
A Federated Learning-Integrated Autoencoder Model for Robust and Decentralized 

Pneumonia Detection in Chest X-Rays 

Amit Kumar Chandanan1 , Vandana Roy2* , Vijay Birchha3 , Chandrasekaran Raja4 , Akshay Varkale5 , 

Musaddak Maher Abdul Zahra6 , Pankaj Agarwal7 , Santosh Kumar Vishwakarma8  

1 Department of Computer Science and Engineering, Guru Ghasidas Vishwavidyalaya (A Central University),  

Bilaspur 495009, India 
2 Department of Electronics Communication, Gyan Ganga Institute of Technology and Sciences, Jabalpur 482003, India 
3 School of Computer Science Engineering and Artificial Intelligence (SCAI), VIT-Bhopal University, Bhopal 466114, India 
4 Department of ECE, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 6000062, India 
5 Department of Computer Science and Engineering, IES Institute of Technology and Management, IES University,  

Bhopal 462044, India 
6 Department of Computer Techniques Engineering, College of Engineering, Al-Mustaqbal University, Hillah 51001, Iraq 
7 Department of Computer Science Engineering, School of Engineering and Technology, K.R Mangalam University, 

Noida 122003, India 
8 Department of Computer Science Engineering, Gyan Ganga Institute of Technology and Sciences,  

Jabalpur 482003, India 

Corresponding Author Email: vandanaroy@ggits.org

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/ts.420330 ABSTRACT 

Received: 2 April 2025 

Revised: 7 May 2025 

Accepted: 15 June 2025 

Available online: 30 June 2025 

A novel pneumonia detection system integrates Federated Learning (FL) with autoencoders 

to address data scarcity and privacy concerns commonly faced in medical diagnostics. 

Traditional pneumonia detection relies on supervised learning methods primarily 

Convolutional Neural Networks (CNNs) and transfer learning which require large, labelled 

datasets stored centrally, raising significant ethical and privacy challenges. In contrast, the 

proposed system leverages FL to enable collaborative model training across multiple 

medical institutions without sharing sensitive patient data. Autoencoders further enhance the 

model’s ability to learn effectively from limited labelled data, improving its generalization 

in real-world clinical settings. Performance evaluations demonstrate that this approach 

outperforms existing models in detecting pneumonia from chest X-ray images, achieving 

superior accuracy, precision, recall, and F1-score. Specifically, the model reaches an 

accuracy of 95.15%, a precision of 95.8%, and a recall of 98.35%, significantly exceeding 

results from conventional CNN and transfer learning-based methods. The system not only 

delivers high diagnostic accuracy but also promotes ethical data handling by eliminating the 

need for centralized data storage. Overall, this solution addresses the critical limitations of 

traditional diagnostic frameworks and sets the foundation for secure, privacy-preserving, 

AI-driven clinical tools. 
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1. INTRODUCTION

Medical automation requires images and data as essential 

components for healthcare processes along with improved 

efficiency and accuracy and elevated patient welfare medical 

facilities use imaging data and process automation systems to 

enhance their operational efficiency along with their accuracy 

rate and healthcare delivery level. The examination medical 

domains require the analysis of images and clinical data for 

their operations. Achieving a comprehensive Visualizing 

high-resolution images remains imperative to comprehend 

both functional and structural aspects of human organs during 

the process of study. high-resolution photos. Medical images 

reveal the operational behaviours linked with different medical 

conditions. with various medical conditions and aids in disease 

detection. Artificial Intelligence (AI), AI technology 

specifically Machine Learning (ML) and Deep Learning (DL) 

demonstrates key importance in medical applications. Medical 

images benefit healthcare through AI-based evaluation and 

interpretation which transforms medical practice in multiple 

aspects. Patient health benefits at substantial levels when 

diseases are diagnosed early thanks to this technology. These 

The technology evaluates medical information from diseased 

patients to generate responses which drive forward medical 

progress. various medical fields. Multiple important serious 

health conditions exist throughout the world as reported by the 

WHO. Worldwide lower respiratory infections occupy 

position four in the death rankings. Lower respiratory infection 

known as pneumonia leads to numerous deaths around the 

world [1]. 
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1.1 Background of pneumonia detection and ML 

The respiratory infection pneumonia strikes millions 

worldwide which creates major mortality and morbidity 

causing death primarily among elderly people and young 

children and people with broken immune systems [2]. The 

three main infectious agents that trigger pneumonia are 

bacteria, viruses and fungi leading to alveoli swelling and 

either fluid accumulation or pus formation that blocks normal 

breathing function. The prompt identification of pneumonia 

becomes vital because it enables proper medical care and 

prevents unwanted medical problems. Doctors diagnose 

pneumonia through clinical signs together with blood tests and 

radiographic imaging that especially includes chest X-ray 

results. The process of manual diagnosis of radiologists and 

clinicians provides long timeframes and proof to human error 

alongside experience dependency. Medical diagnostics has 

experienced significant transformation from AI and ML 

technologies which now enables automatic rapid diagnosis of 

pneumonia and other diseases effectively. 

1.2 Limitations of traditional pneumonia detection 

approaches 

Research-based pneumonia diagnosis depends on 

radiologic picture evaluation by specialists although multiple 

factors reduce its diagnostic accuracy [3]. Diverse human 

interpretive processes result in unreliable results because 

different radiologists perform varying interpretations of the 

same image. The process of manual chest X-ray evaluation 

requires extensive human effort thus delaying patients' 

potential diagnoses. Limited expert radiologist presence exists 

in several rural and underdeveloped areas which contributes to 

health service disparities. Machine learning methods utilize 

huge batches of properly identified medical images for 

training purposes which enhances pneumonia detection both 

in automation and precision. Traditional ML models demand 

large labelled datasets for operation yet such datasets are hard 

to acquire because of privacy restrictions combined with 

limited access to quality medical image annotations. 

1.3 Role of DL in pneumonia detection 

As a branch of AI, DL is particularly well-suited to medical 

picture analysis due to its ability to extract intricate patterns 

from large datasets [4]. The use of CNNs has led to 

outstanding success in medical image analysis because these 

networks extract complicated features to produce precise 

automated disease diagnosis. Multiple research studies applied 

VGG16 and InceptionV3 and ResNet and DenseNet 

architecture to detect pneumonia and they reached remarkable 

accuracy results. Researched models pre-trained on ImageNet 

databases apply the obtained expertise through transfer 

learning procedures to enhance medical application 

performance. Most deep learning models need a centralized 

database for training which becomes a vital issue when it 

comes to healthcare data privacy. 

1.4 Challenges in medical AI and data privacy concerns 

The main struggle in AI-based medical diagnostics involves 

protecting patient data along with ensuring its safety [5]. 

Medical imaging databases maintain patient privacy without 

proper regulation due to their sensitive content. Medical 

institutions along with hospitals avoid releasing patient data 

for AI model development because of confidentiality 

restrictions while facing legal barriers. The scarce quantity of 

data produces biased models that exhibit inadequate results 

across diverse medical groups. Supervised learning models 

need big quantities of labelled datasets but these resources 

often remain scarce especially in constrained health facilities. 

An innovative solution needs development to achieve an 

optimal balance between data protection and model 

functionality and end-user accessibility. 

