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In the context of deep integration between nationwide fitness initiatives and education 

informatization, traditional sports teaching faces challenges such as low efficiency in 

manual instruction and imprecise movement assessment. The advancement of image 

recognition technology provides a solid foundation for the intelligent transformation of 

sports education. However, existing studies still face bottlenecks in terms of motion 

recognition accuracy and the practical utility of teaching assistance tools. Traditional 

machine learning approaches rely heavily on handcrafted features, making it difficult to 

capture the spatiotemporal complexity of sports movements. While deep learning models 

have shown promise, they often overlook higher-order correlations among human body 

joints and the temporal dependencies of action sequences, resulting in suboptimal 

performance in recognizing dynamic and interactive movements. Moreover, current tools 

generally lack intuitive and effective modules for visualizing movement information. To 

address these issues, this study focuses on the development of an automated sports teaching 

assistance tool based on image recognition. The main contributions include: (1) proposing 

an enhanced hypergraph convolutional network that models higher-order joint correlations 

and incorporates temporal feature learning to improve the recognition accuracy of complex 

sports movements; and (2) designing a multidimensional motion information visualization 

scheme, enabling dynamic motion trajectory display and key joint deviation analysis to 

provide intuitive feedback for both teaching and learning. The research outcomes are 

expected to break through the spatial and temporal limitations of traditional instruction and 

establish a precise, personalized support system for sports education, offering both 

theoretical and technical support for its digital transformation. 
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1. INTRODUCTION

Against the background of the vigorous development of 

nationwide fitness and the deep advancement of education 

informatization, the importance of physical education is 

increasingly prominent [1-3], and society’s demand for the 

quality of physical education is also growing. Traditional 

physical education mainly relies on teachers’ on-site 

demonstrations and one-on-one guidance [4, 5], which not 

only consumes a large amount of manpower and time but also 

makes it difficult to conduct accurate and real-time evaluation 

and feedback on students’ movements. With the continuous 

progress of image recognition technology, its application in 

the education field has gradually expanded [6-8], providing 

new ideas for solving the above problems in physical 

education. The development of automated physical education 

teaching assistance tools using image recognition technology 

can break through the spatial and temporal limitations of 

traditional teaching, realize automatic recognition and analysis 

of students’ physical movements, and meet the needs of 

personalized and efficient physical education. 

This study aims to develop an automated physical education 

teaching assistance tool based on image recognition, which has 

important theoretical and practical significance. This research 

deeply integrates image recognition technology with physical 

education, expands the application field of image recognition 

technology, enriches the theoretical system of physical 

education, and provides theoretical support for the digital and 

intelligent development of physical education. This tool can 

accurately and in real time recognize students’ physical 

movements, timely detect problems in students’ movements, 

and provide targeted guidance suggestions, which helps to 

improve students’ learning efficiency and movement 

standardization. At the same time, it can also reduce the 

workload of teachers, allowing them to devote more energy to 

the design of teaching strategies and personalized guidance for 

students, thus improving the overall quality of physical 

education and promoting the development of physical 

education toward a more scientific and efficient direction. 

At present, many scholars have carried out relevant research 

in the field of physical movement recognition and teaching 

assistance. Some studies adopt traditional machine learning 

methods [9-12], such as literature [13], which uses machine 

vision to recognize physical movements. However, this 

method relies on manually designed features and lacks the 

ability to capture subtle posture changes and spatiotemporal 
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features in complex physical movements, resulting in 

difficulty in further improving recognition accuracy. Some 

other studies are based on deep learning models [14-16], for 

example, literature [17] uses a Convolutional Neural Network 

(CNN) network for physical movement classification. 

Although it improves recognition accuracy to a certain extent, 

most of these models ignore the complex correlations between 

human body joints in movements and the temporal 

dependence of movement sequences. When dealing with 

physical movements with high dynamics and interactivity, the 

recognition effect is not ideal. In addition, existing physical 

education teaching assistance tools often lack effective 

visualization of movement information, making it difficult for 

students and teachers to intuitively understand the details and 

problems of movements, which limits their application effect 

in actual teaching. 

The main research content of this paper includes two parts. 

The first part is automated physical movement recognition 

based on improved hypergraph convolution. Aiming at the 

shortcomings of existing methods in capturing spatiotemporal 

features and joint correlations of movements, an improved 

hypergraph convolutional network is proposed. By 

constructing a hypergraph model to describe the complex 

relationships between human body joints and combining 

temporal feature learning, more accurate recognition of 

physical movements is achieved. The second part is the 

visualization of physical movement information. A reasonable 

visualization scheme is designed to present the recognized 

movement data in an intuitive and easy-to-understand manner, 

such as movement trajectory display, key joint deviation 

analysis, etc., providing clear movement feedback for students 

and teachers. The value of this research lies in improving the 

accuracy and robustness of physical movement recognition 

through the improved hypergraph convolutional network, 

laying a core technical foundation for automated physical 

education teaching assistance tools. The visualization module 

of physical movement information enhances the human-

computer interaction and practicality of the tool, enabling 

students to more intuitively understand their movement 

problems and teachers to guide more efficiently. The 

combination of the two is expected to build a complete and 

effective automated physical education teaching assistance 

system, promote innovation and reform of physical education 

teaching models, and has good application prospects and 

promotion value. 

