
A Novel Enhanced U-Net Feature Extraction Using OCT Images for Diabetic Macular 

Edema Classification 

Minarva Devi K1 , Murugeswari S2*

1 Department of Electronics and Communication Engineering, Sri Raaja Raajan College of Engineering and Technology, 

Karaikudi 630301, India 
2 Department of Bio Medical Engineering and Technology, Syed Ammal Engineering College,  

Ramanathapuram 623502, India 

Corresponding Author Email: murugeskabilan@syedengg.ac.in

Copyright: ©2025 The authors. This article is published by IIETA and is licensed under the CC BY 4.0 license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.18280/ts.420347 ABSTRACT 

Received: 11 January 2025 

Revised: 15 May 2025 

Accepted: 16 June 2025 

Available online: 30 June 2025 

In this work, an advanced diabetic macular edema (DME) disease classification is proposed 

by using an optical coherence tomography (OCT) image dataset. This proposed work 

performs both the feature extraction and classification processes. The proposed feature 

extraction executed a novel hybrid Enhanced U-Net architecture that includes both the Swin 

Transformers (SwinT) and Self-Calibrated Convolutions (SC-Convs) to enhance the 

performance. Initially, Enhanced U-Net consists of a convolutional layer, SwinT to capture 

hierarchical features and SC-Convs to recalibrate a dynamic feature. The proposed 

Enhanced U-Net process both a two-stage encoder-decoder architecture using an OCT 

image through multiple stages to enhance local and global feature representation. The 

decoder also reconstructed a segmentation map that has a skip connection to attain spatial 

data. The segmentation head block provides an output of a binary mask with an accurate 

diagnosis of DME regions. These extracted features are then optimized using Henry's Gas 

Swarm Optimization (HGSO) model. The HGSO is used to select the feature set by 

simulating gas particles to determine the most relevant feature from it. This optimized 

feature set is classified using the XGBoost algorithm, which is a robust model that 

effectively classifies the healthy and DME-affected regions. Thus, the experimental result 

shows that the proposed method has attained a more precise and reliable classification of 

DME disease in all the metrics than the traditional methods. Therefore, the proposed method 

enhances the diagnostic capabilities and management of diabetic eye diseases efficiently. 
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1. INTRODUCTION

In recent decades, DME has been a severe visual disease 

that causes vision impairment among individuals with diabetes 

[1]. This disease mostly occurs due to fluid accumulation in 

the macula region, which is in the central part of the retina. It 

is caused due to a leakage from blood vessels that also leads to 

high blood sugar levels, which is known as diabetic 

retinopathy (DR) [2]. If this issue is untreated, then the DME 

can lead to vision loss and even lead to blindness in the human 

eye. DME diseases also affect the cardiovascular system, 

neurons, immunological and digestive disorders [3]. Severe 

DME is reported among various types, has 4.2% and 7.9% in 

patients with DM type 1 and 1.4% and 12.8% in type 2 DM. 

The symptoms of DME include blurred vision, fade-out 

colour appearance shadows in the vision field [4]. Some 

patients might experience it in one eye initially, then it 

develops in both eyes. The subtle onset of these symptoms 

often leads to a delayed diagnosis that needs a regular eye 

examination, especially for diabetic patients. To protect the 

retina of the eye and its vision, earlier detection of DME is 

required and treated in the initial stage for effective 

management [5]. 

Based on statistics of an Early Treatment Diabetic 

Retinopathy Study (ETDRS), DME is considered by the 

thickness of retinal hard oozes, microaneurysm bleeding and 

macular haemorrhage [6]. So, the Screening process is 

important for an early diagnosis and treatment to reduce its 

complexity. In imaging techniques, the most commonly used 

screening processes for DME are Fundus photography and 

OCT [7]. Fundus imaging is used to capture detailed images 

of the retina that provide a broad retinal view and potential 

abnormalities. Also, OCT imaging has transformed the 

diagnosis of DME, which provides high-resolution cross-

sectional images of the retina. The OCT imaging can enable 

the visualization of retinal thickness, fluid accumulation, and 

other changes based on DME. It supports to identification of 

the severity and extent of the edema provides proper guidance 

for treatment decisions and also monitors the growth of the 

disease [8]. 

Though the OCT is better at identifying, it has an inaccuracy 

in determining the region relevant to DME effectively in an 

earlier stage. There is a huge demand for an efficient and 

accurate tool to assist in the early diagnosis and management 
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of DME. Also, Manual examination and clarification of retinal 

images by specialists are very time-consuming and also lead 

to inconsistency [9]. Therefore, an automated system can 

provide consistent and rapid analysis to address these 

challenges for DME disease. In recent times, an advanced tool 

of medical imaging is machine learning (ML) and deep 

learning (DL) techniques are a promising solution to attain its 

effectiveness [10]. 