1.5 Introduction to federated learning and its benefits 

AI-based healthcare applications now address their data 

privacy issues using FL as their leading technology solution. 

Flies in contrast to traditional deep learning systems as it 

enables interconnected institutions to conduct joint training 

while retaining their patient information within separate 

boundaries [6]. FL employs local training of models in 

separate healthcare facilities before sending upgrade packages 

to central servers which aggregate them. Healthcare 

institutions maintain full patient data privacy through 

decentralized operations that allow performance 

improvements from combined model training efforts. FL 

enables medical institutions to team up and develop complex 

diagnostic algorithms independently from patient information 

revealment. 

1.6 Autoencoders and unsupervised learning in medical 

imaging 

Extracting features & identifying anomalies are two areas 

where autoencoders—a kind of neural network—find 

widespread use due to their unsupervised learning 

methodology [7]. Autoencoders extract important visual 

patterns from unprocessed medical image data which leads to 

their usefulness in diagnosis systems without abundant 

labelled training examples. The combination of autoencoder 

technology enables deep learning models to identify 

pneumonia in small quantities of training images which helps 

overcome the issue of small labelled datasets. The current 

proposal improves through integration with autoencoders 

because this combination supports knowledge sharing 

between different healthcare centres while protecting 

individual patient data privacy. A powerful combination 

which detects pneumonia efficiently while keeping healthcare 

AI practice ethical. 

The diagram demonstrated shows a categorization of 

pneumonia depending on the agents that cause it. It graphically 

categorizes pneumonia into three primary forms: bacterial, 

fungal, and viral in Figure 1. The ellipse on the left, with the 

caption "Categorization of Pneumonia," is the primary 

category, with three branches radiating outward. People with 

weakened immune systems are more likely to get fungal 

pneumonia, which can be caused by infestations with fungi. In 

most cases, medications are the first line of defense against 

infection with bacteria like pneumoniae strains of which can 

lead to bacteria-related pneumonia. Antibiotics aren't usually 

the first line of defense against infectious pneumonia, which 

can be caused by viruses like influenza or respiratory syncytial 

virus (RSV). This classification aids in determining the most 

suitable method of diagnosing and treating pneumonia 

according to its root cause. 

1586



Figure 1. Categorization of Pneumonia 

1.7 Moral issues and possible future developments 

When it comes to applications of AI for medical purposes, 

ethical concerns include data protection and privacy, as well 

as justice. By utilizing FL to safeguard the integrity of 

information and doing away with the need for centrally 

managed storage, the suggested model adheres to ethical AI 

standards [8]. The model is able to decrease biases while 

attaining great generalizations by operating well on multiple 

datasets without obtaining data from patients. Improvements 

in AI diagnostic techniques that combine various learning 

techniques and provide medical professionals with easier-to-

understand models for diagnosing and immediate time 

diagnostics capability should be the primary goal of future 

research. This study lends credence to the idea that 

autonomous pneumonia detection devices may be developed 

with patients' right to privacy protected while also meeting 

stringent efficiency and ethical requirements. 

Prompt and correct diagnoses is crucial for successful care 

of pneumonia, which remains a global health concern [9]. Due 

to their reliance on radiographers, the necessity for qualified 

analysis of variance, and the privacy concerns associated with 

data storage in central databases, current methods for 

diagnosis face three major challenges. There is promise in 

deep learning algorithms for pneumonia diagnosis, but there is 

a lack of data and security concerns that might hinder their 

performance. In order to overcome efficiency constraints, 

ensure high accuracy, and provide reliable operation, the new 

model integrates FL systems with automated coders. The 

model's capacity for cooperative learning makes it feasible to 

diagnose pneumonia efficiently and securely without sharing 

patient data, making it a valuable tool for real-world healthcare 

diagnosis. New research raises hopes for future AI diagnoses 

and shows the potential for privately owned AI systems in 

medical. 

The diagram visualizes pneumonia symptoms through 

central grouping as the circular "Pneumonia Symptoms" node 

which contains the important characteristics in Figure 2. The 

major pneumonia symptoms affect breathing and cause rapid 

chest breathing along with disorientation or mental confusion 

while also leading to excessive sweating and fatigue and 

discomfort in the stomach or chest area [10]. The symptoms 

link directly to the central node using arrows to show they 

represent principal indicators of pneumonia development. 

Different symptom colours within the diagram create better 

visibility of their unique consequences on human health while 

depicting the wide-range symptoms of pneumonia. 

Figure 2. Pneumonia symptoms 

Pneumonia develops into serious lung infection leading to 

problems in respiration and body-wide symptoms across the 

patient [11]. The diagram reproduces two major pneumonia 

symptoms including breathing problems and chest pain since 

these occur frequently in patients with pneumonia due to lung 

inflammatory responses and fluid increases. The combination 

of fatigue along with excessive sweating and mental confusion 

indicates that pneumonia creates substantial effects on 

physical body functioning outside of the respiratory system. 

Early identification of these symptoms remains essential for 

medical treatment because pneumonia that goes untreated 

creates severe complications primarily among fragile groups 

including young children and elderly patients along with 

people with weakened immune systems. 

2. RELATED WORK

The framework of standard autoencoders serves as the focus 

of the author while they explore the development of the 

concept. the concept [12]. The different models of 

autoencoders are classified according to their structural design 

principles. principles. A comprehensive view emerges about 

the multiple methods used across the autoencoder field. The 

paper demonstrates how the usage of autoencoders extends 

into new technological domains. They can remarkably identify 

and the system displays two capabilities in image processing 

by completing object categorization in images (image 

classification) and achieving human language comprehension 

(natural language processing). language (natural language 

processing). While powerful, autoencoders have limitations. 

The study recognizes the present inadequacies before 

presenting promising research fronts for future improvements. 

development.  

The framework creates conditions for still stronger 

autoencoder implementations across different fields. various 

fields. Single-cell RNA sequencing (scRNA-seq) has 

transformed our comprehension of cell varieties along with 
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their cellular diversity. and their variations. Researchers find 

analysing this sophisticated data very difficult when 

performing COVID-19 studies [13]. The fundamental process 

requires grouping identical cells under a specific group called 

clustering. DL The present work brings forward scAAGA 

which represents a new framework for analysis solutions. 

suggested by the investigator. A DL algorithm named 

asymmetric autoencoder constitutes the main component 

within this model. Table 1 summarizes the review work done 

in the same field. The scRNA-seq data contains important 

genetic features that the autoencoder model (asymmetric 

autoencoder with gene attention) detects automatically. data. 

The analysis of essential genes during clustering enhances the 

process of sorting cells that show analogous properties. 

properties.  

Table 1. Overview of related work done in the similar field 

Methods Advantages Disadvantages 

Convolutional Neural Networks 

(CNNs) [14] 

Efficient in extracting features and categorization 

of chest X-rays with elevated precision. 

Needs big labeled datasets; tiny quantities make it 

overfit. 

Support Vector Machine (SVM) 

[15] 

Functions effectively with limited datasets and 

elevated-dimensional features spaces. 

Complex structures in medical pictures pose a 

challenge to performance, which is dependent on 

selecting features. 

