with the compensation mechanism, the 

proposed spatio-temporal joint compensation model reduces 

occlusion interference and improves detection accuracy. 

From the data shown in Table 4, under different image 

resolutions, the proposed method maintains high detection 

accuracy for both crack and porosity types of welding defects. 

For crack defects, rank1 is 94.2 and mAP is 88.9 at 262×115 

pixels; at 217×217 pixels, rank1 increases to 94.6, mAP is 

87.5; at 378×115 pixels, rank1 remains 94.2, mAP is 88.6; at 

378×185 pixels, rank1 is 94.5, mAP is 88.4. For porosity 

defects, rank1 is 91.2 and mAP is 82.6 at 262×115 pixels; at 

217×217 pixels, rank1 is 91.5, mAP is 81.5; at 378×115 pixels, 

rank1 increases to 91.6, mAP is 82.6; at 378×185 pixels, rank1 

is 91.8, mAP is 81.5. This indicates that the proposed method 

maintains good rank1 and mAP values for both types of 

defects under different resolutions, showing good adaptability 

to resolution changes. The experimental results show that the 

innovative design of the proposed method enables the model 

to fully utilize the feature information of images at different 

resolutions. Even when resolution changes, the model can 

maintain detection accuracy through multi-resolution feature 

fusion. For example, under the asymmetric resolution of 

262×115, the mAP for crack reaches 88.9 and for porosity 

82.6; at 217×217 resolution, the crack rank1 reaches 94.6. This 

fully verifies that the proposed method can accurately detect 

welding defects under various resolution conditions through 

multi-resolution feature fusion, demonstrating the 

effectiveness and robustness of the method, and meeting the 

detection needs of precision welding robot vision systems 

under different imaging conditions. 

The experimental results showed that resolution had a 

significant impact on detection accuracy and inference speed. 

The selection of an appropriate resolution needed to be closely 

aligned with the constraints and requirements of practical 

industrial scenarios. Industrial standards typically demanded 

reliable detection of defects above a certain minimum size. 

Based on the camera’s field of view and object distance, the 

minimum required pixel resolution could be calculated. The 

1280×1024 resolution used in this experiment, under a typical 

medium field of view, theoretically met the requirement to 

detect defects ≥0.12 mm, covering the vast majority of 

precision welding scenarios. 

High-resolution cameras were expensive and generated 

large amounts of data, placing higher demands on transmission, 

storage, and computing hardware, which significantly 

increased the overall system cost. As shown in Table 4, when 

the resolution was increased from 640×512 to 1280×1024, 

mAP@0.5 improved by 8.2%, but inference time increased by 

about 2.5 times. On embedded platforms, high resolution 

might struggle to meet strict real-time requirements. 

Additionally, higher resolution meant fewer photons per pixel 

under the same lighting conditions, potentially introducing 

more noise, especially in strong reflective welding areas, 

which could reduce the signal-to-noise ratio and effective 

information. 

Based on the experimental results and the above analysis, 

the 1280×1024 resolution achieved the best balance among 

accuracy, speed, and cost, and could meet the demands of most 

medium-to-high precision welding robot vision inspections. It 

was suitable for scenarios with less stringent requirements on 

detecting tiny defects, extremely fast production cycles, or 

highly cost-sensitive conditions, or could serve as a 

preliminary rapid screening option. Higher resolutions were 

only recommended for ultra-high precision detection needs, 

larger fields of view, and situations with relatively relaxed 

real-time constraints or strong computational infrastructure, 

where cost-effectiveness needed careful evaluation. In 

practical deployment, fine selection and validation within the 

recommended range should be performed according to 

specific detection accuracy requirements, workpiece size, 

production line cycle time, budget constraints, and available 

hardware platforms. 

 

Table 5. Detailed statistics of the welding defect dataset 

 

Defect Type 
Total 

Samples 

Proportion 

(%) 

Slight 

Occlusion 

Moderate 

Occlusion 

Severe 

Occlusion 

Standard 

Lighting 

Low 

Lighting 

Strong 

Reflection 

Porosity  3520 28.0% 1200 1500 820 1800 1000 720 

Slag Inclusion 2850 22.6% 900 1100 850 1200 900 750 

Lack of Fusion  1980 15.7% 650 800 530 950 650 380 

Incomplete 

Penetration 
1650 13.1% 500 650 500 750 550 350 

Undercut  1520 12.1% 450 600 470 700 450 370 

 Crack 1060 8.4% 300 400 360 450 350 260 

Total 12,580 100% 4000 5050 3530 5850 3900 2830 
 

To ensure the dataset adequately represents the diversity of 

defects encountered in real-world welding scenarios, we 

systematically collected data on six common types of welding 

defects: Porosity, Slag Inclusion, Lack of Fusion, Incomplete 

Penetration, Undercut, and Crack. The final dataset comprises 

a total of 12,580 annotated images. Table 5 provides a detailed 

breakdown of sample counts, proportions, and distributions 

under key interference conditions. Special attention was paid 

to enriching the sample diversity of crack-type defects due to 

their subtle geometric features and significant impact on 

structural safety. 