The ML/DL methods are a subset of artificial intelligence 

that has a more success rate in image recognition tasks in the 

medical imaging field [11]. Some of the most peculiar 

methods used in medical imaging are: Convolutional Neural 

Networks (CNNs) are the most popular DL architectures that 

are used to process a spatial hierarchy in images through their 

layered structure. Some other advanced models, like Inception 

Networks, are especially known for their multi-scale feature 

extraction ability where inception modules are used to allow 

the network to capture features at multiple different scales 

simultaneously. Recently, attention mechanisms have been 

added to an architecture to help the network prioritize an 

image. This supports to detection of the subtle signs of DME 

that have a greater indication of disease in it. Another popular 

model is Transfer learning which pre-trains a neural network 

on a large dataset. All these methods have a specific 

characteristic in OCT images to improve diagnostic accuracy 

and reduce the need for widely labelled data. 

Therefore, to attain a highly accurate and optimal feature 

extraction and classification, the proposed work presented an 

Enhanced U-Net with a hybrid of Swin Transformer (SwinT) 

and SC-Conv for feature extraction, HGSO-based feature 

selection and XG Boost classification, respectively. This 

proposed method has attained better performance than existing 

methodologies. The remaining part of this article contributes 

related work in section 2, and section 3 discusses a preliminary 

part of it. Section 4 describes the material and methods of the 

proposed architecture, and Section 5 provides a result and 

discussion with an experimental comparison of the proposed 

and existing methods. The section ended with a conclusion 

that is followed by references. 

 

 

2. RELATED WORKS 

 

Several U-Net-based models have been proposed for 

medical image segmentation with the integration of different 

feature learning modules. Ding et al. [12] proposed a Multi-

layer Deep Feature Extraction Network (MDE)-Net. It 

integrates a Hybrid Convolutional Feature Extraction (HCFE) 

module in the encoder to replace traditional convolutional 

blocks. This module enhances multi-scale feature extraction 

and expands the receptive field for better segmentation 

accuracy. Yadav et al. [13] introduced a hybrid model 

combining EfficientNetB7 as the encoder and UNet++ as the 

decoder. This model uses transfer learning with AdvProp pre-

trained weights for improved feature extraction. In addition, it 

uses multi-scale feature fusion with skip connections for 

refined segmentation masks. 

Magdy et al. [14] developed the PolyRes-Net for medical 

image segmentation. It combines Multi-Level Residual Blocks 

(MLR-blocks) in the encoder and attention gates in the 

decoder. The network's innovation lies in its Multi-Scale 

Feature Aggregation (MSFA) block, which is used to 

consolidate features across decoder steps for improved 

segmentation performance. Hao et al. [15] proposed MEFP-

Net, a Multi-Scale Edge Feature Perception Network. This 

model includes an additional encoder branch with Global 

Information Extraction Modules (GIEMs) and Multi-Scale 

Adaptive Feature Fusion Modules (MAFFMs) to capture both 

global contextual and detailed features. The Atrous Pooling 

Dense Perception Module (APDPM) further improves the 

boundary feature representation of the images. 

Karimi et al. [16] presented DEU-Net, a Dual-Encoder U-

Net architecture combining a convolutional encoder and a 

transformer encoder. This dual-branch design concurrently 

extracts local features and global contextual information for 

accurate segmentation. Wisaeng [17] proposed U-Net++DSM 

for skin lesion segmentation. It integrates the Deep 

Supervision Mechanism (DSM) with the U-Net++ architecture 

to learn the features deeply. 

Various DL models have been proposed for analysing DME. 

Each model has unique architectures and techniques for 

improved classification. Kumar et al. [18] presented a 

DenseNet121 method that was used to extract a feature vector 

to identify DME patients. The extracted features are processed 

using fully connected layers before and then moved for 

classification. Then the final layer provides a classification 

result for a DME. This DenseNet121 method achieved a 

classification accuracy of 86.4%, which showed its 

effectiveness in feature extraction and classification in DME 

disease. 

Zubair et al. [19] addressed issues like fovea localizing, 

blood vessel extraction, and segmenting lesions by using a 

hybrid of improved image subtraction, Gabor wavelet filtering 

and fuzzy c-means clustering methodologies. This hybrid 

model achieved a high accuracy of 96.17% for optic disc 

detection, 98.60% for fovea localization, 97.85% for exudates 

segmentation, and 98.80% for DME classification, 

respectively. This method attained a superior performance by 

enhancing retinal image analysis. 

da Costa et al. [20] investigated a VGG-19 network that was 

pre-trained using an ImageNet dataset to classify OCT images. 

These images are categorised as choroidal neovascularization 

(CNV), Drusen, DME and Normal. The VGG-19 model 

achieved an accuracy of 82.60% and an area under the receiver 

operating characteristic curve (AUROC) of 92.03%. This 

performance attained a strong performance in classifying 

various retinal types' status. 

Rodríguez-Miguel et al. [21] combined CNNs with 

recurrent neural networks (RNNs) to classify a DME using 

OCT image cubes. This hybrid method is used to enable the 

model to capture both spatial and temporal dependencies 

within the OCT data. This method acquired its robustness in 

classification among DME and normal cases. 