2. AUTOMATED PHYSICAL ACTION RECOGNITION

BASED ON IMPROVED HYPERGRAPH

CONVOLUTION

Existing action recognition methods based on traditional 

machine learning and deep learning either fail to capture the 

subtle postural changes and spatiotemporal coupling features 

of human body joints in physical movements due to the 

difficulty of manual feature design, or fail to consider the 

higher-order correlations between joints and the temporal 

dependency of action sequences, leading to the inability to 

accurately recognize student movements and provide effective 

teaching feedback in physical education scenarios with strong 

dynamic interaction and high requirements for movement 

standardization. Therefore, this paper carries out research on 

automated physical action recognition based on improved 

hypergraph convolution. The hypergraph convolutional 

network can build higher-order correlation models of human 

body joints and perform coupled learning of joint collaborative 

relationships and temporal dynamic features in actions, which 

can not only effectively capture the complex spatiotemporal 

dependencies in physical movements, but also perform 

structured modeling according to the movement 

characteristics of different sports items, providing high-

precision action recognition ability for automated physical 

education teaching assistance tools. This capability supports 

the tool in realizing real-time evaluation of student actions, 

error movement localization, and personalized guidance, such 

as accurately judging the knee bending angle deviation in 

jumping movements or the symmetry issue of arm swinging in 

running, thereby meeting the requirements of physical 

education for movement standardization, safety, and 

personalized guidance. 

2.1 Model Framework 

The automated physical action recognition model based on 

improved hypergraph convolution proposed in this paper 

constructs a dual-path information modeling framework, 

aiming to provide core recognition capability for automated 

physical education teaching assistance tools through in-depth 

analysis of the spatiotemporal features of human body 

movements. The model framework is shown in Figure 1.  

Figure 1. Automated physical action recognition model 

framework based on improved hypergraph convolution 

The main branch of the model is composed of 10 layers of 

temporal and channel-refined hypergraph convolution layers, 

which perform spatial correlation modeling and temporal 

sequence modeling of action features layer by layer. Among 

them, the spatial modeling module adopts a combination of 

Graph Convolutional Network (GCN) and hypergraph 

convolution. On the one hand, it extracts the physical structure 

information of human body joints through GCN, and on the 
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other hand, constructs non-physical higher-order correlations 

of joints through hypergraph convolution, and performs 

refined processing on the temporal and channel dimensions, 

respectively integrating temporal features and channel 

features. Finally, it merges the structured physical information 

and non-linear higher-order correlation information to form 

high-level feature representations containing spatial details of 

actions. The temporal modeling module introduces a 

Temporal Convolutional Network (TCN) structure, which 

uses regular 1D convolution to capture temporal dependencies 

between adjacent frames and performs stride-2 downsampling 

at the 5th and 8th layers to realize hierarchical feature 

extraction of long temporal action sequences, thereby 

balancing temporal continuity and computational efficiency in 

action recognition. 

The second branch of the model is the spatiotemporal 

hypergraph convolution path, which sets up information 

exchange nodes at the 1st, 5th, and 8th layers of the main 

branch to form a feature fusion mechanism with the main 

branch. This branch defines a window range t, and builds a 

hypergraph model within the cross-frame window, 

incorporating joint states at different time points into a unified 

hypergraph structure to realize cross-temporal-dimension 

action feature modeling. This design can effectively capture 

the spatiotemporal coupling features of dynamic interaction in 

physical actions, such as the coordinated changes of hand 

movements and torso posture across consecutive frames 

during basketball dribbling, or the evolution of limb 

trajectories during the airborne phase in gymnastics jumps. 

Through the layer-by-layer refinement of single-frame spatial 

structure and temporal sequence in the main branch, and the 

global modeling of cross-frame spatiotemporal correlation in 

the second branch, the two form a complement: the main 

branch ensures the precise capture of movement details, 

meeting the needs of evaluating microscopic indicators such 

as joint angles and movement amplitude in teaching; the 

second branch strengthens the overall understanding of 

dynamic actions, adapting to the macroscopic judgment needs 

of fluency and standardization of continuous actions in 

physical education. Finally, the model outputs action 

recognition results through a global average pooling layer and 

Softmax classifier, providing high-precision action 

classification and real-time evaluation capabilities for 

automated physical education teaching assistance tools. 

2.2 Data symbols and basic building blocks 

In the task of automated physical action recognition, the 

representation of physical action sequences based on 3D 

skeletons is the basis for constructing the improved 

hypergraph convolution model. Its core lies in providing 

accurate input representation for subsequent spatiotemporal 

feature learning through multi-dimensional feature encoding 

and structured modeling. The 3D skeleton data converts 

physical actions into numerical sequences containing 

spatiotemporal information, where A= as
v represents the action 

sequence composed of S frames, V joints, and Z-dimensional 

coordinates for each joint. In addition to the position feature 

AO, this study also introduces the velocity feature AN and bone 

feature AY, forming a multi-stream input system. This design 

can comprehensively capture the dynamic characteristics of 

physical movements. Position features reflect the absolute 

motion trajectory of joints, velocity features describe the rate 

of spatiotemporal change, and bone features encode the 

physical structure of joint connections. The three jointly 

provide multi-dimensional basic features for hypergraph 

convolution, meeting the evaluation needs in physical 

education for movement amplitude, speed coordination, and 

joint collaboration standardization. 