Given the characteristics of welding images—such as small 

defect target sizes, diverse shapes, and complex background 

interference—the object detection network must strike a 

reasonable balance between accuracy and speed. After an in-

depth analysis of mainstream detection frameworks and 
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preliminary experiments, we selected Faster R-CNN as the 

baseline framework for this study. This choice is primarily due 

to Faster R-CNN’s two-stage architecture, where the Region 

Proposal Network (RPN) is capable of generating high-quality 

candidate boxes. This is particularly beneficial for detecting 

small and weakly featured defects in welding images, which is 

crucial for ensuring the accuracy of subsequent process 

adjustments and defect repair. Furthermore, the built-in 

Feature Pyramid Network (FPN) of Faster R-CNN naturally 

supports multi-scale feature fusion, providing a strong 

architectural foundation for the backbone enhancement and 

adaptive feature fusion strategies proposed later in this paper. 

To validate the rationality of this selection, we conducted a 

comparative experiment on our custom-built welding defect 

test dataset, evaluating Faster R-CNN against the popular 

single-stage model YOLOv5s and the transformer-based 

model DETR. The results are shown in Table 6. 

As shown in the table, Faster R-CNN outperforms the 

lightweight YOLOv5s in detection accuracy, with a 

particularly notable advantage in the stricter mAP@0.5:0.95 

metric, which emphasizes localization precision. While its 

inference speed is slower than YOLOv5s, the achieved 10.9 

FPS approaches the lower threshold for industrial real-time 

requirements. Moreover, its speed can be further improved 

through network optimization. DETR achieves accuracy close 

to Faster R-CNN but suffers from the slowest inference speed 

and significantly higher training resource demands. 

Considering the high-accuracy requirements of welding defect 

detection, the optimization potential of the model, and the 

solid foundation it provides for further architectural 

improvements, Faster R-CNN represents the most suitable 

baseline. All subsequent enhancements in this study were built 

upon this framework. 

Recognizing the importance of real-time performance, a 

comparative experiment had been supplemented using 

MobileNetV3-Large as a lightweight baseline. However, 

welding defects—especially subtle ones such as cracks and 

lack of fusion—often exhibit weak visual features that are 

highly susceptible to background noise. Although lightweight 

networks like MobileNetV3-Large have performed well on 

general-purpose datasets such as ImageNet, their capability to 

extract discriminative deep features has proven insufficient for 

our high-precision defect detection task. 

 

 

Table 6. Preliminary performance comparison of mainstream object detection models on the welding defect dataset (Test set)  

 

Model mAP@0.5 (%) mAP@0.5:0.95 (%) Avg. Inference Time (ms/frame) * FPS (frames/s) * 

Faster R-CNN (ResNet50-FPN) 78.2 45.6 92 10.9 

YOLOv5s 72.5 40.1 25 40.0 

 

Table 7. Performance and speed comparison of different backbone networks on the welding defect test set 

 
Backbone Network mAP@0.5 (%) mAP@0.5:0.95 (%) Avg. Inference Time (ms/frame) * FPS (frames/sec) * Model Size (MB) 

ResNet50 (original) 78.2 45.6 92 10.9 102.1 

MobileNetV3-Large 70.8 38.9 42 23.8 18.5 

Optimized ResNet50 82.7 49.3 76 13.2 105.3 

 

As shown in Table 7, under the same Faster R-CNN 

framework, the optimized ResNet50 backbone significantly 

outperformed MobileNetV3-Large in terms of detection 

accuracy, particularly on the more stringent mAP@0.5:0.95 

metric. This result confirms the importance of deep feature 

representation in capturing subtle welding defects. The 

proposed improvements based on ResNet50 not only 

enhanced detection accuracy but also reduced inference time 

to 76 ms per frame, thereby satisfying the industrial real-time 

requirement of ≤100 ms. Therefore, the optimized ResNet50 

achieved a more task-suitable balance between accuracy and 

speed. 

To quantitatively evaluate the effectiveness of the proposed 

Cross-Layer Attention Fusion (CLAF) mechanism, a rigorous 

ablation study was conducted based on the improved backbone 

network. Three feature fusion strategies were compared under 

identical hyperparameter settings: 1) Baseline: Standard FPN 

– Utilizes the original FPN structure from Faster R-CNN for 

multi-scale feature fusion. 2) Single-Layer Attention FPN 

(SLA-FPN) – Introduces an independent attention module 

after each FPN fusion layer, focusing solely on the channel or 

spatial relationships of the current layer. This represents a 

common enhancement strategy by incorporating single-layer 

attention into FPN. 3) Proposed Method: Cross-Layer 

Attention Fusion (CLAF) – Applies the proposed CLAF 

mechanism to dynamically learn and fuse feature information 

from different backbone depths and FPN layers. 