Hughes-Cano et al. [22] presented transfer learning for a 

DME classification using multiple imaging modalities like 

OCT, scalogram, spectrogram and fundus images. This 

Transfer Learning achieved higher performance in OCT and 

scalogram images that have 93% AUC and 89% F1-score 

respectively. 

Moreno-Martínez et al. [23] focused on DME classification 

to detect a dexamethasone implant treatment. The 

classification system, developed by ESASO, that used to 

assess the treatment output and reduce the DME’s severity. 

This method provided the most valuable determination with an 

efficient result that supports a treatment. 

Ambure et al. [24] designed an automatic DME detection 

and grading from retinal images of the OCT dataset. It is 

processed in three stages such as macula localization, exudate 
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detection and macular coordinate grading. The CNN models 

are applied to improve the accuracy of DME grading and 

enhance clinical treatment decisions as soon. 

Kiciński and Gawęcki [25] presented an OCT-based 

classification of various types like perifoveal, central, and 

peripheral retinal thickness (RT) and choroidal thickness (CT) 

in DME patients. It evaluates correlations among RT, and CT 

and also provides an analysis of retinal changes in DME. 

Wu et al. [26] developed a DL model to classify a 

morphological pattern of DME in OCT images. The model 

achieved high accuracy rates of 90.2%, 95.4% and 95.9% for 

all these patterns respectively. It showed its capability to 

identify and classify the DME and normal data effectively. 

Kaymak and Serener [27] used the AlexNet algorithm to 

classify OCT images. It is classified into various categories 

like healthy, dry AMD, wet AMD and DME. The AlexNet 

model achieved a greater accuracy of 99.6% and overcame all 

the issues of previous methods with its effectiveness. This 

method is used to distinguish among various retinal conditions 

with high precision. 

Wu et al. [28] presented a DME classification model using 

a Squeeze-and-Excitation attention method. This method 

allowed us to focus more on channel features and ignore the 

less relevant features. This attention process attained a higher 

accuracy and showed the model's ability to classify DME 

accurately. 

Tang et al. [29] used multitask CNNS to classify DME into 

centre-involved DME (CI-DME), non-CI-DME (non-CI-

DME) and normal. The residual network (ResNet) method is 

used to perform feature extraction and classification efficiently. 

The superior performances of ResNet enhance the overall 

segmentation and classification accuracy of DME. 

 

 

3. PRELIMINARIES 

 

This section provided a preliminary of the proposed work 

that contains a detailed description of SC-Convs and SwinT. 

 

3.1 SC-Convs 

 

In the clustered convolutions, the feature extraction process 

is carried out uniformly across multiple parallel branches with 

each branch operating independently. To form the final output, 

the outputs from all parallel branches are concatenated. In 

Contrast, the SC-Convs are used to split the learnable 

convolutional filters into multiple portions. Also, each portion 

is designated a specific role rather than being treated equally. 

The architecture of SC-Convs is given in Figure 1. 

 

3.2 Design workflow 

 

Let's consider the number of input channels (C) is equal to 

the number of output channels (C) as simple. A set of filter 

kernels K with dimensions (C, C, H, W) where H and W 

represent the spatial height and width. It is divided into four 

portions and each one is responsible for a unique function. 

Assuming C can be divided by 2 with four filter sets of {K1, 

K2, K3, K4} then it values each with dimensions as (C/2, C/2, 

H, W). 

Let X1, and X2 are two input portions where each follows 

a distinct pathway to attain various types of data. The first 

pathway involves a SC operation using {K1, K2, K3} on X1 

that outputs as Y1. The second pathway performs a direct 

convolution on X2 with K1 that is used to attain the original 

spatial data and output as Y2. These Y1 and Y2 are 

concatenated to form the final response Y. 

 

 
 

Figure 1. SC-Convs architecture 

 

3.3 SC process 

 

The SC operation is used to collect data information for 

each spatial location effectively by processing a feature 

transformation into the original scale space and smaller latent 

space. The original scale space is the feature maps that retain 

the same resolution as the input. Then the smaller latent space 

is processed a downsampling. The transformed features in the 

smaller latent space are transformed into an original space 

because of their broader view. 

The process applied an average pooling with a filter size of 

r x r and a stride of r to the input X1 that provides transformed 

output (T1) as AvgPool (X1). 

Next, a feature transformation on T1 is performed using K2:  

 

𝑋′1 = 𝑈𝑃(𝐹2(𝑇1)) = 𝑈𝑝(𝑇1 ∗ 𝐾2) (1) 

 

where, Up (·) denotes bilinear interpolation and 𝐹2 indicates a 

feature map down-sampling operation. 

The calibration operation can then be expressed as:  

 

𝑌′1 = 𝐹3(𝑋1) ⋅ 𝜎(𝑋1 + 𝑋′1) (2) 

 

𝐹3(𝑋1)  =  𝑋1 ∗  𝐾3 (3) 

 

where, σ represents the sigmoid function, 𝐹3  indicates a 

feature map down-sampling operation and '·' denotes element-

wise multiplication. Using X'1 as residuals to form the 

calibration weights, then the final output after calibration is 

given by: 

 

𝑌1 = 𝐹4(𝑌′1) = 𝑌′1 ∗ 𝐾4 (4) 

 

where, 𝐹4 indicates a feature map up-sampling operation. 