To further model the complex correlation of human body 

joints, the study constructs the skeleton’s hypergraph 

representation through the body hypergraph Gy and partial 

hypergraph Go, both using joints as vertices N={n1, n2,…, nv}, 

and using hyperedges R= {r1, r2, ..., rv} containing multiple 

vertices to describe the higher-order collaborative 

relationships between joints. For example, the body 

hypergraph can capture the overall linkage of body joints 

during a shooting action, while the partial hypergraph focuses 

on local joint groups. The adjacency matrix G and weight set 

Q of the hypergraph quantify the correlation strength between 

joints and hyperedges, enabling the model to break through the 

limitation of traditional graph structures that only describe 

pairwise node relationships, and effectively capture the 

nonlinear dependencies of multi-joint collaboration in 

physical movements. 

Figure 2. Schematic diagram of the principle of self-attention 

mechanism 

In the automated physical action recognition model based 

on improved hypergraph convolution, the self-attention 

mechanism is introduced to capture the complex dependencies 

of skeletal joints in the spatiotemporal dimension. Its core 

principle is to dynamically calculate the correlation between 

different parts of the input sequence through the Query-Key-

Value mapping system, providing the initial joint correlation 

matrix for the hypergraph convolution. Figure 2 shows the 

schematic diagram of the principle of the self-attention 

mechanism. Specifically, the model takes the feature vector of 

each joint in the spatiotemporal dimension from the 3D 

skeleton sequence as input vector xu, and generates the Query 

matrix Q, Key matrix K, and Value matrix V respectively 

through the weight matrices wq, wk, and wk. Subsequently, the 

correlation score between joints is calculated by the dot 

product of Q and K, and the attention weight matrix is obtained 

after Softmax normalization. This matrix characterizes the 

correlation strength between any two joints in the 

spatiotemporal dimension. Finally, by weighted summation of 

the weight matrix and V, the output vector b containing global 

dependency information is generated, realizing adaptive 

weighted aggregation of joint features. This mechanism can 

break the limitation of local neighborhood in traditional 

convolution operations, capture long-range dependencies 

across joints and frames in physical movements, and provide 

more accurate initial correlation features for hypergraph 
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convolution. The following formula gives the attention input 

expressions of Q, K, and V: 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡 𝑚𝑎𝑥 (
𝑄 ⋅ 𝐾𝑇

√𝑑
)𝑉 (1) 

 

The hypergraph convolutional network proposed in this 

paper, aiming at the higher-order collaboration requirements 

of human body joints in physical actions, constructs a skeleton 

hypergraph model that can represent complex joint 

correlations by expanding binary edges in traditional graph 

convolution into hyperedges containing multiple nodes. The 

skeleton hypergraph uses the feature matrix G to describe the 

connection relationship between joint nodes and hyperedges. 

Each hyperedge can contain multiple joints at the same time, 

such as coordinated joint groups of the torso, arms, and legs, 

breaking through the limitation of traditional graph structures 

that only model pairwise physical connections between nodes. 

It can capture the nonlinear dependencies of multi-joint 

linkage in actions such as shooting and gymnastics. In the 

hypergraph convolution process, the model designs specific 

convolution operators to perform weighted aggregation of 

node features within hyperedges based on the hyperedge 

weight matrix G, realizing information fusion across joints. 

For example, in the spatial dimension, the hypergraph 

convolution can simultaneously aggregate the position and 

velocity features of the shoulder, elbow, and wrist to model the 

overall movement pattern of arm swinging in a shooting 

action; in the temporal dimension, by constructing a cross-

frame hypergraph, it incorporates the dynamic changes of 

joints in continuous action sequences into a unified 

computation framework, capturing the temporal dependencies 

of action sequences. Assuming that the diagonal matrices of 

node degree and hyperedge degree are denoted by Fn and Fr, 

normalization g is performed using the two diagonal matrices. 

The diagonal matrix of all hyperedge weights is denoted by q. 

The parameter matrix learned during training is denoted by 

Qm. The adjacency matrix transformed by hypergraph G is 

denoted by Gl. The generalized convolution formula in the 

hypergraph convolutional network is given as follows: 

 

𝑎𝑚−1 = 𝛿 (𝐹𝑛
−
1
2𝐺𝑄𝐹𝑟

−
1
2𝐺𝑆𝐹𝑛

−
1
2𝑎𝑚𝑄𝑚) 

= 𝛿(𝐺𝑙𝑎
𝑚𝑄𝑚) 

(2) 

 

2.3 Improved hypergraph convolutional network 

 

In skeleton-based physical action recognition, traditional 

methods mostly focus on modeling binary relationships 

between joint pairs, making it difficult to capture higher-order 

dependencies of multi-joint collaboration and cross-frame 

dynamic coupling in complex actions such as shooting and 

gymnastics. This leads to insufficient representation ability of 

the overall semantics of actions, which cannot meet the 

requirements of precise action evaluation in automated 

physical education teaching assistance. The time and channel-

refined hypergraph convolution proposed in this paper is 

aimed precisely at this pain point. Through the dynamic 

hypergraph structure refinement mechanism based on 

samples, it realizes deep modeling of multi-joint 

spatiotemporal correlation. On one hand, the time-refined 

hypergraph dynamically constructs cross-frame hyperedges in 

the temporal dimension by analyzing the motion trajectory and 

temporal variation of joint points in consecutive frames, such 

as incorporating the states of hip, knee, and ankle joints at 

different moments in a jumping action into the same 

hyperedge, effectively capturing the temporal dependency and 

periodic pattern of the action sequence.  