All experiments were conducted under identical 

hyperparameter settings. The results are shown in Table 8. 

As shown in Table 8, compared to the baseline FPN, SLA-

FPN yields moderate performance gains, confirming the 

effectiveness of incorporating attention mechanisms. However, 

the proposed CLAF strategy achieves the most significant 

improvements across all metrics. This clearly demonstrates the 

critical role of cross-level information interaction in 

effectively fusing multi-resolution features and enhancing 

semantic consistency. The CLAF mechanism is particularly 

effective at capturing cross-scale contextual dependencies. In 

terms of inference speed, the additional computational 

overhead introduced by CLAF is minimal and significantly 

outweighed by the accuracy gains, reflecting its efficiency. 

These results strongly support the superiority of the CLAF 

strategy in improving weld defect detection, especially for 

subtle defects such as fine cracks. 

 

Table 8. Ablation study results of different feature fusion strategies on the welding defect test set 

 
Feature Fusion Strategy mAP@0.5 (%) mAP@0.5:0.95 (%) Crack AP@0.5 (%) Inference Time (ms/frame) * 

Standard FPN (Baseline) 80.1 47.5 72.3 72 

SLA-FPN 81.3 (+1.2) 48.1 (+0.6) 74.5 (+2.2) 75 (+3) 

CLAF (Proposed) 82.7 (+2.6) 49.3 (+1.8) 77.8 (+5.5) 76 (+4) 
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Table 9. Impact of the occlusion compensation mechanism on false positive and false negative rates (Subset of occluded samples 

in the test set) 

 
Occlusion 

Rate Range 
Method Detection Rate (%) FPR (%) FNR (%) Remarks 

< 50% 
Without Compensation 88.5 1.8 11.5 Light occlusion; compensation necessity is low 

With Compensation 88.7 2.1 (+0.3) 11.3 (-0.2) Limited compensation effect; slight increase in FPR 

50%-74% 

Without Compensation 72.3 2.0 27.7 
Increased occlusion; missed detections rise 

significantly 

With Compensation 85.6 2.9 (+0.9) 14.4 (-13.3) 
Significant FNR reduction is the main benefit; FPR 

increase is controllable 

≥ 74% 
Without Compensation 58.1 1.9 41.9 Severe occlusion; serious missed detections 

With Compensation 79.8 4.7 (+2.8) 20.2 (-21.7) Marked FNR improvement; notable FPR increase 

> 85% With Compensation 70.2 6.5 29.8 
Extreme occlusion; severely insufficient 

information; high compensation uncertainty 

 

To gain a deeper understanding of the reliability of the 

compensation mechanism under complex occlusion scenarios, 

its impact on the False Positive Rate (FPR) and False Negative 

Rate (FNR) across different occlusion intensity ranges was 

further analyzed. The results are shown in Table 9. 

As shown in Table 9, in the occlusion rate range ≥ 50%, the 

compensation mechanism significantly reduced the FNR, 

which is its core value, effectively mitigating missed 

detections caused by welding torch occlusion. When the 

occlusion rate was below 74%, the increase in FPR was 

relatively small, and the benefits far outweighed the costs. At 

occlusion rates ≥ 74%, the rise in FPR became more 

pronounced. This was mainly due to two reasons: 1) The large 

area of occluded regions increased the uncertainty in 

spatiotemporal inference, causing the compensation algorithm 

to mistakenly classify some normal textures or noise as defects; 

2) The binocular vision system’s depth estimation accuracy 

declined under extreme occlusion, affecting the precise 

localization of compensation regions. Under extreme 

occlusion above 85%, the FPR further increased to 6.5%, 

significantly reducing the reliability of the compensation. 

The compensation mechanism accepts a moderate increase 

in FPR at high occlusion rates in exchange for a large 

reduction in FNR, which is generally acceptable for ensuring 

production safety. Future improvements to reduce FPR may 

be achieved through the following approaches: 1) Enhancing 

the depth estimation accuracy of binocular vision near 

occlusion edges; 2) Introducing stricter confidence threshold 

mechanisms within the compensation model; 3) Applying 

post-processing filtering to compensation results using prior 

structural information of the weld area; 4) Integrating multi-

sensor information for fused decision-making. 

To quantitatively evaluate the effectiveness of bilateral 

filtering in noise suppression and edge preservation for 

welding images, a performance comparison was conducted on 

a subset of welding images containing typical noise types 

(Table 10). The evaluation metrics included Peak Signal-to-

Noise Ratio (PSNR) and Structural Similarity Index (SSIM). 