Therefore, the SC-Convs technique improves the feature 

extraction process by integrating diverse data from different 

scales. This method allocated a specific role to each portion of 

the filters and used a smaller latent space to guide 

transformations. This method attained more effectiveness in 

capturing relevant features and improving the overall 

performance of extractions. 

 

3.4 SwinT architecture 
 

The SwinT architecture is developed by its tiny version that 

divides an input RGB image into non-overlapping patches via 

a patch-splitting module similar to the Vision Transformer 

(ViT). Each patch is treated as a “token” with its features 
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represented by the raw RGB pixel values concatenation. For 

implementation, a patch size of 4×4 is used, resulting in a 

feature dimension of 4×4×3=48. These raw features are 

projected to an arbitrary dimension (C) using a linear 

embedding layer. The architecture of SwinT is shown in 

Figure 2(a).  

Several SwinT blocks include modified self-attention 

techniques that are applied to these patch tokens. These blocks 

are used to maintain the number of tokens (H/4 × W/4) that 

contain a "Stage 1" architecture along with the linear 

embedding layer. 

To provide a hierarchical representation, the patch merging 

layers as the network deepens are used to reduce the number 

of tokens. The initial patch merging layer concatenates the 

features of each group of 2×2 neighboring patches. Then it is 

moved to a linear layer on the 4C-dimensional feature 

concatenation. This minimises the number of tokens by 4 

factors that is 2× downsampling of resolution with the output 

dimension set to 2C. SwinT blocks then performed a feature 

transformation to maintain an H/8×W/8 resolution. All the 

patch merging and feature transformation sequences are in 

"Stage 2". 

This process is repeated to attain a "Stage 3" and "Stage 4" 

with a resolution of H/16×W/16 and H/32×W/32 respectively. 

All these four stages provided a hierarchical representation 

with feature map resolutions. Therefore, the SwinT 

architecture can replace the backbone networks in different 

vision activities. The successive connections of SwinT blocks 

are given in Figure 2(b). 

 

3.5 SwinT Blocks 

 

The SwinT module consists of a shifted window using a 

Multi-head Self Attenuation (MSA) module that is followed 

by a 2-layer Multi-Layer Perception (MLP) with in-between 

GELU nonlinearity. Each MSA module and MLP is processed 

before by a LayerNorm (LN) layer and then the residual 

connection is applied after it. 

 

 
(a) 

 

 
(b) 

 

Figure 2. (a) SwinT architecture; (b) Two successive SwinT blocks 
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4. MATERIALS AND METHODS 

 

4.1 Dataset description 

 

A set of OCT image datasets is acquired by the Singapore 

Eye Research Institute (SERI) and the Chinese University of 

Hong Kong (CUHK) respectively. This SERI dataset has a 

DME case of 16 numbers and normal cases of 16 numbers. 

The CUHK dataset has DME cases of 4 16 numbers and 

normal cases of 79 16 numbers. Every volume has 128 B-scan 

slices of 1024×512 pixels. All OCT datasets are used to train 

the data with grades and label it as normal or DME-affected. 

This evaluation is done by measuring a retinal thickening, 

oozes of hard, intraretinal cystoid space formation and 

subretinal fluid. 

The OCT datasets used in this work are sourced from 

publicly available repositories and research institutions. These 

datasets were collected under strict ethical protocols approved 

by their respective institutional review boards. All patient 

information was anonymized before use to ensure 

confidentiality and adherence to international data protection 

standards. 

 

4.2 Methodology 

 

In this method, DME detection involves pre-processing, 

feature extraction, feature selection and classifications to 

ensure an accurate diagnosis. Initially, the collected data is 

pre-processed to provide the data fit for proposed 

computations. Then the processed data are used for a feature 

extraction by using an Enhanced U-Net architecture. This 

proposed model consists of convolutional layers, a SwinT 

module and SC-Convs that are used to attain both local and 

global features from the OCT images. Next, the extracted 

features are selected using the HGSO algorithm. It optimises 

the combination of features and selects the most relevant 

features for classification. Finally, the selected features are 

classified using an XGBoost algorithm that uses gradient 

boosting to create a robust model that accurately distinguishes 

between healthy and DME regions in the retina. The overall 

workflow is given in Figure 3. 

 

 
 

Figure 3. Proposed block diagram 

 

4.3 Feature extraction 

 

The Enhanced U-Net architecture is associated with a 

SwinT module and SC-Convs to process an accurate 

extraction of features in DME using OCT images. The 

processed OCT image is served as an input to the enhanced U-

Net model. Initially, this UNet processes an Encoder and 

Decoder to attain a feature extraction. The structure of 

proposed UNet is given in Figure 4. 

 

4.4 Encoder 

 

In the encoder phase, it is used to extract a hierarchical 

feature that contains multiple layers of convolution, SwinT 

blocks and SC-Convs blocks that are explained below. 