 

 
 

Figure 3. Improved hypergraph convolutional network framework 
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On the other hand, the channel-refined hypergraph targets 

multi-dimensional feature channels such as position, velocity, 

and bones, and mines the coordinated patterns hidden in multi-

dimensional data by weighted aggregation of joint features 

across different channels, such as integrating spatial position 

and velocity variation of joint coordinates to identify 

symmetry deviation in arm swinging during running. This 

dual-dimensional hypergraph refinement mechanism enables 

the model to break through the limitation of binary 

relationships in traditional graph structures and to model 

complex multi-joint coordination relationships in physical 

actions in a dynamic and personalized manner, providing high-

order feature representations more in line with the essence of 

actions for automated physical education teaching assistance 

tools. Figure 3 shows the framework of the improved 

hypergraph convolutional network. 

Among them, the core principle of the time-level refined 

hypergraph mechanism lies in constructing a sample-adaptive 

hypergraph structure. The model first applies a self-attention 

mechanism in the temporal dimension, transforming the input 

feature A through linear transformations Qϕ and Qθ to generate 

query matrix Q and key matrix K respectively. The attention 

score matrix is obtained through the dot product operation 

between Q and K, and the time-level refined attention matrix 

is formed after Softmax normalization. This matrix assigns 

dynamic weights to each joint in each frame. For example, in 

a basketball shooting action, it will automatically enhance the 

attention to the wrist, elbow, and shoulder joints, while in a 

running action it will focus on the hip, knee, and ankle joints, 

achieving adaptive focusing on key joints. The following 

formula gives the expression of the attention matrix β: 

𝛽 = 𝑠𝑜𝑓𝑡 𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑓
) (3) 

This sample-dependent weight allocation mechanism 

enables the hypergraph to automatically adjust the connection 

strength between joints according to different types of actions, 

breaking through the fixed limitations of traditional 

hypergraph structures and allowing the model to more 

accurately capture the temporal characteristics and joint 

collaboration patterns of physical actions. Furthermore, 

through the function s( ), the hypergraph Gl is refined frame-

by-frame, integrating attention weights into the edge structure 

and node features of the hypergraph. Specifically, the 

composition and weights of each hyperedge dynamically 

change according to the importance of the included joints. For 

example, at different stages of a gymnastics somersault action, 

the hyperedges dynamically connect the core joint groups 

involved in exerting force and adjust the connection strength 

based on the temporal characteristics of joint movements, 

enabling the hypergraph to represent the complete process of 

the action from preparation to execution. This dynamic 

hypergraph structure can not only capture the spatial 

collaborative relationships of multiple joints within the same 

frame but also model the temporal dependency of action 

sequences through cross-frame hyperedges. Suppose the 

attention matrix is denoted by β, the adjacency matrix 

transformed from the hypergraph is denoted by Gl, and the 

time-refined hypergraph is denoted by Gs. The refinement 

process of the hypergraph Gl is given by the following 

formula: 

𝐺𝑠 = 𝜋(𝐺𝑙 , 𝛽) = 𝐺𝑙 ⋅ 𝛽 (4) 

The channel-level refined hypergraph mechanism is 

inspired by the design concept of channel-independent spatial 

kernels in CNNs, aiming to expand the fixed structure of 

traditional hypergraph convolution into a sample-dependent 

dynamic modeling framework to capture the differentiated 

joint associations of multi-dimensional channel features in 

physical actions. This mechanism first performs 

dimensionality reduction on the input 3D skeleton features 

through dynamically inferred hypergraph structures to reduce 

computational complexity. Then, based on sample features, it 

learns a unique multi-joint relation matrix W for each channel. 

Suppose the weight matrices are denoted by Qβ and Qɑ, the 

dynamic inference function is denoted by Z, the channel 

aggregation function is denoted by L, and the dimension-

increasing function is denoted by Ψ. The computational 

process of this mechanism is given by the following formula: 

𝐴′ = 𝛹 (𝐿(𝑍(𝐴𝑄𝛽 , 𝐴𝑄𝛼), 𝐺𝑙)) (5) 

The dynamic modeling function is given by the following 

formula: 

𝑊 = 𝑍(𝐴𝑄𝛽 , 𝐴𝑄𝛼) = 𝐴𝑄𝛽 − 𝐴𝑄𝛼 (6) 

The above process is similar to the use of independent 

convolution kernels in CNNs across different channels to 

capture differentiated features such as color and texture. The 

channel-level refined hypergraph allows each feature channel 

to dynamically construct its exclusive hyperedge connection 

pattern. For example, in the position feature channel, the 

hyperedges can focus on the spatial continuity of joint 

trajectories; in the velocity feature channel, the hyperedges can 

enhance the coordination of joint motion speed, thereby 

achieving fine-grained modeling of multi-dimensional 

features in physical actions. 

The channel topology aggregation module further performs 

cross-channel fusion of the dynamically inferred channel-

specific hypergraphs, and generates a channel-refined 

hypergraph adjacency matrix Gz through the function δ( ) by 

performing weighted aggregation on the joint relation matrices 

of each channel. Suppose the weight matrix is denoted by Qε, 

and the adjacency matrix transformed from the hypergraph is 

denoted by Gl. The specific computation formula is as follows: 

𝐺𝑧 = 𝛿(𝑊𝑄𝜀 , 𝐺𝑙) = 𝑊𝑄𝜀 + 𝐺𝑙 (7) 

The above operations allow the model to adaptively 

integrate complementary information from different channels. 