Random Forest (RF) Classifier 

[15] 

Resilient to noise and mitigates overfitting through 

the utilization of numerous DT. 

Not as good as deep learning models in dealing 

with highly dimensional picture information. 

K-Nearest Neighbours (KNN)

[15] 

Straightforward and readily executable for 

pneumonia categorization. 

Complex to compute with big datasets; susceptible 

to noise and superfluous features. 

Logistic Regression (LR) [16] Expeditious and comprehensible for binary 

categorization of pneumonia instances. 

Weakness in detecting non-linear correlations in 

picture data. 

Transfer Learning (VGG16, 

ResNet, DenseNet) [17] 

Makes use of pre-trained deep learning algorithms 

to shorten training time and improve accuracy. 

It is possible that models trained on datasets 

unrelated to medicine would struggle to identify 

pneumonia. 

Autoencoders for Unsupervised 

Learning [18] 

Acquires features extraction-friendly effective 

representations from data without labels. 

Not as accurate as supervised learning methods 

when it comes to categorization. 

Hybrid CNN-RNN Model [18] Recorded images of healthcare interdependence in 

both space and time. 

The real-time implementation is impeded by the 

high computing cost and the extended training 

period. 

Federated Learning (FL) [19] Ensures confidentiality of information by allowing 

various institutions to train models independently 

of each other, without exposing any raw data. 

Extremely considerable communication overhead 

and the possibility of inconsistent models when 

applied to various datasets. 

Deep Reinforcement Learning 

(DRL) [20] 

Eventually learns the best methods for diagnosing 

pneumonia. 

Not interpretable in clinical settings; requires 

substantial expertise. 

Ensemble Learning 

(Combination of CNN, SVM, 

and Decision Trees) [21] 

Enhances the precision of predictions by the 

integration of various classifiers. 

More complicated models and more expensive 

computations. 

Gradient Boosting Machines 

(GBM) [22] 

Good accuracy in predicting outcomes using 

organized health data. 

For best results, it's necessary to tweak the 

hyperparameters extensively. 

Extreme Gradient Boosting 

(XGBoost) [23] 

Avoids overfitting and does a good job with data 

being missing. 

Memory intensive; not designed for use in 

detecting pneumonia using images. 

Recurrent Neural Networks 

(RNNs) [24] 

Helpful for activities involving sequential 

diagnostic of pneumonia. 

Has problems with dependencies over the long run 

and needs a lot of processing power. 

Long Short-Term Memory 

Networks (LSTMs) [25] 

Analyses the course of pneumonia while properly 

handling temporal interdependence. 

Very costly to compute; training needs massive 

datasets. 

Gated Recurrent Units (GRUs) 

[26] 

Not dissimilar from LSTMs, but with far better 

computing efficiency. 

On complicated tasks involving the identification 

of pneumonia, it performs worse than LSTMs. 

Capsule Networks (CapsNet) 

[27] 

Excels at capturing spatial hierarchies in 

comparison to conventional CNNs. 

More computing resources are needed due to the 

high training intricacy. 

Graph Neural Networks 

(GNNs) [28] 

Works well for predicting pneumonia diagnosis 

connections. 

Not all input data can be accessed in an organized 

graph format. 

Attention-Based Networks [29] Highlights important pneumonia characteristics and 

enhances interpretation. 

More processing power and optimization are 

needed. 

3D CNNs [30] Practical for analysing CT images for volumetric 

pneumonia. 

Intensive computing burden and massive data 

storage needs. 

Self-Supervised Learning [31] Minimizes reliance on labelled data for the 

diagnosis of pneumonia. 

Might not be able to beat completely supervised 

techniques; needs a lot of pretraining. 

Few-Shot Learning (FSL) [32] Maintains efficacy with a small number of labelled 

pneumonia patients. 

Very task-dependent and responsive to tiny 

changes in training data. 

Zero-Shot Learning (ZSL) [32] Can detect instances of pneumonia even in the 

absence of specific training samples. 

Problems with generalizing and understanding 

complicated patterns in medical images. 

Bayesian Neural Networks 

(BNNs) [33] 

Offers measures of diagnostic ambiguity for 

pneumonia. 

Difficult in computing terms and challenging to 

execute on a large scale. 

Multi-Modal Learning 

(Combining X-ray and Clinical 

Data) [34] 

Allows for better diagnosis of pneumonia by the 

integration of many data sources. 

Extensive data preparation and integration is 

necessary. 

Radiomics-Based Feature 

Extraction [35] 

Uses quantitative information extracted from X-ray 

pictures to identify pneumonia. 

Selecting features necessitates highly specialized 

domain expertise. 
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Generative Adversarial 

Networks (GANs) for Data 

Augmentation [36] 

Produces artificial pneumonia pictures to improve 

datasets for training. 

Potential for producing skewed or unrealistic 

samples. 

Wavelet Transform for Feature 

Extraction [37] 

Improves the identification of pneumonia using 

features in images analysis. 

Intricate setup that needs specialized 

understanding. 

Optical Flow Analysis [38] Examines the patterns of motion in successive X-

ray images to detect the development of 

pneumonia. 

Use is restricted to moving healthcare pictures. 

The investigators tested the method against prevailing 

techniques when applying it to COVID-19 patient blood cell 

data. patient blood cell data. The model beat its competitors at 

every stage to reach notable performance enhancements. in 

clustering accuracy metrics. The framework uses data 

augmentation as one of its main features. The technique 

demonstrates additional strength through data augmentation 

for the purpose of working with scarce datasets. TDMSAE 

represents a new method which addresses a significant 

challenge when attempting to apply ML to fault diagnosis. The 

method presented by the author provides a solution for 

handling different machine types. The challenge known as 

model drift poses itself as a major obstacle. The model shows 

poor execution on alternative machines even though it was 

developed for one machine specifically. TDMSAE overcomes 

this by employing two key modules. Multi-Scale Feature 

Extraction and Distribution Alignment. The experimental 

results validate TDMSAE because the model delivers better 

diagnostic performance compared to traditional techniques. 

existing methods. 

3. OBJECTIVE OF THE RESEARCH WORK

➢ The objective behind this research involves developing

an efficient accurate pneumonia detection system by

performing analysis among different machine learning

and deep learning methods. The research seeks to fix

three major shortcomings of existing methods which

stem from high processing expenses and dependence on

large labelled datasets and poor ability to work with

different medical data collections and overfitting

problems.

➢ The research targets theoretical-practical implementation

transference through model optimization efforts for

efficiency and interpretability purposes. Such models

presently use excessive resources which makes them

inadequate for real-time diagnosis when resources are

limited.

➢ The research adopts diminutive deep learning structures

together with knowledge transfer methods to create a

model which needs less considerable labelled datasets

while keeping diagnostic precision high. The analysis

places strong emphasis on how explainable AI plays in

medical diagnostics through AI because it must deliver

step-by-step decision-making explanations.

4. MOTIVATION FOR THE RESEARCH WORK

➢ This study bases its research on the worrisome increasing

worldwide pneumonia cases that continue to rank as a

major cause of death and illness among children and

elderly people.

➢ The present medical imaging models based on deep

learning face two main hurdles which restrict their 

deployment because they need copious labelled data and 

significant processing capabilities.  