Conv-1: it is an initial layer that is used to provide a filter 

and extract features of edges and textures from a pre-processed 

image. This Conv layer modified the raw pixel values into a 

set of feature maps. 

 

 
 

Figure 4. Proposed enhanced UNet with SwimT and SC-Convs architecture 
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SwinT-1: The output of Conv layer-1 is processed using a 

SwinT block-1. This transformer block provided hierarchical 

vision transformers to attain both local and global image data. 

It is used to divide the feature maps into several non-

overlapping patches. Then it applies self-attention to process a 

long-range dependency for enhancing the feature 

representations. 

SC-convs-1: The features obtained from SwinT block are 

further refined by SC-conv-1 block. This block is used to 

modify the feature maps dynamically which marks an 

important feature region and suppresses the less relevant ones 

to improve feature quality. 

Conv-1: Another convolutional layer follows, further 

processing the features and preparing them for the next 

hierarchical level. 

Similarly, in the architecture design, the series of conv-2, 

SwinT-2 and SC-Convs-2 are used to enhance and refine 

features. After the Conv-2 block, the SwinT-2 block captures 

more complex and detailed features and then moves to the SC-

Convs-2 block that fine-tunes these features to make them 

stronger and more useful. Next again third conv layer is 

applied to process the features then the third block of SwinT 

provides an even deeper into the data to extract high-level 

features. After that, the final SC-Convs block refines these 

most important features for enhancement. By carrying out this 

process, this model helps to identify and extract the significant 

features accurately. 

 

4.5 Decoder 

 

After the encoder, the decoder is used to segment map 

reconstruction from the hierarchical extraction of features. It 

includes upsampling layers, feature concatenation and a 

convolutional process. 

UpSampling: This layer is used to increase the feature 

maps' spatial resolution. The methods like transposed 

convolutions or interpolation are used to restore the original 

image dimensions. It helps to generate a segmentation map 

that matches the input image size. 

Feature Concatenation: in this block, the upsampled 

features are concatenated with the Skip connections from an 

encoder. This block is used to retain the spatial data and refine 

the lost data during the encoding. The process of skip 

connections accesses a high-resolution feature to enhance 

segmentation accuracy. 

Conv Layers: it processes the combined feature maps that 

refine the segmentation boundaries and improve the final 

output. 

Segmentation Head: The segmentation head is a final 

block that provides a probability map output that indicates the 

presence of DME. This layer has a sigmoid or softmax 

activation function. It is used to convert the processed feature 

maps into a binary mask that shows affected regions by DME. 

Therefore, the novel Enhanced U-Net architecture with 

SwinT and SC-Convs is proposed to perform feature 

extraction for DME features from OCT images. This method 

achieved a high performance in OCT image segmentation that 

offered a robust tool to diagnose and manage diabetic eye 

diseases. These extracted feature data are fed as input to 

perform a Feature Selection process. 

In comparison with existing U-Net variants, DEU-Net uses 

deformable convolutions to adapt spatial sampling locations. 

It increases geometric flexibility but lacks the capacity for 

long-range contextual modeling. MDE-Net applies multi-scale 

dilated convolutions to capture contextual information at 

varying receptive fields, but its global modeling is implicit and 

limited. The proposed Enhanced U-Net integrates Swin 

Transformers which apply self-attention within shifted 

windows and hierarchical patch merging. This enables the 

model to learn explicit global dependencies and inter-region 

relationships. The proposed model based on self-attention 

within a Swin block can be expressed as follows: 

 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑
+ 𝐵) 𝑉 (5) 

 

where, Q,K,V are query, key, and value matrices, and B is a 

learnable relative position bias. Similarly, DEU-Net handles 

local deformation through spatial adaptivity but may miss 

fine-grained intensity variations critical in OCT imaging. 

MDE-Net captures multi-scale edges but fails to handle 

contrast variation in DME. The proposed model uses SC-

Convs to extract spatial-local features guided by attention cues. 

These convolutions highlight edge regions, lesion boundaries, 

and textural transitions. This supports finer localization of 

fluid pockets and structural retinal changes. It can be 

expressed as follows: 

 

𝑌𝑖,𝑗 = ∑ 𝛼𝑚,𝑛. 𝑋𝑖+𝑚,𝑗+𝑛

(𝑚,𝑛)∊𝛺

 (6) 

 

where, 𝛼𝑚,𝑛  is the attention-weighted kernel coefficient 

around pixel (i,j), dynamically learned. Unlike DEU-Net and 

MDE-Net, the proposed U-Net architecture fuses Swin 

features with SC-Convs in a hierarchical manner to learn both 

global abstraction and local sensitivity at each level of the 

decoder. This multi-level fusion allows the model to 

simultaneously attend to macro-level context (via Swin) and 

micro-level details (via SC-Convs). This is crucial for 

segmenting pathological regions with high inter-patient 

variability. 