The hypergraph of the position channel captures the spatial 

distribution of joint absolute positions, the hypergraph of the 

velocity channel depicts the dynamic variation trends of 

actions, and the hypergraph of the skeleton channel encodes 

the physical constraints of joint connections. Eventually, a 

hypergraph structure containing multi-dimensional 

collaborative relationships is formed. Taking the basketball 

dribbling action as an example, the channel-level refined 

hypergraph can simultaneously model the position trajectory 

of hand joints, the velocity variation of wrist rotation, and the 

skeletal connection between the hand and arm, thereby 

accurately capturing the multi-joint collaboration pattern of 

"finger control – wrist force – arm swing" during dribbling. 

Through this sample-dependent channel-level refinement 

mechanism, the improved hypergraph convolution can break 

through the dependence of traditional methods on a unified 
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hypergraph structure, dynamically adjust the joint association 

weights between channels according to the characteristic 

differences of different physical actions, and provide more 

discriminative feature representations for automated physical 

action recognition, supporting the teaching assistant tool to 

accurately diagnose action details and provide real-time 

feedback. 

Finally, feature fusion is carried out between the time-

refined hypergraph Gs and the channel-refined hypergraph Gz 

to maintain the temporal dynamics of the integrated action 

sequence and the spatial synergy of multi-dimensional 

features, forming a deep feature representation covering the 

spatiotemporal domain, and meeting the modeling needs of 

complex joint dependency relationships in physical action 

recognition. The time-refined hypergraph Gs dynamically 

assigns inter-frame joint weights through the sample-

dependent attention matrix, captures key joint associations in 

the temporal dimension such as arm-swinging cycles in 

running and timing in jumping actions, and generates features 

As representing the temporal continuity of actions; the channel-

refined hypergraph Gz dynamically constructs exclusive 

hyperedge connection patterns for each feature channel such 

as position, velocity, and skeleton, and generates features Az

containing multi-dimensional joint collaboration information. 

The information fusion module deeply integrates the temporal 

dependency implied in As and the spatial correlation contained 

in Az by designing an adaptive aggregation strategy, enabling 

the model to capture the complementary information of multi-

channel features within a single frame, as well as to model the 

temporal evolution pattern of cross-frame actions. Suppose the 

connection operation is denoted by ||, the summation operation 

is denoted by SUM, and the expression of the information 

fusion module is: 

𝐴𝑠 = 𝛿 (𝐹𝑛
−
1
2𝑔𝑠𝐹𝑛

−
1
2𝑎𝑚𝑄𝑚) (8) 

𝐴𝑧 = 𝛿 (𝐹𝑛
−
1
2𝐺𝑧𝐹𝑛

−
1
2𝑎𝑚𝑄𝑚) (9) 

𝐴𝑔 = 𝑆𝑈𝑀([𝐴𝑠||𝐴𝑧]) (10) 

2.4 Spatiotemporal hypergraph convolution 

The spatiotemporal hypergraph convolution module 

proposed in this paper aims to overcome the limitation of 

traditional methods that separate spatial and temporal feature 

modeling. By constructing cross-frame hypergraph structures 

within a preset spatiotemporal window, it realizes the joint 

modeling of multi-joint spatiotemporal dependencies in sports 

actions. Its core principle is to couple the joint nodes in single-

frame skeleton hypergraphs with the time dimension of action 

sequences, define a sliding window of length S, and select 

multiple continuous or adjacent frames of action data within 

the window to construct the spatiotemporal hypergraph 

Gπ=(N(π),R(π)). Here, the node set N(π) includes all joint sets 

in frames within the window, and the hyperedges R(π) connect 

joints across the spatiotemporal dimension, allowing joint 

nodes in a single frame to be dynamically associated with 

hyperedges of neighboring frames. For example, connecting 

the knee joint node of frame s to the lower limb joint 

hyperedges of frames s-1 and s+1. The initialization formula 

of Gπ is: 

𝐺𝜋 = [
𝐺 ⋯ 𝐺
⋮ ⋱ ⋮
𝐺 ⋯ 𝐺

] ∈ 𝐸𝜋𝑁×𝜋𝑅 (11) 

The above operation breaks the separated architecture of 

traditional graph convolution that either only models spatial 

relationships within a single frame or only processes 

sequences through temporal convolution. It enables 

hyperedges to simultaneously capture spatial collaboration of 

multiple joints within the same frame and the temporal 

evolution of joints across frames, thereby forming a 

hypergraph structure containing spatiotemporal coupling 

information. 

In actual implementation, the spatiotemporal hypergraph 

expands the nodes of the single-frame hypergraph into a time-

domain sequence. Through the hyperedge connections of the 

sliding window, each joint node can aggregate spatiotemporal 

context information from adjacent frames when extracting 

features. For example, when analyzing running actions, the 

spatiotemporal hypergraph can include the hip, knee, and 

ankle joints of three consecutive frames in the same 

hyperedge, modeling both the spatial positional relationships 

of joints within a single frame and the velocity changes across 

frames, thereby capturing the periodic pattern of leg swinging 

in running. By applying the hypergraph convolution operator 

to Gπ for feature aggregation, the model can dynamically 

adjust the receptive field according to the window range π, 

adapting to the temporal scale requirements of different sports 

actions. A short window is suitable for capturing fast actions, 

such as the instant exertion in table tennis hitting, while a long 

window is suitable for long-duration actions, such as the 

continuous movement combinations in gymnastics routines. 