➢ This research stems from an emerging healthcare

requirement to develop AI solutions which effectively

merge implementation of accuracy alongside efficiency

and accessibility. The extensive success of deep learning

models in detecting pneumonia faces barriers for clinical

adoption because of their high costs and impenetrable

nature and data privacy restrictions.

5. EXPERIMENTAL SET UP

The research uses an organized experimental method to 

analyse different machine learning and deep learning detection 

models which detect pneumonia. Publicly available medical 

imaging datasets from the National Institute of Health (NIH) 

Chest X-ray collection and relevant repositories constitute a 

key element of this study because they include both 

pneumonia cases and normal instances. Several pre-

processing operations are performed on the dataset through 

image resizing along with normalization and contrast 

enhancement and noise reduction steps which increase the 

model performance metrics.  

The implementation of deep learning models consists of 

CNNs as well as Transfer Learning models (VGG16, ResNet, 

DenseNet) and hybrid structures which unite CNNs and RNNs. 

The training process utilizes GPU hardware alongside the 

optimal set of parameters for learning rate adjustments, batch 

size requirements and dropout regularization practices. The 

performance evaluation process includes the utilization of 

accuracy alongside sensitivity and specificity and precision 

and F1-score to conduct model comparisons.  

6. DATASET USED

For this research the dataset includes publicly accessible 

chest X-ray images which primarily originate from three well-

established medical repositories which are the NIH Chest X-

ray Dataset and RSNA Pneumonia Detection Challenge 

Dataset together with Stanford CheXpert Dataset. The 

available datasets include thousands of chest images which 

have been properly labelled into normal and pneumonia-

positive and other lung-related diagnostic categories. A wide 

range of images from different patient populations makes up 

the data collection that provides sufficient ground truth 

information for training purposes. 

The dataset requirements for performance improvement 

include image normalization and subsequent steps of resizing 

and noise reduction along with contrast enhancement. The 

prevention of overfitting and model generalization 

improvement happens through the application of data 

augmentation techniques such as rotation, flipping and 

zooming. 
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7. THE PROJECTED METHOD

The pneumonia detection program operates through a 

defined sequence starting with system input of chest X-ray 

images. The image database functions as the main resource for 

training and testing purposes because it enables the model to 

identify patterns which describe pneumonia alongside normal 

lung conditions in Figure 3. The pre-processing process stands 

as a critical step because the X-ray imaging data contains 

diverse sources with inconsistent noise characteristics and 

resolution values and contrast levels. Standardizing images 

happens as part of pre-processing data through multiple 

techniques. Technical experts apply multiple methods to the 

images during pre-processing including artifact removal 

through noise reduction along with contrast improvement to 

present clear lung structures along with normalization to create 

equal pixel value consistency across all images followed by 

resizing or cropping to achieve consistent dimensions. 

Through these steps the model benefits from appropriate high-

quality inputs which enhances its accuracy and capability to 

generalize its predictions. 

𝑅𝑛𝑜𝑟𝑚(𝑎, 𝑏) =
𝑅(𝑎,𝑏)−𝑅𝑛

𝑅𝑚− 𝑅𝑛
(1) 

(𝑚, 𝑛) =
1

2𝜋𝜎2 𝑓
−

𝑚2+𝑛2

2𝜎2 (2) 

𝐺(𝐽) =
𝐷𝐸𝐾(𝐽)−𝐷𝐸𝐾𝑛

(𝑅×𝑆)− 𝐷𝐸𝐾𝑛
 × 255 (3) 

𝑌′ = 𝑌𝑍 (4) 

𝑅(𝑎, 𝑏)  = Originally brightness of pixels at coordinates 

(𝑎, 𝑏), 𝑅𝑚, 𝑅𝑛 = Minimal and maximal values of pixels in the

picture, 𝑅𝑛𝑜𝑟𝑚(𝑎, 𝑏)  = Normalization pixel intensity,

𝐻(𝑚, 𝑛)= Result of the Gaussian filtering algorithm at pixel 

(𝑚, 𝑛); σ = the average deviation of the Gaussian functional; 

𝑚, 𝑛  = The pixel dimensions. 𝐷𝐸𝐾(𝐽)  = Aggregate 

distributions relating to intensity of pixels. J, 𝐷𝐸𝐾𝑛 = Minimal

accumulated distributed value, 𝑅 × 𝑆  = Imaging parameters 

(height and width), Y = input data matrices, Z = Transforming 

matrices for minimizing dimensionality, 𝑌′ = Adapted lower-

dimensional information.  

The system progresses to feature extraction using a 

variational autoencoder after completing pre-processing of 

images. The deep learning variational autoencoder model 

serves as an unsupervised system that works optimally for both 

dimension reduction tasks and extracting significant medical 

image attributes. An encoder component operates within the 

autoencoder to convert the input image into compressed data 

in a latent space that emphasizes pneumonia characteristics 

while reducing unimportant noise. The generated latent space 

representation creates an essential base for additional process 

steps so the system prioritizes relevant information in images. 

Variational autoencoders help the system resolve typical 

medical image analysis data scarcity problems to create 

models that perform well with small labelled datasets. 

The extracted features move to training stages after the 

initial extraction process. During the training stage researchers 

apply processed data into the machine learning model to 

enable it to recognize patterns that separate pneumonia 

manifestations from typical lung conditions. A standard 

practice when using this dataset involves dividing it into 

training and validation segments for effective deployment to 

new data samples. The learning approach employs two 

optimizing methods: gradient descent and back-propagation to 

reduce classifying mistakes. The optimization performance 

depends on adjusting parameters including learning rate 

together with batch size alongside activation functions. 

Throughout its training process, the model progressively 

develops superior capabilities to precisely recognize X-ray 

images. 

Figure 3. Phase one of the suggested study's being executed 

𝑤 = 𝜇 + 𝜎 ⊙ ϵ (5) 

𝐸𝐿𝐵 =
1

2
∑ (1 + log( 𝜎𝑖

2) − 𝜇𝑖
2 − 𝜎𝑖

2)𝑒
𝑖=1 (6) 

𝐾𝑌𝐵𝐹 =  𝐹𝑝(𝑤|𝑦) [𝑙𝑜𝑔𝑞(𝑦|𝑤)] −

 𝐸𝐿𝐵  (𝑝(𝑤|𝑦)||𝑞(𝑤))
(7) 

𝑧𝑟+1 = ∑
𝑚𝑙

𝑀

𝐿
𝑙=1  𝑧𝑙 (8) 
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𝑤=A latent vector 

μ = Mean of the latent area transportation 

σ = the standard error of the latent space dispersion 

ϵ∼M(0, J) = Random noise 

𝐸𝐿𝐵 = Kullback-Leibler divergence

𝜇𝑖
2, 𝜎𝑖

2 = the average as well as the standard deviation of the

latent parameter 

i.e. = Dimensions of the latent area

𝐾𝑌𝐵𝐹 = Aggregate loss for Variational Autoencoder

𝑝(𝑤|𝑦) = Possibility of rebuilding input y from the latent

variable 

w. 𝑝(𝑤|𝑦) = Variational approximations of the probability

dispersion 

𝑧𝑟+1 = Updates globally modeling weights

𝑧𝑙 = Localized weights of the model of clients l

𝑚𝑙 = Quantity of information points on client l

M = the overall number of data elements among all clients. 