 

4.6 Feature selection using HGSO 

 

The feature selection process is presented to identify and 

retain the most important features from the Enhanced U-Net 

extracted data. Selecting relevant features improves overall 

performance and increases the ability of the classification 

process. Therefore, to access a feature selection, the meta-

heuristics model of HGSO is used which is motivated by using 

Henry's law of gases [30]. It means the amount of dissolved 

gas in a liquid is proportional to its partial pressure above the 

liquid. Then the HGSO simulates the gas particle’s behavior 

(i.e., candidate solutions in a search space to provide an 

optimal solution. HGSO is used for feature selection due to its 

advantages in handling non-linearity and high-dimensional 

feature spaces derived from OCT images. Unlike Principal 

Component Analysis (PCA) or Least Absolute Shrinkage and 

Selection Operator (LASSO), HGSO is not based on linear 

assumptions and can capture complex inter-feature 

dependencies relevant to DME diagnosis. It applies a 

population-based search mechanism that ensures effective 

exploration and exploitation for optimal feature subset 

selection. This results in improved classification performance 

and reduced overfitting. The HGSO algorithm to attain a 

feature selection is discussed below. 

Initialization: an initial process of HGSO is to set the 
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number of gas particles (N), types of gases and other constants. 

Then Initialize gas particles randomly within the search space.  

Gas Particle Division: it processes to partition the gas 

particles into clusters based on their types using Henry’s 

constant values. Every cluster represents a subset of the feature 

space. 

Cluster Evaluation: it evaluates the fitness of gas particles 

in every cluster. It is based on how well a feature particularly 

contributes. Then, it is used to estimate the best solution of gas 

particles in every cluster and the overall best in a swarm. 

Iterations and Updates: For every gas particle, update its 

position using Henry's law which simulates the gas’s diffusion 

and solubility. It also adjusts Henry’s coefficients and gas 

particles to refine its positions. It processes a Re-initialization 

of Worst Particles to explore new regions of the search space. 

Continuously iterate and evaluate the best gas particle in each 

cluster and the overall swarm. Then Repeat it until the 

maximum number of iterations is reached. 

Optimal Feature Set: After iterations are attained 

successfully, it returns the best gas particle with an optimal set 

of features. The pseudocode for the HGSO based feature 

selection is given below: 

 

Function HGSO_FeatureSelection(): 

    Initialize parameters: 

        N = Number of gas particles (population size) 

        MaxIterations = Maximum number of iterations 

        HenryConstant = Constant for gas solubility 

        OtherConstants = Any necessary constants 

        FeatureSpace = Set of features to choose from 

        Initialize gasParticles randomly within the search 

space 

 

    // Step 1: Gas Particle Division 

    Divide gas particles into clusters based on types using 

Henry's constant values: 

        For each gasParticle in gasParticles: 

            Assign gasParticle to a cluster based on solubility 

and Henry's constant 

 

    // Step 2: Cluster Evaluation 

    Evaluate the fitness of each gas particle within the 

clusters: 

        For each cluster: 

            For each gasParticle in the cluster: 

                Calculate fitness as classification accuracy 

based on the feature set selected by the gasParticle 

 

    // Step 3: Iteration and Updates 

    For iteration = 1 to MaxIterations: 

        For each gasParticle in gasParticles: 

            // Update the position of each gas particle using 

Henry's law: 

            Update gasParticle position based on gas 

diffusion and solubility 

             

            // Adjust Henry's coefficient and re-initialize 

worst particles: 

            If gasParticle is the worst in its cluster: 

                Reinitialize gas-particle to explore new regions 

of the feature space 

             

        // Evaluate the fitness again for all gas particles in 

every cluster 

        Update the best gas particle in each cluster and 

overall swarm 

     

    // Step 4: Optimal Feature Set 

    After reaching maximum iterations: 

        Identify the best gas particle with the optimal set of 

features 

        Return the optimal feature set 

 

4.7 End function 

 

Initially, set the parameters for the search space, gas 

particles, and constants related to gas solubility.: Partitions the 

gas particles into clusters based on types. Evaluate the fitness 

of each gas particle based on how well each feature contributes 

to the classification task. Updates the gas particles’ positions 

according to the principles of gas solubility, reinitializes 

worst-performing particles, and iterates until the maximum 

number of iterations is reached. Once the iterations are 

complete, the algorithm returns the optimal set of features that 

best contribute to classification. 

 

4.8 XGBoost classification 

 

After the feature selection, the XGBoost classification is 

performed with the chosen features given by the HGSO model. 

The XGBoost method is based on the ML method that is used 

to classify a DME and normal Cases from input data. It 

operates by building an ensemble of decision trees in a 

sequential manner, where every new tree attempts to an error 

correction made by the previous ones. This is based on 

gradient boosting that optimizes a differentiable loss function 

by adding decision trees sequentially. This process is used to 

reduce the residual errors and improve its regularization 

techniques to prevent overfitting, efficient missing data 

handling and speed implementation. 

In DME classification from OCT images, XGBoost 

provides a robust to classify each image region as either 

healthy or DME-affected. Its ability to handle large datasets 

and provide high performance in DME image classification 

with an accurate and reliable diagnostic. 

To increase clinical interpretability, attention maps 

generated by the SwinT are used to visualize the regions of 

OCT images. It is used for the model’s decision-making. 