Sliding the window over the sequence yields feature A, which 

is hierarchically updated according to the following formula: 

𝑎𝑚+1 = 𝛿 (𝐹𝑛
−
1
2𝐺𝜋𝑄𝐹𝑟

−
1
2𝐺𝜋𝐹𝑛

−
1
2𝑎𝑚𝑄𝑚) (12) 

The model adopts this spatiotemporal joint modeling 

mechanism to effectively solve the problem of information 

loss caused by spatial and temporal feature separation in 

traditional methods. It provides a deep feature representation 

containing multi-joint spatiotemporal collaboration patterns 

for automated sports action recognition, supports precise 

evaluation of action continuity and temporal regularity by 

teaching assistant tools, and facilitates real-time recognition 

and teaching feedback for complex sports actions. 

3. SPORTS ACTION INFORMATION 

VISUALIZATION

This paper further proposes a sports action information 

visualization scheme, centered on multi-view layout, which 

transforms complex action features into intuitive and 

understandable visual representations through hierarchical 

interaction and multi-dimensional data mapping. It serves the 

needs of action analysis, error diagnosis, and personalized 

guidance in automated sports teaching. 

The basic principle is to construct a closed-loop framework 

of "data input – feature mapping – interactive exploration": 

first, the user operation module supports flexible input and 

playback control of video sequences, allowing teachers and 

students to quickly locate key action segments, such as the 
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release moment of a basketball shot or a rotation move in 

dance, providing data anchors for precise analysis. The main 

view module, through feature visualization components, 

converts features such as joint position, velocity, and angle in 

3D skeleton data into dynamic curves over the time dimension, 

helping users intuitively capture the temporal patterns of 

actions. The scoring component uses structured charts such as 

radar charts and pie charts to decompose the scoring results of 

the action recognition model into feature proportions and joint 

contributions, turning abstract evaluations of action 

standardization into interpretable visual indicators, facilitating 

users’ understanding of the specific sources of action strengths 

and weaknesses. 

The personalized exploration module further enhances the 

teaching assistant function of visualization. Its core principle 

is to achieve fine-grained analysis and customized 

presentation of data through interactive controls. For example, 

the "joint selection" and "frame selection" controls support 

users in focusing on the motion features of specific joints at 

any frame, helping accurately locate deviations in single joint 

movements; the "chart attributes" customization function 

allows adjustment of visual parameters according to the 

teaching scenario, improving different users’ understanding 

efficiency of visual information. Especially important is the 

"standard library expansion" component, which supports 

custom standard action templates and achieves differentiated 

teaching through comparison analysis of radar and pie charts. 

Teachers can design targeted training plans based on the 

visualization results, and students can independently 

troubleshoot action issues through interactive floating 

windows, forming a closed-loop teaching mode of 

"recognition – visualization – feedback – improvement". 

This visualization mechanism not only lowers the technical 

threshold for action analysis but also transforms complex 

spatiotemporal features into operable instructional guidance 

through intuitive visual interaction, becoming a key bridge 

connecting automated action recognition models and actual 

sports teaching. 

4. EXPERIMENTAL RESULTS AND ANALYSIS

From the ablation experiment data in Table 1, it can be seen 

that the full model achieves an accuracy of 91.5% on the NTU-

RGBD dataset, significantly higher than the models with only 

the improved hypergraph convolution network removed or 

with both the self-attention mechanism and the improved 

hypergraph convolution removed. This indicates that the 

improved hypergraph convolution network is the core module 

for enhancing action recognition performance: by constructing 

a hypergraph model to describe the complex associations 

between joints and combining temporal dimension feature 

learning, it effectively enhances the modeling ability of 

spatiotemporal features in sports actions. Comparing No. 2 

and No. 3, the introduction of the improved hypergraph 

convolution network directly improves the model’s accuracy 

in capturing joint associations, while the low accuracy of No. 

1 validates the synergistic effect of the self-attention 

mechanism and the hypergraph convolution. 

Table 1. Ablation experiment results 

No. Database Network Module Input Frames Accuracy 

1 NTU-RGBD Removing self-attention mechanism and improved hypergraph convolution network 15 84.5% 

2 NTU-RGBD Removing improved hypergraph convolution network 15 88.7% 

3 NTU-RGBD Full model 15 91.5% 

Table 2. Comparison of different methods on NTU-RGBD and kinetics-skeleton datasets 

Method Input Modality Input Frames GFLOPs Kinetics-Skeleton NTU-RGBD 

ST-GCN RGB 15 64 85.6% 71.5% 

Non-local RGB 15 71 89.4% 82.6% 

SlowFast RGB 15 71 81.2% 83.4% 

Video Swin Transformer RGB 15 - 88.6% 82.6% 

MViT RGB 15 71 88.5% 84.5% 

Time-MoE RGB 15 915 88.6% 81.2% 

R(2+1)D RGB 15 1658 88.7% 82.6% 

I3D RGB 15 - 92.5% 82.8% 

C3D Pose 15 415 92.6% 43.5% 

STM RGB 15 1236 91.5% 84.6% 

VideoBERT RGB+Pose 15 1389 92.5% 85.5% 

Proposed model RGB+Pose 15 1569 95.8% 91.5% 

The experimental results fully demonstrate the effectiveness 

of the action recognition method based on the improved 

hypergraph convolution. The hypergraph model breaks the 

limitations of traditional graph convolution, can describe the 

“hyperedge” of multi-joint collaboration, and learns in the 

temporal dimension, achieving accurate recognition of 

complex sports actions. From No. 1 to No. 3, the step-by-step 

increase in accuracy (84.5% → 88.7% → 91.5%) directly 

reflects the key role of the improved hypergraph convolution 

network in joint association modeling and spatiotemporal 

feature fusion. This modular design not only improves 

recognition accuracy but also provides fine-grained action data 

support for the subsequent visualization module, making 

teaching feedback more targeted. 