The derivation of the Variational Autoencoder (VAE) loss 

function is based on maximizing the Evidence Lower Bound 

(ELBO), which balances reconstruction accuracy and 

regularization. It includes the expected log-likelihood of the 

data and the Kullback–Leibler divergence between the 

approximate and true posterior distributions. The 

reparameterization trick allows gradient flow through 

stochastic nodes. During training, parameter settings such as a 

learning rate of 0.001 and a batch size of 32 are used to ensure 

stable convergence and effective gradient updates, optimizing 

both the encoder and decoder networks for accurate X-ray 

image reconstruction and classification. 

After finishing training the system puts into practice its RF 

classifier for the classification process. RF classification 

functions as an ensemble learning system which builds several 

decision trees which subsequently merge their prediction 

results into strong prognostic forecasts. The model renders 

excellent performance in medical image classification because 

it effectively handles complicated data relationships that are 

non-linear in nature. An ensemble of DT in the RF classifier 

makes the model more resilient to overfitting thus ensuring 

better generalization for unknown X-ray images.  

The classification process depends on learned features from 

the variational autoencoder as the predictor decides between 

pneumonia diagnoses and normal pulmonary conditions. The 

evaluation phase begins after classification because system 

performance metrics are computed to assess model 

effectiveness. The system utilizes precision along with recall 

and F1-score and accuracy to measure its performance. The 

precise performance and recall evaluation methods show how 

effectively a model succeeds at identifying pneumonia cases 

in predicted instances and demonstrates its ability to properly 

detect existing pneumonia cases. The performance metrics 

combine precision and recall results into the F1-score and 

measure overall accuracy through correctly identified cases. 

Successful implementation of high-performance models 

depends on achieving high scores on all metrics which 

guarantees reliable outcomes in actual clinical practice. 

The training process is guided by the gradient-based 

optimization of a regularized objective function. The model's 

parameters are updated iteratively using: 

𝑧𝑟+1 = 𝑧𝑟 − 𝜂∇𝐾(𝑧𝑟) (9) 

where, η is the learning rate, and ∇K(zᵣ) denotes the gradient 

of the loss function K with respect to the current parameter zᵣ. 

This standard gradient descent update rule minimizes the 

objective function iteratively. 

To compute class probabilities, we use a softmax-like 

formulation: 

𝑄(𝑥 = 𝑖|𝑦) =
𝑓𝑧𝑖 𝑦+𝑐𝑖

∑ 𝑓𝑧𝑙 𝑦+𝑐𝑙𝐿
𝑙=1

 (10) 

This represents the probability distribution over output 

classes, where f is the activation function, and zᵢ, cᵢ are learned 

parameters. 

The loss function for classification is given by the cross-

entropy: 

𝐾 = − ∑ 𝑥𝑖log (𝑥�̂�)𝑀
𝑗=1 (11) 

which penalizes deviation between true labels xⱼ and predicted 

probabilities x̂ⱼ. 

In variational models, momentum-based updates are also 

considered. For the first-order momentum: 

𝑛𝑣 = 𝛽1𝑛𝑣−1 + (1 − 𝛽1)ℎ𝑣 (12) 

and for second-order moment tracking: 

𝑤𝑣 = 𝛽𝑧𝑣−1 + (1 − 𝛽)ℎ𝑣
2 (13) 

These help smooth parameter updates and stabilize training, 

especially in autoencoder structures. 

Entropy-based regularization is used to enhance feature 

diversity: 

𝐻(𝐸) = 1 − ∑ 𝑞𝑗
2𝑟

𝑗=1 (14) 

which measures uncertainty in the output space. A more 

diversified feature space leads to better generalization. 

Feature relevance (FR) is evaluated as: 

𝐹𝑅 = 𝐺(𝐸) − ∑
|𝐸𝑗|

|𝐸|

𝑛
𝑗=1  𝐺(𝐸𝑗) (15) 

where, G(E) is the entropy of the entire feature space and G(Eⱼ) 

is the entropy within feature subset Eⱼ. 

Entropy G(F) for feature selection is defined as: 

𝐺(𝐹) = − ∑ 𝑟𝑗  𝑙𝑜𝑔2 𝑟𝑗  𝑒
𝑗=1 (16) 

emphasizing the distributional spread of features in decision-

making. 

Model output aggregation in federated learning is given by: 

𝑧 =
1

𝑀
 ∑ 𝑒𝑗 (𝑦)𝑀

𝑗=1 (17) 

where, eⱼ(y) is the output of the model for client j and M is the 

number of clients. 

Regularization is crucial for controlling model complexity: 

𝐾 = 𝐾𝑜 + 𝜆||𝑧||2 (18) 

𝐾 = 𝐾𝑜 + 𝜆 ∑ |𝑧𝑗| (19) 

𝐾 = 𝐾𝑜 + 𝜆 ∑ 𝑧𝑗
2  (20)

These forms correspond to L2, L1, and ridge regularization 
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respectively, penalizing large weights to prevent overfitting. 

λ: Regularity strength, ||𝑧||2 : L2 norms of the weights,

∑ |𝑧𝑗|: Sum of the absolute amounts of objects, ∑ 𝑧𝑗
2: Sum of

squaring weighted.  

The model architecture incorporates multiple computational 

stages, where each component enhances different aspects of 

learning, optimization, and generalization. 

The convolution operation is fundamental for feature 

extraction and is mathematically represented as: 

𝑃(𝑚, 𝑛) = ∑ ∑ 𝐽(𝑚 + 𝑟, 𝑛 + 𝑠) 𝐿𝑠 (𝑟, 𝑠)𝑟 (21) 

Here, J is the input image, and L is the convolutional kernel. 

The output P(m,n) represents the response at location (m,n) by 

sliding the kernel over the input image. 

Activation is performed using a ReLU function: 

𝑑(𝑡) = max (0, 𝑡) (22) 

This introduces non-linearity and suppresses negative 

values, ensuring sparse activation and improved convergence 

in deep networks. 

Pooling, used for downsampling, is expressed as: 

𝑅(𝑚, 𝑛) = max
𝑟,𝑠 

𝑃(𝑚 + 𝑟, 𝑛 + 𝑠) (23) 

This max-pooling operation reduces spatial dimensions and 

retains the most prominent features within a region. 

To enforce margin-based learning and penalize 

misclassifications, a hinge loss variant is used: 

𝑇 = ∑ max (0,1 − 𝑧𝑗𝑧�̂�)𝑀
𝑗=1 (24) 

This ensures that predictions ẑⱼ remain close to the true label 

zⱼ, particularly in binary classification tasks. 

Feature similarity is measured using cosine similarity: 

cos(𝜃) =
𝑧1.𝑧2

||𝑧1||×||𝑧2||
(25) 

This captures the angular similarity between latent vectors, 

useful in clustering and embedding-based tasks. 

The learning rate is dynamically adjusted during training 

using: 

𝜂𝑣 =  𝜂0𝑓−𝜆𝑣 (26) 

where, η₀ is the initial learning rate, λ is the decay constant, 

and v is the epoch or iteration count. This decays the learning 

rate progressively to refine convergence. 