These visual explanations help clinicians to understand lesion-

specific focus areas. In addition, XGBoost’s inherent feature 

importance ranking is used to identify the most influential 

features in the final classification. This dual interpretability 

model bridges the gap between model predictions and clinical 

reasoning. It guarantees transparency and supports informed 

decision-making for DME diagnosis. 

 

 

5. RESULT AND DISCUSSION 

 

The experimental result of the proposed UNet is evaluated 

and compared with a traditional method. For analysis, the OCT 

dataset images are acquired and used for this work. This 

dataset is used as a training-to-testing split of 70% and 30% 

respectively. The SwinT is configured with a patch size of 4×4, 

a window size of 7, and a learning rate of 1e-4 using the Adam 

optimizer. For SC-Convs, kernel sizes of 3 and dilation rates 

of 2 are assigned. HGSO is executed for 100 iterations with a 

population size of 30. Initially, the proposed U-Net is 
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compared with other U-Net models for segmentation 

performance analysis. The training and validation of the loss 

rate for varying epochs is given in Figure 5. Initially, both 

training and validation loss decrease rapidly which denotes the 

effective learning of the proposed U-Net. The metrics used for 

the analysis are Dice Similarity Coefficient (DSC), 

Intersection over Union (IoU), and Precision and Sensitivity 

(Recall) rates. DSC is the measure of overlap between 

predicted segmentation and the ground truth. IoU is the 

measured area of overlap between predicted and actual regions. 

The precision is defined as a fraction of correctly predicted 

positive pixels out of all predicted positive pixels. The 

sensitivity rate measures the ability of the model to correctly 

identify positive pixels. The comparison of the proposed U-

Net with other models is given in Table 1. 

 

Table 1. Segmentation performance analysis of proposed U-

Net 

 
Method DSC IoU Precision Sensitivity 

Proposed 0.936 0.929 0.947 0.957 

MDE-Net 0.903 0.851 0.906 0.937 

EfficientNetB7 0.889 0.822 0.878 0.900 

PolyRes-Net 0.878 0.806 0.866 0.892 

MEFP-Net 0.865 0.791 0.819 0.874 

DEU-Net 0.830 0.777 0.810 0.873 

U-Net++DSM 0.779 0.771 0.784 0.865 

 

The proposed UNet achieved a superior performance 

compared to other U-Net variants in medical image 

segmentation. The proposed approach achieved the highest 

DSC (0.936) and IoU (0.929) indicating exceptional 

segmentation accuracy. It attained a Precision of 0.947 and a 

Sensitivity of 0.957 which shows its reliability in relevant 

region identification by minimizing false positives. Also, other 

models like MDE-Net, H-DenseUNet, and EfficientNetB7 

show lower precision and sensitivity. Overall, the U-Net 

shows better performance in terms of all parameters. 

The proposed Enhanced U-Net provided extracted features 

that are optimised and selected using an HGSO to perform a 

better feature selection. This process provides a greater result 

in classification that attained a superior performance in DME 

detection than traditional methods. The comparison is 

obtained for standard classification metrics like accuracy, 

precision, Specificity, recall and F1-score respectively is given 

in Table 2. 

The proposed work demonstrates superior performance 

across various metrics compared to other models including 

GAN, Transfer Learning, ResNet50, InceptionNet, AlexNet, 

and DenseNet121 which are given in  

 

• Precision (Figure 6(a)): The proposed model 

achieves a precision of 98.75% that surpasses GAN 

(97.12%), Transfer Learning (96.75%), ResNet50 

(96%), InceptionNet (96.7%), AlexNet (95.44%), 

and DenseNet121 (92%). 

• Recall (Figure 6(b)): With a recall of 97.67%, the 

proposed model outperforms GAN (96.35%), 

Transfer Learning (95.43%), ResNet50 (94.95%), 

InceptionNet (93.35%), AlexNet (92.85%), and 

DenseNet121 (91.47%). 

• Specificity (Figure 6(c)): The proposed model attains 

a specificity of 98.52% which is higher than GAN 

(96.89%), Transfer Learning (95.93%), ResNet50 

(95%), InceptionNet (94.35%), AlexNet (93.55%) 

and DenseNet121 (89.58%)  

• F1 Score (Figure 6(d)): The proposed model has an 

F1 score of 98.32%, better than GAN (97.53%), 

Transfer Learning (96.24%), ResNet50 (98%), 

InceptionNet (97.12%), AlexNet (93%), and 

DenseNet121 (88.25%). 

• Accuracy (Figure 6 (e)): Also accuracy of 99.75% is 

achieved by a proposed model that outperforms GAN 

(98.46%), Transfer Learning (97%), ResNet50 

(96.82%), InceptionNet (98%), AlexNet (99.6%), 

and DenseNet121 (86.4%). 

 

The ablation study is conducted to evaluate the impact of 

different architectural components on the overall classification 

performance of DME detection. The obtianed values are given 

in Table 3. Initially, a basic CNN combined with XGBoost 

achieved moderate performance across all metrics. Replacing 

the CNN with a U-Net backbone improved model 

performance by enabling better structural understanding. The 

integration of SwinT and SC-Conv modules further increased 

precision and F1-score due to enhanced spatial attention and 

contextual feature extraction. Finally, the proposed model with 

HGSO achieved the highest performance, with 98.75% 

precision, 97.67% recall, and 99.75% accuracy, respectively. 