For Gaussian noise, bilateral filtering achieved the best 

performance in terms of PSNR, SSIM, and mAP, effectively 

suppressing noise while preserving edges and structural 

information, which directly improved subsequent detection 

accuracy. For salt-and-pepper noise, median filtering was most 

effective at removing noise points but showed slightly inferior 

edge preservation and final detection accuracy compared to 

bilateral filtering. Although bilateral filtering was less 

thorough than median filtering in removing salt-and-pepper 

noise, its excellent edge preservation capability resulted in 

better overall detection accuracy. Considering the critical 

importance of edge information for defect recognition in 

welding images and the fact that practical noise is often of 

mixed types, bilateral filtering was identified as the optimal 

choice for overall performance and detection accuracy 

improvement. The optimal parameters for bilateral filtering 

were determined by grid search and applied consistently in 

preprocessing all welding images. 

 

Table 10. Performance comparison of different filtering 

algorithms in noise suppression and edge preservation on 

welding images 

 
Filtering 

Algorithm 

Noise Type 

(Intensity) 

PSNR 

(dB) 
SSIM 

mAP@0.5 (%) 

(Test Set) 

No filtering 
Gaussian 

(σ=0.05) 
28.1 0.85 75.3 

Gaussian 

filtering 

Gaussian 

(σ=0.05) 
30.5 0.88 77.1 

Median 

filtering 

Gaussian 

(σ=0.05) 
29.8 0.87 76.8 

Bilateral 

filtering 

Gaussian 

(σ=0.05) 
32.2 0.92 78.9 

No filtering 
Salt-and-

pepper (5%) 
24.5 0.78 70.2 

Gaussian 

filtering 

Salt-and-

pepper (5%) 
27.1 0.82 72.5 

Median 

filtering 

Salt-and-

pepper (5%) 
33.8 0.89 76.0 

Bilateral 

filtering 

Salt-and-

pepper (5%) 
30.5 0.91 77.8 

 

To evaluate the deployment potential of the proposed 

method in real industrial environments, comprehensive 

inference performance and resource consumption tests had 

been conducted on multiple representative hardware platforms. 

On the NVIDIA Jetson AGX Xavier edge computing platform, 

the model inference speed had reached 13.2 FPS, meeting the 

industrial on-site real-time requirement of ≤100 ms per frame. 

Higher-end servers and industrial PCs equipped with 

dedicated GPUs had demonstrated superior performance. The 

model’s memory usage on edge platforms had remained 

within the devices’ tolerable limits. On industrial control 

machines using CPU only, inference speed had been far below 

the real-time requirement, highlighting the necessity of GPU 

acceleration for real-time welding defect detection. Future 

work could focus on further optimizing the model on the 

Jetson platform using TensorRT, aiming to stably achieve ≥10 

FPS on mid-range platforms such as the TX2 NX and reduce 

power consumption on the AGX Xavier.

  

1290



 

4. CONCLUSION 

 

This paper focused on the real-time detection requirements 

of precision welding robot vision systems and constructed a 

"data-algorithm-hardware" integrated technical framework. A 

specialized data acquisition device was designed to build a 

progressive dataset, providing multi-scale and multi-modal 

annotated samples for algorithm training. On the algorithm 

level, based on a lightweight object detection network, 

technical breakthroughs were achieved through a multi-

resolution feature fusion system, dynamic scene adaptation 

mechanism, and industrial-level robustness optimization. This 

study overcome the bottlenecks of traditional detection 

algorithms in multi-scale defect representation and dynamic 

occlusion processing. On the theoretical level, a "feature 

pyramid-geometric prior-spatiotemporal compensation" 

detection theoretical framework was established, providing a 

new method for unconventional object detection. On the 

engineering level, the algorithm achieved high inference speed, 

and after integration into the welding robot vision system, the 

defect miss rate on the production line was effectively reduced. 

On the dataset level, a multi-condition dataset with 3D ground 

truth was built, filling the gap of standardized dynamic 

occlusion samples in the field of precision welding. Although 

the proposed method has achieved a good balance between 

accuracy and real-time performance, there is still room for 

improvement in model lightweighting and deployment 

efficiency. Future research is planned to follow the specific 

technical roadmap below: 1) Quantization target: compress the 

model size to ≤15MB to facilitate deployment on resource-

constrained welding robot controllers or edge devices. 2) 

Lightweighting approach: train a more lightweight student 

network using knowledge distillation from the high-accuracy 

model optimized in this work as the teacher, significantly 

reducing computational cost while maintaining accuracy. 

Based on channel importance evaluation, redundant 

convolutional filters and channels in the backbone and 

detection head will be systematically pruned to achieve 

effective model compression. 
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