Gradient descent with iteration control is applied as: 

𝑧𝑙,𝑣+1 = 𝑧𝑙,𝑣 − 𝜂∇𝐾𝑙(𝑧𝑙,𝑣) (27) 

This updates local parameters zₗ on client l by descending 

the gradient of the local loss Kₗ. 

Federated optimization employs a regularized update to 

align client and global models: 

𝑈(𝑧𝑙) = 𝑈𝑙(𝑧𝑙) +
𝜇

2
||𝑧𝑙 − 𝑧||2 (28) 

This penalizes deviation from the global model z, controlled 

by regularization factor μ. 

Model variance across clients is tracked by: 

𝑤𝑏𝑠(𝑌) =
1

𝑀
 ∑ (𝑧𝑗 − 𝑧̅𝑀

𝑗=1 )2 (29) 

This represents between-client variance and is critical in 

non-iid federated learning settings to detect model drift. 

Finally, confidence intervals for statistical evaluation are 

computed using: 

𝐷𝐽 = �̅�  ± 𝑊
𝜎

√𝑀
(30) 

where, ȳ is the sample mean, σ is the standard deviation, M is 

the number of samples, and W is the critical value from the 

appropriate statistical distribution (e.g., t or z). This quantifies 

the uncertainty in performance metrics. 

Figure 4. Procedures for training in the context of FL (2nd 

Phase) 

The model evaluation leads to testing which proves its 

ability to classify X-ray images which have not been observed 

before is shown in Figure 4. Successful model generalization 

assessment requires this testing phase. The trained classifier 

applies diagnosing tests to an exclusive dataset which did not 

take part in training or validation processes. The testing phase 

ensures that the model acquires useful learning instead of 

memorized patterns which let it correctly identify pneumonia 
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versus standard instances during practical use. Other 

performance upgrades including extra model training and 

parameter modifications should be conducted when needed to 

enhance operational efficiency. 

Federated Learning (FL) protects data privacy by keeping 

raw data local and sharing only model updates. To prevent 

parameter leakage or gradient inversion attacks, techniques 

like differential privacy add noise to updates, obscuring 

individual data contributions. Secure aggregation further 

enhances security by encrypting updates so the server sees 

only aggregated results. These methods collectively ensure 

strong defenses against adversarial threats while maintaining 

data confidentiality in decentralized training environments. 

The pipeline finishes by using the model to classify each X-

ray input which results in an assessment between pneumonia 

and normal diagnoses in Figure 4. Users who interact with the 

system can view the diagnostic results depending on whether 

they are a radiologist or doctor or part of a hospital automation 

process. The diagnosis and treatment decisions of medical 

professionals receive assistance from the produced output. The 

model uses federated learning together with variational 

autoencoders to uphold privacy standards and flexible 

operation thus making it appropriate for healthcare use despite 

limited access to labelled data and strict patient confidentiality 

requirements. 

This approach trains a machine learning algorithm using 

dispersed datasets. In this context, "Server" refers to the server, 

"Clients" denotes a compilation of clients, and V represents 

the total amount of rounds the model undergoes during 

training. In each loop, the subsequent actions are executed: 

Algorithm 1: FL (client, server, V) 

# The server allocates the design to the clients. 

1. In the starting iteration, the centralized server establishes

the global models N0 with arbitrary values for variables.

# Client Selection

2. In each cycle v=1…V, the centralized server picks a

subset of l nodes among the pool P containing n data points

and transmits the most recent model Nv-1 to these k nodes.

# Every user trained the algorithm with its local data.

3. Every jth node, whose j ϵ l, directly trained the model

Nv-1 on its respective data Ej for a specified period of

epochs and transmits the modified model Hi t to the

centralized server.

# The server modifies the variables of the globally model.

4. A centralized server consolidates the local

modifications using an aggregating technique with an

aggregated rate η to formulate a novel global framework

Nv.

Users can rely on this system for reliable pneumonia 

detection because it combines privacy-enhancing protocols 

with deep learning features and ensemble methodology. The 

utilization of federated learning enables healthcare institutions 

to work together for model development without disclosing 

confidential patient information thus solving key privacy 

issues in medical Artificial Intelligence. Automated 

autoencoder models boost the model's functionality for 

handling low-data scenarios which secures efficient 

pneumonia diagnosis in resource-limited environments. The 

system demonstrates an accurate and efficient and privacy-

aware method for pneumonia diagnosis of chest X-ray images 

through its well-organized input-to-results framework. 

A federated learning system based on pneumonia detection 

of X-ray images appears in the given diagram. The system 

describes how to process data next to pre-processing before 

training and aggregation steps before evaluation and 

classification. X-ray images enter the system to function as-

initial-source-data before mirrored to pneumonia detection 

purposes. The medical images originating from different 

medical institutions or datasets require pre-processing 

treatment for quality enhancement and noise elimination and 

dimension normalization. The pre-processing step includes 

pixel value re-scaling as well as the application of noise 

reduction via Gaussian filters combined with contrast 

enhancement through histogram equalization and uniform 

image cropping. VAE processes images after pre-processing 

to extract important features from each sample. The VAE 

engages in reducing the image dimensions yet conserving vital 

data points which streamlines training operations. 

The system advances to perform limited model training 

after finishing feature extraction. Model training occurs at 

distributed client nodes through the implementation of 

federated learning instead of occurring on a centralized server. 

The client nodes only have access to restricted dataset portions 

to maintain absolute privacy for each member. Database 

owners must then be chosen from amongst the clients to take 

part in the federated training phase. The server receives 

updated model parameters through client selection without 

access to the actual databases following modification of the 

variables. This ensures privacy-preserving model updates. 

Model parameters are transmitted to the server for each 

training session after clients complete their training process. 

The X-ray images remain decentralized while the server 

performs aggregation of these updates without being able to 

view the actual image data. 

The system conducts data aggregation through FedAvg 

processing at server level by combining all uploaded variables 

from different clients. United under FedAvg (Federated 

Averaging) the server creates a global model update by taking 

weighted averages from received model parameters. The 

aggregated model goes through several refinement steps after 

aggregation which normally consist of three rounds for this 

scenario. Through repeated training processes the accuracy of 

the model can improve while its ability to generalize different 

client data sets is enhanced. The evaluation process for the 

model occurs after both model training and aggregation 

completion using performance metrics. The evaluation metrics 

determine the performance of federated learning by 

calculating classification accuracy combined with precision 

and recall and F1-score measurements. The trained model 

receives testing data that has not been part of its previous 

training process to verify its operational capacity. 

The model performs classifications of new X-ray images by 

determining whether they show signs of pneumonia or remain 

normal. The model generates classification results by applying 

patterns which it acquired during the training period. A system 

detects and categorizes images which present pneumonia-

related abnormalities in their structure. The system’s final 

delivery provides a diagnosis by interpreting the model’s 

predicted results. The framework protects healthcare 

regulations by keeping X-ray pictures on local servers together 

with the transfer of shared model parameters instead of sharing 

image-based data. A system that implements federated 

learning with VAEs provides security solutions and efficiency 

improvement in medical image classification for practical 

healthcare applications. 