 

 
 

Figure 5. Loss validation of proposed U-Net 

 

Table 2. Performance table of classification metrics 

 
Metrics Proposed GAN Transfer Learning ResNet50 InceptionNet AlexNet DenseNet121 

Precision (%) 98.75 97.12 96.75 96 96.7 95.44 92 

Recall (%) 97.67 96.35 95.43 94.95 93.35 92.85 91.47 

Specificity (%) 98.52 96.89 95.93 95 94.35 93.55 89.58 

Accuracy (%) 99.75 98.46 97 96.82 98 99.6 86.4 

F1 score (%) 98.32 97.53 96.24 98 97.12 93 88.25 
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Figure 6. Performance of classification metrics a) Precision, b) Recall, c) Specificity, d) F1 score and e) Accuracy 

 

Table 3. Ablation study on classification model components 

 

Model Variant 
Feature 

Extractor 

Feature 

Selection 
Classifier 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Accuracy 

(%) 

CNN+XGBoost CNN - XGBoost 90.62 87.40 88.98 91.20 

U-Net (basic) +XGBoost U-Net - XGBoost 93.85 90.95 92.37 94.35 

Enhanced U-Net (Swin+SC-

Conv)+XGBoost 
Swin + SC-Conv - XGBoost 96.21 94.58 95.38 97.02 

Enhanced U-Net+PCA+XGBoost Swin + SC-Conv PCA XGBoost 97.10 95.28 96.18 98.05 

Enhanced U-Net+HGSO+XGBoost Swin + SC-Conv HGSO XGBoost 98.75 97.67 98.32 99.75 
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Table 4. Computational analysis of the enhanced U-Net model 

 
Model Training Time (hrs) Inference Time (ms/image) 

Enhanced U-Net 3.6 23 

Enhanced U-Net+HGSO 4.2 26 

 

Table 5. Comparative evaluation on Kermany [31] dataset 

 
Metrics Proposed 

Precision (%) 97.35 

Recall (%) 95.42 

Specificity (%) 96.85 

Accuracy (%) 98.25 

 

Table 6. Comparative analysis of false negatives on different datasets 

 

Dataset Total DME Images 
Test Split 

(%) 

Test Set Size (DME 

Images) 
False Negatives False Negative Rate (%) 

SERI+CUHK (Primary 

Dataset) 
16 30 5 3 18.75 

Kermany [31] 696 30 208 9 4.32 

 

The computational cost analysis of the Enhanced U-Net 

model on NVIDIA GPU is given in Table 4. The integration 

of HGSO slightly increases training time, but the inference 

speed remains within acceptable clinical limits and proves the 

suitability for real-time implementation. 

To further validate the model’s robustness, the proposed 

model is also tested on the larger publicly available OCT 

dataset by Kermany [31], Mendeley Data, V2. This dataset 

includes 696 DME images, with a test split of 30% (208 

images). The obtained results are given in Table 5. The 

proposed model maintains superior performance with high 

precision, recall, and accuracy rates, proving its strong 

generalization capability across different datasets. 

False negatives analysis is very important in clinical settings 

where, missed detections of DME can lead to delayed 

treatment. The false negative rate analysis values are given in 

Table 6. In the analysis, 3 out of 16 DME images (18.75%) 

were falsely classified as negative in the SERI + CUHK 

dataset. In another dataset, 9 false negatives are observed out 

of 208 test images. The false negative rate percentage is 4.32%. 

This denotes that the model performs more reliably on larger 

and different datasets. It reduces the clinical risk associated 

with missed diagnoses. 

 

 

6. CONCLUSION 

 

The proposed work presented a novel methodology to 

process a feature extraction and also implement a 

classification DME from medical images. The proposed model 

involves the use of an Enhanced U-Net architecture that has 

SwinT and SC-Convs for robust feature extraction. These 

features are then optimized using HGSO and classified with 

XGBoost. Therefore, the proposed model includes its ability 

to capture both local and global features from OCT images 

through the Enhanced U-Net architecture attaining a detailed 

and accurate segmentation. The integration of HGSO 

optimizes feature selection used to enhance classification 

performance. The use of XGBoost further refines the 

classification process that provides the model robust and 

effective in clinical applications. The numerical validation 

shows that the proposed model achieved higher results than 

existing models. The proposed model achieved a precision of 

98.75%, recall of 97.67%, specificity of 98.52%, accuracy of 

99.75%, and F1 score of 98.32%. Overall, this approach 

provides a highly accurate solution for diagnosing and 

managing DME to provide substantial development over 

existing methods. Future research will focus on integrating 

multimodal imaging data and expanding datasets through 

multicenter collaborations to improve model robustness. 

Additionally, there are plans to develop explainability tools for 

increased clinical interpretability and validation in prospective 

studies. 
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