From the comparison data in Table 2, it can be seen that on 

the NTU-RGBD and Kinetics-Skeleton datasets, the proposed 

model demonstrates outstanding performance: On the 

Kinetics-Skeleton dataset, the accuracy reaches 95.8%, an 

increase of 3.3 percentage points compared to the suboptimal 

method (92.5% of VideoBERT), and higher than traditional 

models such as ST-GCN (85.6%) and Non-local (89.4%), even 

surpassing the multimodal VideoBERT (92.5%), highlighting 

its fusion advantage of skeleton data and visual information. 

On the NTU-RGBD dataset, the accuracy is 91.5%, 
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significantly outperforming unimodal methods and also better 

than the multimodal VideoBERT (85.5%). Although the 

GFLOPs is slightly higher, the proposed model realizes 

efficient spatio-temporal feature extraction of sports actions 

through improved hypergraph convolution for accurate 

modeling of joint associations and temporal feature learning. 

The experimental results deeply verify the effectiveness of 

the action recognition method based on improved hypergraph 

convolution. The input fuses RGB and Pose, providing global-

local dual-modality data for hypergraph convolution. The 

improved hypergraph convolution constructs a spatio-

temporal hypergraph with nodes as joint points and 

hyperedges as multi-joint coordination relationships, breaking 

the pairwise association limitation of traditional graph 

convolution. Compared with the same modality method 

VideoBERT, our model achieves a better balance between 

computational efficiency and accuracy through hierarchical 

extraction of local-global features in the hypergraph, verifying 

the efficient capture ability of hypergraph modeling for multi-

joint associations. 

From the data in Table 3, it can be seen that on the four 

subsets of the Varying-view dataset (Fixed-view Standard 

Action, Dynamic-view Complex Action, Error Action Special, 

and Teaching Scenario Adaptation), the proposed model 

performs excellently. On the Fixed-view Standard Action 

Subset, the accuracy is 95.6%, higher than unimodal methods 

and some multimodal methods, highlighting the precise 

recognition ability for basic actions, benefiting from the 

improved hypergraph convolution modeling of "joint-scene" 

collaborative relationships. On the Dynamic-view Complex 

Action Subset, the accuracy is 94.8%, better than ST-BGCN 

(92.8%), TGAT (85.6%), etc., verifying the model’s spatio-

temporal feature capturing ability for difficult actions under 

360° dynamic views. On the Error Action Special Subset, the 

accuracy is 92.5%, higher than Graph Convolutional LSTM 

(91.2%) and 2D-AGCN (85.4%), indicating the model’s 

capability to effectively detect joint deviation and temporal 

anomalies, providing fine-grained error localization for 

teaching feedback. On the Teaching Scenario Adaptation 

Subset, the accuracy is 91.2%, on par with PoseTransformer, 

reflecting adaptability to actions of different difficulties, 

supporting personalized teaching through hierarchical feature 

extraction in the hypergraph. 

Table 3. Comparison of different methods on varying-view dataset 

Method Pose Video 
Fixed-view Standard 

Action Subset 

Dynamic-view 

Complex Action Subset 

Error Action 

Special Subset 

Teaching Scenario 

Adaptation Subset 

2S-AGCN √ × 86.5% 93.5% - - 

G3D √ × 92.4% 95.6% 85.5% 87.5% 

2D-AGCN √ × 92.6% 95.4% 85.4% 88.9% 

ST-BGCN √ √ 94.5% 92.8% - - 

PoseTransformer √ √ 95.8% 91.2% 91.5% 91.2% 

TGAT × √ 92.3% 85.6% - - 

Graph Convolutional 

LSTM 
× √ 92.8% 92.5% 91.2% 88.5% 

Proposed model √ √ 95.6% 94.8% 92.5% 91.2% 

Table 4. Comparison of different methods on the Anubis 

dataset 

Method 
Input 

Modality 

Input 

Frames 
GFLOPs Anubis 

CoAtNet RGB 15 71 78.9% 

LeViT RGB 15 57 81.2% 

Stable 

Diffusion 
RGB 31 32 82.4% 

StyleGAN RGB 15 72 81.5% 

UNIT RGB 31 465 83.6% 

CycleGAN-VC RGB 31 189 86.5% 

DeepFakes RGB 15 365 86.4% 

NeuralStyle RGB 15 119 86.5% 

Proposed 

model 
RGB+Pose 15 448 88.9% 

The experimental results deeply reveal the core advantages 

of the improved hypergraph convolution method. The input 

fuses Pose and Video to construct a spatio-temporal 

hypergraph, where nodes include joint points and visual key 

areas, and hyperedges describe the spatio-temporal 

associations of multiple nodes. This modeling method breaks 

the limitation of traditional graph convolution. Under dynamic 

views, it can simultaneously capture "joint motion 

trajectories" (Pose) and "scene visual changes" (Video), 

improving recognition accuracy for complex actions. 

Compared with the same modality method PoseTransformer, 

the proposed model achieves performance optimization in 

subsets such as Fixed-view (+0.8%) and Teaching Scenario 

(0% equal), verifying the efficient modeling ability of 

hypergraph for multimodal collaborative relationships. 