The proposed model introduces computational complexity 
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primarily through communication overhead in Federated 

Learning (FL), as multiple client-server interactions are 

needed during training rounds. This increases latency and 

bandwidth usage, especially with large model updates. 

Additionally, autoencoders require significant training 

resources, including high memory and GPU support, 

particularly when handling high-resolution X-ray images. 

However, these challenges can be mitigated using model 

compression, client-side optimization, and adaptive 

communication techniques. Despite higher hardware demands, 

the model’s decentralized nature offers scalability and 

preserves privacy, making it a worthwhile trade-off in 

healthcare applications. 

8. RESULT ANALYSIS

Our innovative method which integrates FL systems with 

autoencoders successfully demonstrates its competencies in 

pneumonia detection according to the conducted strict 

evaluation process. Tests indicate that autoencoders with FL 

for pneumonia detection produce outcomes that match those 

of traditional models. This accomplishment holds major 

importance because it solves major difficulties that occur 

across the field. The approach works well despite dealing with 

restricted labelled information as well as data protection 

requirements. By leveraging unsupervised learning, the 

autoencoder framework produces excellent outcomes even 

when limited labelled data exists, which is a frequent problem 

during implementation. in healthcare AI. This healthcare 

solution creates new options to be used in numerous healthcare 

locations, delivering limited datasets. labelled data is often 

limited. The incorporation of FL allows healthcare 

organizations to cooperate during distributed training on 

separate dataset locations. residing at various healthcare 

institutions.  

The joint effort negates the necessity for centralization of 

data. A distributed data storage system represents an essential 

measure for always maintaining healthcare patient privacy. By 

training on Private data from multiple sources can be analysed 

by the model without compromising patient security, which 

allows it to reach potentially higher performance levels. 

greater robustness and generalizability. The presented method 

brings a radical approach to pneumonia detection research. 

addresses critical needs in healthcare AI. The framework 

enables partnership among different entities while 

safeguarding personal information and promoting efficient 

model development systems. The solution develops models 

efficiently with the combination of Federated Learning and 

unsupervised learning systems. The new method enables 

progress in AI-based medical diagnosis tools through its 

innovative approach. while prioritizing ethical data practices. 

8.1 Precision 

It quantifies the proportion of accurately predicted positive 

cases among all expected positives. 

8.2 Recall 

It quantifies the number of true positive cases accurately 

detected. 

8.3 F1-score 

It maximizes both recall and precision. Beneficial in cases 

when the cost of inaccurate positive and negative results is 

high. 

8.4 Accuracy 

It quantifies the overall number of correct forecasts. It is 

beneficial for balancing datasets, however deceptive in 

unbalanced datasets. 

8.5 Specificity 

Evaluates the model's efficacy in identifying normal (non-

pneumonia) instances. Increased specificity results in a 

reduction of false positives. 

8.6 ROC-AUC (Receiver operating characteristic -area 

under the curve) 

It assesses the model's overall capacity to differentiate 

between pneumonia and normal patients. Elevated values 

signify superior discriminating capability. 

8.7 Training time (sec) 

The duration required to train the algorithm on the dataset. 

Accelerated training is advantageous, particularly for 

extensive datasets. 

8.8 Inference time (ms) 

The duration required for the model to analyse and 

categorize each X-ray picture. Reduced values signify 

expedited estimation, which is crucial for applications that 

operate rapidly. 

Table 2. Analysing and comparing model effectiveness 

using recall and precision 

Model Recall (%) Precision (%) 

Xception 77.4 80.0 

VGG16 82.5 82.6 

MobileNetV2 91.5 91.3 

InceptionV3 89.8 89.3 

ResNet50 83.6 83.6 

DenseNet169 92.8 92.1 

ResNet152V2 87.0 88.1 

DenseNet121 90.8 90.3 

Proposed Model (FL) 98.4 95.0 

The analysis examines different deep learning models by 

comparing their recall alongside their precision in the provided 

Table 2 and Figure 5. The proposed FL model stands out from 

all existing models because it demonstrates the best 

performance in both recall (98.4%) and precision (95.0%) 

allowing it to detect positive cases with enhanced accuracy. 

Both DenseNet169 and MobileNetV2 show robust 

performance levels with 92.8% recall and 92.1% precision and 

91.5% recall and 91.3% precision, respectively. The Xception 

along with ResNet50, exhibit limited success rates in pattern 

recognition compared to newer network architectures, with 

respective recall results of 77.4% and 83.6% and precision 

values of 80.0% and 83.6%. Mature decision-makers should 

select the proposed model (FL) as their primary option due to 

its optimal performance-evaluation balance between recall and 

precision. 
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Figure 5. Comparative analysis of various models according 

to recall and precision 

Table 3. Comparative analysis of various models utilizing f1-

score and accuracy metrics 

Model F1-Score (%) Accuracy (%) 

Xception 78.7 77.9 

VGG16 81.2 82.5 

MobileNetV2 91.3 91.0 

InceptionV3 89.2 89.3 

ResNet50 83.6 83.6 

DenseNet169 91.0 92.4 

ResNet152V2 87.1 87.4 

DenseNet121 90.1 90.2 

Proposed Model (FL) 96.7 95.3 

Figure 6. Evaluating model effectiveness using F1-Score and 

accuracy 

Several deep learning models receive evaluation based on 

their F1-score and accuracy metrics through this Table 3 and 

Figure 6. This proposed model (FL) delivers maximum F1-

score results (96.7%) together with accuracy of 95.3% 

indicating it maintains outstanding accuracy combined with 

precision and recall performance. The classification abilities 

of MobileNetV2 and DenseNet169 are confirmed through 

their respective test results which show 91.3% F1-score and 

91.0% accuracy. InceptionV3 released 89.2% F1-score 

coupled with 89.3% accuracy while DenseNet121 delivered 

90.1% F1-score at 90.2% accuracy for reliable results. 

Xception together with ResNet50 demonstrate reduced 

performance through their F1-score of 78.7% and accuracy of 

77.9% while also showing 83.6% F1-score and accuracy. This 

indicates Xception and ResNet50 may lack the effectiveness 

of newer architecture forms. According to the results the FL 

model achieved the best accuracy level among all tested 

models because of its robust balance. 

Table 4. Evaluation of various models with respect to 

specificity and ROC-AUC scores 

Model Specificity 

(%) 

ROC-AUC Score (%) 

Xception 81.0 83.3 

VGG16 83.8 85.6 

MobileNetV2 92.3 94.5 

InceptionV3 90.1 92.0 

ResNet50 84.0 86.3 

DenseNet169 93.4 95.9 

ResNet152V2 89.5 90.3 

DenseNet121 91.1 93.0 

Proposed Model (FL) 96.3 98.7 

Figure 7. Comparing of specificity and ROC-AUC scores 

across various models 

A comparison between different deep learning models 

regarding specificity and ROC-AUC score findings exist in the 

Table 4 and Figure 7. The proposed model (FL) achieves the 

best combination of specificity (96.3%) and ROC-AUC score 

(98.7%) which demonstrates its great capability to 

differentiate between negative and positive outcomes with 

excellent overall performance. The deep learning models 

DenseNet169 and MobileNetV2 demonstrate strong 
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discrimination capabilities between classes with 93.4% 

specificity and 95.9% ROC-AUC and 92.3% specificity and 

94.5% ROC-AUC respectively. The performance levels of 

InceptionV3 and DenseNet121 maintain reliability through 

their 90.1% specificity and 92.0% ROC-AUC scores 

alongside 91.1% specificity and 93.0% ROC-AUC scores 

respectively. The performance of Xception (81.0% specificity, 

83.3% ROC-AUC) is the least effective among the assessed 

models while VGG16 (83.8% specificity, 85.6% ROC-AUC) 

together with ResNet50 (84.0% specificity, 86.3% ROC-AUC) 

demonstrate moderate success. FL presents strong evidence of 

being the best model since it demonstrates higher accuracy 

rates in distinguishing between positive and negative cases 

than all alternative models in the study. 

Table 5. Evaluation of training times across various models 

Model Training Time (s) 

Xception 2300 

VGG16 1900 

MobileNetV2 1400 

InceptionV3 2000 

ResNet50 1800 

DenseNet169 1500 

ResNet152V2 2200 

DenseNet121 1600 

Proposed Model (FL) 1300 

Figure 8. Analysis of various models' training times 

The Table 5 compares the training times of various deep 

learning models. MobileNetV2 demonstrates the fastest 

education duration at 1400 seconds which gives it the label of 

most efficient computational model. The training speeds for 

DenseNet169 reach 1500 seconds and for DenseNet121 

amount to 1600 seconds as measured by the dataset. VGG16 

(1900s) and InceptionV3 (2000s) need training durations that 

exist between speedy and elaborate execution. From all models 

ResNet50 (1800s) showed somewhat faster training 

performance than other models yet ResNet152V2 (2200s) and 

Xception (2300s) needed the most time for training operations 

because they require extensive computational resources. 

Training MobileNetV2 and DenseNet models occurs faster 

compared to Xception and ResNet152V2 models which need 

prolonged convergence time as shown in Figure 8. 

Table 6. Evaluation of various models’ inference times 

Model Inference Time (ms) 

Xception 46 

VGG16 38 

MobileNetV2 23 

InceptionV3 30 

ResNet50 35 

DenseNet169 27 

ResNet152V2 33 

DenseNet121 26 

Proposed Model (FL) 19 

Figure 9. Comparing the inference times of various models 

Table 7. Evaluation of the proposed method with different 

FL and AE models 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Proposed FL 

+ 

Autoencoder 

95.15 95.8 98.35 96.9 

FL + CNN 91.2 90.4 93.1 91.7 

FL + Transfer 

Learning 
92.6 92.1 94.3 93.2 

Standalone 

Autoencoder 
89.7 88.5 91.2 89.8 

Centralized 

CNN 
90.8 90.2 92.5 91.3 

The presented table shows the time needed for deep learning 

models to make inferences. The proposed model (FL) delivers 

the shortest inference duration of 19 milliseconds thus making 

it the most efficient solution. MobileNetV2 runs inference at a 

speed of 23ms because of its compact design. DenseNet121 

takes 26 milliseconds to perform tasks while DenseNet169 

requires 27 milliseconds during the process as depicted in 

Figure 9 and Table 6. The inference times for InceptionV3 (30 

ms) and ResNet152V2 (33 ms) along with ResNet50 (35 ms) 
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fall in between while VGG16 (38 ms) and Xception (46 ms) 

need more time due to their complex computational structure. 

The proposed model together with MobileNetV2 represents 

the most effective configuration for real-time applications 

because they deliver the best inference efficiency. 

Figure 10. Comparison of the proposed method with 

different FL and AE models 

Figure 10 and Table 7 suggests that the proposed 

pneumonia detection model, which combines Federated 

Learning (FL) with autoencoders, demonstrates significant 

improvements over existing methods in both performance and 

privacy preservation. Comparative experiments show that it 

achieves 95.15% accuracy, 95.8% precision, 98.35% recall, 

and a 96.9% F1-score surpassing FL-CNN, FL with transfer 

learning, standalone autoencoders, and centralized CNN 

models. Unlike conventional approaches that require 

centralized data and large labeled datasets, the proposed 

system ensures patient privacy by keeping data decentralized 

and enhances learning efficiency from limited samples 

through autoencoders. These results validate the model’s 

potential as a secure, accurate, and ethical solution for clinical 

pneumonia diagnosis. 

This method stands apart from traditional CNNs and 

centralized deep learning models by integrating Federated 

Learning (FL) with autoencoders, enabling decentralized 

training across medical institutions without sharing raw 

patient data. Unlike centralized models that require large 

labeled datasets and compromise privacy, this approach 

preserves data confidentiality by keeping data local. The 

inclusion of autoencoders enhances its capability to learn from 

limited labeled samples, addressing a major limitation in 

conventional methods. By combining privacy-preserving 

distributed training with efficient small-sample learning, the 

model not only improves diagnostic accuracy but also aligns 

with ethical and legal standards in real-world healthcare 

settings. 

9. CONCLUSION

To improve healthcare picture evaluation, this work focuses 

on integrating sophisticated methods of DL with privacy-

preserving procedures. It uses FL to facilitate cross-

institutional collaboration on training while also addressing 

the pressing problem of data privacy. By utilizing a 

decentralized method, we can keep sensitive health 

information locally while yet taking use of community 

learning. The research also delves into how unsupervised 

learning approaches might help with little labelled data, 

making models more adaptable and resilient in real-world 

situations. The goal of implementing multiple model methods 

for optimization is to improve the overall efficacy of the model, 

decrease inference time, and increase computational 

effectiveness. Additionally, the study highlights how 

important it is to have effective and reliable ways of 

communicating in federated learning in order to keep data 

intact and reduce security threats. In addition, it emphasizes 

the advantages of sophisticated structures in meeting privacy 

requirements while boosting the reliability of health care 

diagnoses. The development of excellent durability models 

that do not compromise respect for information is made 

possible by the combination of privacy-preserving approaches 

with deep learning. This adds to the expanding area of AI-

driven medical services. This study lays the groundwork for 

more research into privacy-aware machine learning, which 

will allow us to investigate more flexible, effective, and 

reliable applications of AI in areas like healthcare diagnosis. 

10. FUTURE WORK

Improved safeguarding privacy DL algorithms for medical 

image analysis that can scale efficiently will be the subject of 

future research. One important step is to improve FL methods 

so they can process bigger datasets with fewer interactions 

overhead and strong protection from malicious assaults. If we 

want to lower computing costs without sacrificing accuracy, 

we'll look at better model compressing and quantized methods. 

To further increase the approach's adaptability to various 

medical uses, self-supervised learning approaches may be 

used to enhance performance of models in low-data 

circumstances. 

In future work, we plan to collaborate with medical 

institutions to obtain real-world clinical data for testing and 

validation. This will allow us to evaluate the proposed model's 

effectiveness in actual healthcare settings, ensuring practical 

applicability. Such real data testing will strengthen the model's 

credibility, confirm its robustness across diverse patient 

populations, and further validate its privacy-preserving 

capabilities in real-time medical environments. 
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