As shown in Table 4 on the Anubis dataset, the proposed 

model achieved an accuracy of 88.9%, significantly surpassing 

all single RGB modality methods. In comparison, the 

combination of multimodal fusion and improved hypergraph 

convolution enables the model to simultaneously capture 

"scene visual information" and "joint motion information," 

breaking the limitation of single RGB modality in describing 

human body structure. Experimental data deeply validate the 

core advantages of the improved hypergraph convolution 

method. The improved hypergraph convolution combined 

with time dimension learning can capture dynamic temporal 

features of actions. In the action recognition on the Anubis 

dataset, the temporal module can locate the “force peak 

frame,” enhancing the ability to distinguish different action 

phases. Although the GFLOPs are slightly higher than single 

RGB methods, the improvement in accuracy indicates that 

spatiotemporal hypergraph modeling + temporal feature 

fusion provides a higher computational cost-effectiveness in 

complex action recognition, especially suitable for sports 

teaching scenarios. 

Figure 4 visualizes the spatiotemporal motion features of 

sports actions through joint trajectory curves in three-

dimensional space. The effectiveness of this visualization 

scheme is reflected in: (1) Accurate presentation of action 

trajectories: The three-dimensional coordinate system clearly 
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depicts the position changes of joints in space, and the shape 

of the curve reflects the dynamic stages of the action. For 

example, the spatial distribution and temporal variation of the 

red and green trajectories can help teachers quickly identify 

the “start-execution-end” phases of the action. (2) Intuitive 

display of multi-joint coordination: The joint associations 

modeled by hypergraph convolution are reflected through 

spatial associations of the trajectories. In teaching, comparing 

trajectory deviations between standard and student actions can 

locate joint motion errors and achieve fine-grained error 

diagnosis. 

The sports action information visualization method 

proposed in this paper transforms fine-grained action data 

recognized by improved hypergraph convolution into intuitive 

teaching feedback through 3D trajectory display, joint 

deviation annotation, and multimodal fusion presentation. The 

combination of examples in Figure 4 and experimental data 

validates its effectiveness in automated sports teaching: it not 

only enhances students’ understanding of action structure but 

also provides teachers with quantitative error analysis tools, 

realizing a “recognition–visualization–feedback” closed-loop 

teaching assistant mechanism, strongly supporting the core 

research objective of the paper and providing key technical 

support for the intelligent upgrade of sports teaching. 

Figure 4. Examples of joint trajectory visualization of 

different sports actions 

5. CONCLUSION

This paper, focusing on “the development of an automated 

sports teaching assistant tool based on image recognition,” 

constructed a closed-loop system of “action recognition–

information visualization.” In the part of automated sports 

action recognition based on improved hypergraph 

convolution, aiming at the problem that traditional methods 

are insufficient in modeling high-order joint collaboration and 

spatiotemporal features, a time and channel refined 

hypergraph convolution network is proposed: by constructing 

a hypergraph model to describe dynamic associations among 

multiple joints, combining spatiotemporal hypergraph 

convolution to capture inter-frame dependencies in action 

sequences, and enhancing feature expression through 

multimodal data fusion. In the part of sports action information 

visualization, a multi-view interactive framework is designed. 

Through 3D joint trajectory display, keyframe deviation 

annotation, and multi-dimensional feature charts, the fine-

grained action data output from hypergraph convolution are 

transformed into intuitive teaching feedback. This scheme 

supports user-defined chart parameters, querying specific 

joint/frame features, and achieves action comparison analysis 

through “standard library expansion,” significantly lowering 

the technical threshold of action analysis, providing teachers 

with quantitative error diagnosis tools, and offering students 

visual guidance for action correction. 

There are certain limitations in this research. The action 

coverage for niche sports is insufficient; error action 

annotation relies on manual work, and the annotation 

efficiency and consistency need improvement. The dynamic 

edge computation of hypergraph convolution increases model 

parameters, requiring further optimization of computational 

efficiency for deployment on mobile devices. Currently, only 

skeleton and RGB data are fused, and other modalities such as 

inertial sensors and pressure sensors are not fully utilized, 

leading to insufficient modeling of mechanical characteristics 

of actions. 

Future research directions include the following: 

(1) Dataset expansion and automatic annotation: Introduce

generative adversarial networks to synthesize data for niche 

actions, combine weak supervision learning to reduce manual 

annotation costs; build cross-modal annotation tools to 

automatically align skeleton data with mechanical sensor 

signals. 

(2) Model optimization and lightweight design: Study

sparse representation of hypergraph structures, compress 

models using knowledge distillation technology, and realize 

real-time inference on mobile devices. 

(3) Deep multimodal fusion and cross-scenario application:

Fuse IMU data to construct a “skeleton-mechanics” joint 

hypergraph, expand to fields such as sports injury prevention 

and competitive sports technical analysis, forming a more 

comprehensive action analysis system. 

Through the innovative combination of improved 

hypergraph convolution and visual interaction, this paper lays 

a key technical foundation for automated sports teaching 

assistant tools. The research results not only improve the 

recognition accuracy of complex sports actions but also, 

through the dataset design adapted to teaching scenarios and 

visual feedback, realize the technical implementation. Future 

research can continue to deepen along the dimensions of data, 

models, and applications, promoting the development of 

sports teaching towards intelligence and personalization, and 

contributing to the popularization of national fitness and the 

improvement of professional training under the background of 

“integration of sports and education.” 
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